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Abstract
Variants of max-product (MP) belief propagation
effectively find modes of many complex graph-
ical models, but are limited to discrete distribu-
tions. Diverse particle max-product (D-PMP) ro-
bustly approximates max-product updates in con-
tinuous MRFs using stochastically sampled par-
ticles, but previous work was specialized to tree-
structured models. Motivated by the challeng-
ing problem of protein side chain prediction, we
extend D-PMP in several key ways to create a
generic MAP inference algorithm for loopy mod-
els. We define a modified diverse particle selec-
tion objective that is provably submodular, lead-
ing to an efficient greedy algorithm with rigorous
optimality guarantees, and corresponding max-
marginal error bounds. We further incorporate
tree-reweighted variants of the MP algorithm to
allow provable verification of global MAP re-
covery in many models. Our general-purpose
MATLAB library is applicable to a wide range of
pairwise graphical models, and we validate our
approach using optical flow benchmarks. We fur-
ther demonstrate superior side chain prediction
accuracy compared to baseline algorithms from
the state-of-the-art Rosetta package.

1. Introduction
Continous random variables are often used to model com-
plex interactions among objects in the world around us,
leading to challenging multi-modal posterior distributions.
The maximum a posteriori (MAP) inference objective for
such models is typically non-convex, and optimization al-
gorithms become trapped in local optima. Approaches that
discretize the latent space and apply max-product (MP)
belief propagation (Pearl, 1988; Wainwright et al., 2005;
Wainwright & Jordan, 2008) can be effective in few di-
mensions, but for high-dimensional models only coarse
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discretizations are feasible. Continuous optimization can
be performed via Monte Carlo sampling and simulated an-
nealing (Geman & Geman, 1984; Andrieu et al., 2003), but
these methods often require long computation times.

A number of stochastic local search methods have been
developed (Trinh & McAllester, 2009; Peng et al., 2011;
Besse et al., 2012; Kothapa et al., 2011) that combine
the flexibility of sampling-based approaches with the ef-
ficiency of MP message passing. This family of particle
max-product (PMP) methods share a general framework:
at each iteration new hypotheses are sampled from stochas-
tic proposals, evaluated via discrete max-product message
updates, and accepted or rejected based on some criterion.
PMP algorithms differ primarily in their choice of stochas-
tic proposals and particle selection criteria.

The diverse particle max-product (D-PMP) (Pacheco et al.,
2014) algorithm maintains hypotheses near multiple local
optima via an optimization-based selection step that mini-
mizes distortions in MP message values. D-PMP has ex-
cellent empirical performance on a human pose estimation
task, but there is little theoretical justification for its parti-
cle selection integer program (IP), and the proposed greedy
algorithm has no optimality guarantees. Previous D-PMP
formulations also assumed a tree-structured Markov ran-
dom field (MRF) where MP provides exact max-marginals,
and several key assumptions would be violated by a naive
generalization to loopy graphical models.

In this paper, we generalize D-PMP to arbitrary pair-
wise MRFs with cycles by adapting tree-reweighted max-
product (RMP) belief propagation (Wainwright et al.,
2005). We define an alternative message distortion met-
ric which leads to a submodular particle selection IP. An
efficient greedy algorithm is guaranteed to produce mes-
sage errors within a fraction of (1 − 1

e ) of the best achiev-
able, and thus provide provably accurate max-marginal es-
timates. Our MATLAB library implements the D-PMP al-
gorithm for general pairwise MRFs. For the tasks of op-
tical flow estimation and protein side chain prediction, we
demonstrate substantial improvements over previous PMP
algorithms, and performance levels that match or exceed
state-of-the-art domain-specific inference algorithms.
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Figure 1. Loopy PMP flowcharts. The high-level structure of three variants of loopy particle max-product: the Greedy PMP (G-PMP)
of Peng et al. (2011), the Top-N PMP (T-PMP) of Besse et al. (2012), and the Diverse PMP (D-PMP) of Pacheco et al. (2014).

2. Background
We begin with a brief introduction to max-product infer-
ence for discrete MRFs, which forms the basis for our
particle-based approximations. To ground these concepts
we introduce the protein side chain prediction task, which
will be used to motivate and validate our approach.

2.1. Max-Product Belief Propagation

Max-product belief propagation (Pearl, 1988; Aji &
McEliece, 2000; Wainwright & Jordan, 2008) performs
MAP inference by passing messages along the edges of
a graphical model. Consider a pairwise MRF, with edges
(s, t) ∈ E and nodes s ∈ V:

p(x) ∝
∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt). (1)

In MRFs with cycles, tree-reweighted max-product
(RMP) (Wainwright et al., 2005) approximates MAP in-
ference via a set of spanning trees, with edge appearance
probabilities ρst. The RMP message from node t to s is:

m̃ts(xs) =

max
xt

ψt(xt)ψst(xs, xt)
1
ρst

∏
u∈Γ(t)\sm̃ut(xt)

ρst

m̃st(xt)1−ρst
, (2)

where Γ(t) is the set of nodes neighboring t. Fixed points
yield pseudo-max-marginals, which do not necessarily cor-
respond to valid max-marginal distributions:

ν̃s(xs) ∝ ψs(xs)
∏

u∈Γ(s)

m̃us(xs)
ρus ≈ max

{x′ |x′
s=xs}

p(x′).

Via connections to linear programming relaxations, RMP
provides a bound on the MAP probability at each iteration,
and a certificate of optimality using Lagrange multipliers.

2.2. Particle Max-Product Belief Propagation

For continuous variables x ∈ X , the message functions
of Eq. (2) cannot be computed in general. Particle max-
product (PMP) methods approximate messages by opti-
mizing over a discrete set of particles found via stochastic
search. Given a current set of N particles Xt ⊂ Xt, each
PMP iteration has three stages, summarized in Figure 1.

Stochastic Proposals To allow higher-likelihood state
configurations to be discovered, at each iteration PMP first
creates an augmented particle set Xaug = X ∪ Xprop of size
αN , α > 1. New particles are drawn from proposal dis-
tributions Xprop ∼ q(X). In the simplest case, Gaussian
random walk proposals qgauss(xs) = N(xs | x̄s,Σ) sam-
ple perturbations of current particle locations x̄s (Trinh &
McAllester, 2009; Peng et al., 2011). For some models, a
more informative neighbor-based proposal is possible that
samples from edge potentials qnbr(xs | x̄t) ∝ ψst(xs, x̄t)
conditioned on a particle x̄t at neighboring node t ∈ Γ(s)
(Besse et al., 2012). Specialized “bottom-up” proposals
based on approximations of observation potentials ψs(xs)
can also be effective (Pacheco et al., 2014).
Max-Product Optimization Standard or reweighted MP
message updates are used to approximate the max-marginal
distribution of each proposed particle. The αN values of
each discrete message vector satisfy mts(xs) =

max
xt∈Xt

ψt(xt)ψst(xs, xt)
1
ρst

∏
u∈Γ(t)\smut(xt)

ρst

mst(xt)1−ρst
.

Message updates require O(α2N2) operations, and com-
pute the pseudo-max-marginal νs(xs) for each xs ∈ Xaug.
Particle Selection Particles are accepted or rejected to
yield N new states Xnew ⊂ Xaug. Particle selection makes
subsequent iterations more computationally efficient.

The simple greedy PMP (G-PMP) method selects the single
particle x∗s = arg maxxs∈Xaug

s
νs(xs) with the highest max-

marginal, and samples all other particles as Gaussian per-
turbations of this state (Trinh & McAllester, 2009; Peng
et al., 2011). G-PMP updates are efficient, but they cannot
preserve multiple modes, and random walk proposals do
not effectively explore high-dimensional spaces.

A less greedy selection method retains theN particles with
highest estimated max-marginal probability. This top-N
PMP (T-PMP) (Pacheco et al., 2014) generalizes Patch-
Match BP (Besse et al., 2012), a method specialized to
low-level vision tasks which utilizes top-N particle selec-
tion and neighbor proposals. T-PMP finds high probability
solutions quickly, but the top-N particles are often slight
perturbations of the same solution, reducing the number of
effective particles and causing sensitivity to initialization.
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Figure 2. Protein side chain. Left: A simple protein with two
amino acids forms a backbone (thick) and side chains (thin).
Right: A regular discretization of the first dihedral angle.

To avoid the particle degeneracy common to G-PMP and
T-PMP, the diverse PMP (D-PMP) (Pacheco et al., 2014)
method selects particles via combinatorial optimization.
An IP favors particles that minimally distort the current MP
messages, and thus implicitly encourages diversity. By pre-
serving solutions near multiple local optima, D-PMP rea-
sons more globally and is less sensitive to initialization.

2.3. Protein Side Chain Prediction

Predicting protein structure, which is governed by pairwise
energetic interactions, is a natural target for PMP algo-
rithms (Peng et al., 2011; Soltan Ghoraie et al., 2013). Pro-
teins are formed by chains of amino acids which consist
of a backbone and a side chain unique to each amino acid
type. Each protein assumes a 3D structure, or conforma-
tion, relating to its function. Given an amino acid sequence
and a fixed backbone geometry, side chain prediction meth-
ods estimate the atomic coordinates of all side chain atoms.

We model side chain prediction as MAP inference in a pair-
wise MRF (Yanover & Weiss, 2002). The latent space is
specified in terms of dihedral angles x ∈ Rd, which de-
scribe the relative orientation between two planes (Fig. 2).
The number of dihedral angles d varies by amino acid type.
Energy is more easily modeled in terms of inter-atomic dis-
tance rij(x) between pairs of atoms i, j. Pairwise terms
encode interactions between nearby side chains via the at-
tractive and repulsive components of the “6-12 Lennard-
Jones” log-potential:

logψst(xs, xt) =

Ns∑
i=1

Nt∑
j=1

4ε

[(
σ

rij

)6

−
(
σ

rij

)12
]
. (3)

Here Ns is the number of atoms in the sth amino acid, ε
controls the strength of attraction and σ the cutoff distance
where atoms do not interact. Log-likelihoods logψs(xs)
are given by a Gaussian mixture fit to the marginal statistics
of observed dihedral angles. More details are in Sec. 4.2.

3. Loopy Diverse Particle Max-Product
The D-PMP message updates of Pacheco et al. (2014) can
be directly applied to loopy MRFs, since each step decom-
poses into local computations on the graph. But, a naive
extension may have convergence problems like those ob-

served for loopy MP in many discrete models. Using RMP
message passing, combined with our method for resolving
ties, we can verify that global optimality is achieved and
ensure that the MAP estimate is nondecreasing. We also
introduce a new IP objective in the particle selection step
which is a monotonic submodular maximization. This IP
allows us to use a standard greedy algorithm for particle
selection, and attain a multiplicative optimality bound.

3.1. Submodular Particle Selection

For each node t ∈ V we select particles to minimize the
distortion between two message vectors. Specifically, we
choose a subset of particles which minimizes the L1 norm,

minimize
z

∑
s∈Γ(t)

‖mts − m̂ts(z)‖1 (4)

subject to ‖z‖1 ≤ N, z ∈ {0, 1}αN .

The message vector mts is computed over the augmented
particles Xaug

t = {x(1)
t , . . . , x

(αN)
t }, with α > 1. The mes-

sage vector m̂ts(z) is computed over any subset of at most
N particles Xnew

t ⊂ Xaug
t indexed by the indicator vector z,

mts(a) = max
b∈{1,...,αN}

Mst(a, b), (5)

m̂ts(a; z) = max
b∈{1,...,αN}

z(b)Mst(a, b). (6)

Here we have accumulated the terms needed for RMP mes-
sage updates in a message foundation matrix Mst(a, b) =

ψt(x
(b)
t )ψst(x

(a)
s , x

(b)
t )

1
ρst

∏
u∈Γ(t)\smut(b)

ρst

mst(b)1−ρst
. (7)

Pseudo-Max-Marginal Bounds Particles are chosen to
minimize message distortions, but our primary goal is to
maintain approximations of the pseudo-max-marginals:

νs(xs) ∝ ψs(xs)
∏

u∈Γ(s)

mus(xs)
ρus , (8)

and analogously for pseudo-max-marginals on the selected
particles ν̂. If the potentials are bounded above and normal-
ized so that 0 � ψ � 1, then the sum of message distortions
bounds the psuedo-max-marginal error.
Proposition 1. Let 0 � m̂ � m � 1 and edge appearance
probabilities ρst ∈ [0, 1]. For all nodes s ∈ V we have:

‖νs − ν̂s‖1 ≤
∑
t∈Γ(s)

‖mts − m̂ts‖ρts1 (9)

We provide a proof in the Appendix. Note that we do not
bound the difference between the D-PMP max-marginals
νs(xs) and the continuous max-marginals ν̃s(xs); such
results typically require strong and unrealistic assump-
tions (Peng et al., 2011). Instead, Eq. (9) shows that if we
succeed in producing small message errors, the particle se-
lection step will not significantly distort the pseudo-max-
marginals, nor will it discard important hypotheses.
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Figure 3. LAZYGREEDY particle selection for side chain prediction for the simple two-amino-acid protein of Fig. 2. We fix all but
the first dihedral angle and select 3 particles out of a regular grid of 30 angles. Left: Objective function for optimal IP, an LP relaxation,
and LAZYGREEDY . Center: Message foundation matrix showing locations of all particles (black) and the three selected particles of
the source node (green). Right: Augmented message (lower, blue), message approximations for the first three particle selections (lower,
green), and corresponding margins (upper); the selected particle at each step is the maximizer of the margin (red).

Submodularity The particle selection IP we propose
minimizes the absolute sum of message differences (the
L1 norm). In contrast, the selection objective proposed
by Pacheco et al. (2014) minimizes the maximum message
difference (the L∞ norm). With this modified error metric,
minimizing Eq. (4) is equivalent to maximizing a mono-
tonic submodular function.
Definition 1 (Submodularity). A set function f : 2Z → R
defined over subsets of Z is submodular iff for any subsets
Y ⊆ X ⊆ Z and an element e /∈ X the function f satisfies,

f(Y ∪ {e})− f(Y ) ≥ f(X ∪ {e})− f(X).

The quantity ∆(Y, e) , f(Y
⋃
{e})− f(Y ) is the margin,

and Def. (1) states that for any e /∈ X the margin is non-
increasing in |Y |. This property of diminishing marginal
returns allows us to use efficient greedy algorithms.

Proposition 2. The optimization of Equation (4) is equiva-
lent to maximizing a monotonic submodular objective sub-
ject to cardinality constraints.

Proof. We focus on a single node and drop subscripts.
Dropping constants, we can minimize Eq. (4) as follows:

arg max
z:‖z‖1≤N

∑
a

Fa(z) =
∑
a

[
max

1≤b≤N
z(b)M(a, b)

]
(10)

Let y, z ∈ {0, 1}αN be particle selections and y ⊆ z such
that y(b) = 1⇒ z(b) = 1. For some candidate particle b:

y(b) =

{
1, if b = b
y(b), o.w.

z(b) =

{
1, if b = b
z(b), o.w.

The margins are given by direct calculation:
Fa(y)− Fa(y) = max(0,M(a, b)− m̂(a; y))

Fa(z)− Fa(z) = max(0,M(a, b)− m̂(a; z)).

Since y ⊆ z we have that Fa is submodular,
Fa(y)− Fa(y) ≥ Fa(z)− Fa(z).

A sum of submodular functions is submodular, and mono-
tonicity holds since m̂(y) ≤ m̂(z).

3.2. LAZYGREEDY Particle Selection

The LAZYGREEDY algorithm exploits diminishing
marginal returns to avoid redundant computations (Mi-
noux, 1978; Leskovec et al., 2007). Each iteration updates
and sorts the largest margin until a stable maximizer is
found. The algorithm terminates when the particle budget
is exhausted, or the maximum margin is zero. Surprisingly,
this greedy approach yields solutions within a factor
(1− 1

e ) ≈ 0.63 of optimal (Nemhauser et al., 1978).

Initialize: For each node t let M =
[
MT
s1t, . . . ,M

T
sdt

]T
be

the message foundations of neighbors Γ(t) = {s1, . . . , sd}.
Initialize the selection vector z and margins:

∆(b) =

dαN∑
a=1

M(a, b), z(b) = 0 ∀ b ∈ {1, αN}. (11)

First Iteration: Ensure that the current MAP estimate x∗ is
never discarded by setting z(b∗) = 1, where b∗ is the in-
dex of x∗t in the augmented particle set Xaug

t (see Sec. 3.3).
Update the message approximation m̂(a) = M(a, b∗).

Iterations 2 to N : Choose the largest margin to update,

b̃ = arg max
{b|z(b)=0}

∆(b).

If ∆(̃b) = 0 then terminate prematurely, the message can
be perfectly reconstructed with a subset of particles. If
∆(̃b) has already been updated on the current iteration then
set z(̃b) = 1 and update the message approximation,

m̂(a) = max(m̂(a),Mt(a, b̃)).

Otherwise, update the margin and repeat,

∆(̃b) ,
∑
a

[
max(m̂(a),M(a, b̃))− m̂(a)

]
.

Selections are performed in parallel and updates at one
node do not affect the selection at neighboring nodes. Fig-
ure 3 graphically demonstrates LAZYGREEDY selection on
the small toy protein of Fig. 2.
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G-PMP T-PMP D-PMP

Figure 4. Label Conflicts. Above: Selected side chain particles
of two amino acids (PDB: 1QOW). Diversity in the D-PMP par-
ticle set presents more opportunity for an inconsistent labeling.
Below: Naively maximizing the node max-marginal over two tied
states can produce a very unlikely joint configuration.

3.3. Resolving ties

In PMP we resolve ties using an approach similar to one
proposed for discrete MRFs (Weiss et al., 2007). For dis-
crete models the RMP pseudo-max-marginals ν admit a
provably MAP solution x∗ if a consistent labeling exists
in the set of maxima (Wainwright et al., 2005):

x∗s ∈ arg max
xs

νs(xs), (x∗s, x
∗
t ) ∈ arg max

xs,xt

νst(xs, xt).

For continuous distributions exact ties rarely exist, but
small numerical errors in the estimated pseudo-max-
marginals can perturb the particle that is inferred to be most
likely, and lead to joint states with low probability due to
“conflicted” edges. This problem is common in the side
chain model, and as illustrated in Fig. 4, the diversity in the
D-PMP particles makes conflicts more likely. To address
this we relax the set of optima to be states with pseudo-
max-marginal values within tolerance ε of the maximum:

OPT(νs) , {x∗s : |νs(x∗s)− arg max
xs

νs(xs)| ≤ ε}.

Let VT be the set of tied nodes with more than one near-
maximal state, and ET , E ∩ (VT ⊗ VT ) the edges join-
ing them. Let x∗NT be the unique assignments for non-tied
nodes. Construct an MRF over the remaining tied nodes as

pT (xT ) ∝
∏
s∈VT

ψ̃s(xs)
∏

(s,t)∈ET

ψst(xs, xt), (12)

with the conditioned node potentials

ψ̃s(xs) = ψs(xs)
∏

t∈Γ(s)\VT

ψst(xs, x
∗
t ). (13)

We label the remaining nodes x∗T = arg maxxT pT (xT )
using the junction tree algorithm. If the junction tree con-
tains a unique maximizer, then x∗ = (x∗T , x

∗
NT ) is the
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Figure 5. Primal & Dual Trajectories for a single protein (PDB:
1QOW) over all RMP iterations and 10 D-PMP steps; peaks indi-
cate resampling. Left: Without resolving ties a MAP labeling is
not obtained. Right: With tie resolution the duality gap vanishes.

global MAP over the particles X. This guarantee fol-
lows from the reparameterization property of pseudo-max-
marginals and Theorem 2 of Weiss et al. (2007). Clique
size is reduced by eliminating non-tied nodes, and by con-
straining labels to the set of tied states xT ∈ OPT(νs).

4. Experimental Results
We consider two tasks that demonstrate the effectiveness
and flexibility of D-PMP inference. We begin with opti-
cal flow estimation, a low-level vision task which recovers
2D pixel motion in an image sequence. Optical flow is a
well-studied problem where specialized inference methods
are thought to be near-optimal for the model and dataset we
consider, and so provide a good comparison. We then re-
visit our running example of protein side chain prediction,
which is more challenging due to increased dimensionality
and complex potentials. Many methods for side chain pre-
diction make coarse discrete approximations to speed up
computation, and we show significant improvement using
D-PMP to optimize the continuous energy model.

4.1. Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM×N , we
estimate the motion of each pixel s from one image to the
next. This flow vector xs is decomposed into horizontal
u and vertical v scalar components. The model presented
below is based on the Classic-C method (Sun et al., 2014).
To reduce the number of edges we model flow at the su-
perpixel level, holding flow constant over each superpixel.
Edges are given by the immediate neighbors in I1.

The pairwise log-potential enforces a smoothness prior on
flow vectors. We use the robust Charbonnier penalty, a dif-
ferentiable approximation to L1, which is approximately
quadratic in the range [−σ, σ] and smoothly transitions to
a linear function outside this range. The potential decom-
poses additively as logψst = φvert

st + φhor
st into vertical and

horizontal components, defined as follows:

φhor
st (us, ut) = −λs

√
σ2 + (us − ut)2. (14)

The spatial smoothness depends on scaling parameter λs.
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G-PMP T-PMP D-PMP Ground Truth

Figure 6. Preserving multiple hypotheses. Top Row: Final flow estimate of each method for the “Rubber Whale” sequence. The color
key (top-right) encodes flow vector orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region showing
selected flow particles as vectors (black) and the MAP label (red). The MAP estimates of D-PMP and T-PMP have higher probability
than ground truth, but D-PMP preserves the correct flow in the particle set.
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Figure 7. Optical flow results. Left: Log-probability quantiles showing median (solid) and best/worst (dashed) MAP estimates versus
PMP iteration for 11 random initializations on the Middlebury training set. Left-Center: Oracle AEPE over the training set. Right-
Center: Log-probability quantiles on the test set (G-PMP omitted due to poor performance on training). Right: Log-probability of the
MAP estimates at the pixel-level model obtained by initializing L-BFGS at the D-PMP solution.

Likelihood potentials logψs(xs) = φs(xs) assume bright-
ness constancy: properly matched pixels should have simi-
lar intensities. Each superpixel s contains a number of pix-
els Is = {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j)

we compute the warped coordinates (̃i, j̃) = (i+us, j+vs).
The likelihood penalizes the difference in image intensities,
again using the Charbonnier penalty:

φs(us, vs) = −λd
∑

(i,j)∈Is

√
σ2 + (I1(i, j)− I2(̃i, j̃))2 (15)

In computing the warped coordinates we also constrain any
pixels which flow outside the image boundary to be exactly
on the boundary, ĩ = min(M,max(0, i + us)). We apply
bicubic interpolation for non-integer coordinates.

Results We evaluate on the Middlebury optical flow
benchmark (Baker et al., 2011) using 11 random initializa-
tions. D-PMP and T-PMP utilize the same set of propos-
als (75% neighbor, 25% random walk). We compute SLIC
superpixels (Achanta et al., 2012) with region size 5 and
regularizer 0.1; about 5,000 to 15,000 per image. We use

Avg. Log-Prob. (p value) Avg. EPE (p value)
RMP -2.446E6 (0.008) 1.623 (0.008)
G-PMP -1.408E6 (0.008) 0.699 (0.008)
T-PMP -1.212E6 (0.008) 0.382 (0.727)
D-PMP -1.209E6 (–) 0.362 (–)
Classic-C – 0.349 (0.727)
Table 1. Optical flow MAP estimates. Average log-probability
and AEPE over 11 random initializations on the Middlebury train-
ing set. Reported p values are compared to D-PMP using a
Wilcoxon signed rank test, we consider p < 0.05 significant.

the Charbonnier widths σ = 0.001 recommended for this
model (Sun et al., 2014), but learn different scaling param-
eters (λs = 16, λd = 1) to compensate for our superpixel
representation.

The Middlebury training set contains 8 images with ground
truth flow, and we report log-probability quantiles over this
set (Fig. 7 (left)). To demonstrate diversity in the parti-
cle sets we report average endpoint error (AEPE) of the
oracle solution—we choose the flow particle closest to
ground truth in the order given by the particle selection step
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Figure 8. Side chain prediction. We compare each method and both L1 and L∞ diverse selection methods. Left: Total log-probability
over 20 proteins. Median (solid) and best/worst (dashed) results on 11 random initializations. Left-Center: Total log-probability for 370
proteins. Right-Center: RMSD (in angstroms Å) of the oracle solution on larger set. Right: Log-probability of all 370 proteins versus
the fixed rotamer discretization with RMP inference.

(Fig. 7 (left-center)). D-PMP shows a large reduction in
AEPE after just a few particles. T-PMP remains nearly flat,
suggesting little diversity. In just two dimensions the Gaus-
sian spread of G-PMP particles naturally leads to an error
reduction, although higher. The benefit of particle diversity
is best visualized near object boundaries (see Fig. 6).

We compare to a specialized coarse-to-fine, multiscale in-
ference algorithm for Classic-C1, using default settings and
with the median filter disabled. We also compare to RMP
on a fixed regular discretization of 200 flow vectors. As
shown in Table 1, D-PMP yields significantly higher prob-
ability solutions, but is equivalent to T-PMP in AEPE. D-
PMP also achieves equivalent results to Classic-C opti-
mization, which is highly tuned to the Middlebury dataset.

We cannot directly compare probability of the Classic-C
and D-PMP solutions, because the former models flow at
the pixel level. Instead, using L-BFGS initialized from the
D-PMP solution, we optimize the pixel level model and
compare log-probability of the result with Classic-C for
both training and test sequences (Fig. 7 (right)). Again,
even compared to a highly-tuned specialized optimization
method, D-PMP achieves statistically equivalent results.

4.2. Protein Side Chain Prediction

Most computational approaches optimize side chain place-
ment over a standard discretization, known as a rotamer
library (Bower et al., 1997; Fromer et al., 2010). Rotamer
configurations are learned from the marginal statistics of
experimentally validated side chains and generally allocate
three states {60◦, 180◦, 300◦} for each dihedral angle, re-
sulting in up to 81 possible states per node. This is a coarse
discretization which can fail to capture important details
of the side chain placement. Applying D-PMP we opti-
mize the continuous energy function, allowing estimation
of non-rotameric side chains which do not obey the stan-
dard discretization (see Fig. 9). Log-likelihoods are the
so-called Dunbrack probabilities—Gaussian mixtures with

1http://people.seas.harvard.edu/˜dqsun
Experiments use code accessed on 06 February 2015.

Estimate Rotamers D-PMP Particles

Figure 9. Non-rotameric side chains. Left: X-ray (green), RMP
(red), Rosetta (magenta) and D-PMP (black) estimates. Center:
Standard rotamers are all poor approximations. Right: Final D-
PMP particles all overlapping the level set of the electron density
(mesh). (PDB: 1GK9, Trp154) (Shapovalov & Dunbrack, 2007)

means centered on rotamer configurations.

Results We evaluate the energy function with
Rosetta (Rohl et al., 2004), a state-of-the-art molecu-
lar modeling package. We configure the Rosetta energy
using three terms: the Lennard-Jones attractive and
repulsive (fa_atr, fa_rep) terms and the Dunbrack
probabilities (fa_dun), each with unit weight. We run
PMP with 50 particles for 50 iterations. D-PMP and
T-PMP proposals are 50% random walks from Gaussians
wrapped to account for angular discontinuities, and 50%
samples from the rotamer marginals. Neighbor-based
proposals are not used, due to the complex transformation
between dihedral angles and atom locations. We compare
to Rosetta’s implementation of simulated annealing using
Metropolis-Hastings proposals from the discrete rotamers,
followed by local continuous optimization.

We experiment on two sets of proteins selected from the
Protein Data Bank2, resolved using X-ray diffraction below
1.5-Å resolution, and less than 1000 amino acids. We run
each method from 11 random initialization on a small set
(20 proteins) and report quantiles of total log-probability
(Fig. 8 (left)). Both D-PMP and T-PMP outperform G-
PMP, due to their ability to exploit the model likelihood
through rotamer proposals, with D-PMP showing the tight-
est confidence intervals. The second set is larger (370 pro-
teins) and we report the total log-probability of a single run

2http://www.pdb.org
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Figure 10. Side chain particles. Top Row: Final particles for T-PMP and D-PMP, and the ground truth conformation of a single protein
(PDB ID: 2H8E). Region marked in red is detailed below. Bottom Row: Closeup of first ten amino acids, showing the fixed backbone
(black) and final particles colored by backbone location. D-PMP preserves more diverse particles in areas of uncertainty.

for each method (Fig. 8 (left-center)).

Diversity is important in structure prediction, since pro-
teins are known to alternate between many stable config-
urations (Ma et al., 1999). Fig. 10 shows a qualitative com-
parison of diversity between D-PMP and T-PMP for a sin-
gle protein. To measure diversity we report RMSD of the
oracle solution (Fig. 8); D-PMP shows a substantial im-
provement in accuracy after only a few particles. We also
compare the submodular particle selection (L1) with the
minimax formulation (L∞); both preserve diversity simi-
larly, but the former offers stronger theoretical justification.

5. Discussion
We have generalized previous PMP algorithms in several
substantial ways. Our proposed extensions to D-PMP not
only allow inference in loopy MRFs, but our reformula-
tion of the particle selection IP allows for greedy optimiza-
tion within a guaranteed optimality bound. We demon-
strate effectiveness in protein structure prediction, where
we are substantially more accurate than the G-PMP algo-
rithm that Peng et al. (2011) applied to a broader struc-
ture prediction task, and the state-of-the-art Rosetta pack-
age. The same general-purpose D-PMP algorithm is also
competitive with standard inference algorithms for a very
loopy optical flow model. A MATLAB library, built on
UGM (Schmidt, 2007), implementing these methods is
available3.
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Appendix. Proof of Proposition 1
To simplify we ignore normalization terms and drop depen-
dence on z so m̂(z) = m̂. The proof is by induction on the
number of neighbors, for the base case let Γ(s) = {i, j}:
‖νs − ν̂s‖1 ≤

∑
xs

[
(mis(xs)

ρis − m̂is(xs)
ρis)mjs(xs)

ρjs

+ (mjs(xs)
ρjs − m̂js(xs)

ρjs)m̂is(xs)
ρis
]

≤
∑
xs

[
(mis(xs)

ρis − m̂is(xs)
ρis)

+ (mjs(xs)
ρjs − m̂js(xs)

ρjs)
]

≤ ‖mis − m̂is‖ρis1 + ‖mjs − m̂js‖
ρjs
1

The first inequality drops ψs ∈ [0, 1], and | · | since
m̂ts � mts. The second inequality holds since m, m̂ ∈
[0, 1]. The last follows from the triangle inequality since,
|x− y|ρ is a metric (though not a norm for ρ ∈ (0, 1)). For
the inductive step let Γ(s) = {t1, . . . , tn} and assume:

‖ν\ns − ν̂\ns ‖1 ≤
∑
i 6=n

‖mtis − m̂tis‖
ρtis
1

where ν\ns (xs) is the product of all messages except mtns:
‖νs − ν̂s‖1 ≤ ‖mtns − m̂tns‖

ρtns
1 + ‖ν\ns − ν̂\ns ‖1

≤
n∑
i=1

‖mtis − m̂tis‖
ρtis
1 .
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