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Abstract—Recent machine learning- and deep learning-based
static malware detectors have shown breakthrough performance
in identifying unseen malware variants. As a result, they are
increasingly being adopted to lower the cost of dynamic mal-
ware analysis and manual signature identification. Despite their
success, studies have shown that they can be vulnerable to
adversarial malware attacks, in which an adversary modifies a
known malware executable subtly to fool the malware detector
into recognizing it as a benign file. Recent studies have shown
that automatically crafting these adversarial malware variants at
scale is beneficial to improve the robustness of malware detectors.
For conciseness, we refer to this process as Adversarial Malware
example Generation (AMG). Most AMG methods rely on prior
knowledge about the architecture or parameters of the detector,
which is not often available in practice. Moreover, the majority of
these methods are restricted to additive modifications that append
contents to the malware executable without modifying its original
content. In this study, we offer a novel Reinforcement Learning
(RL) method, AMG-VAC, which extends Variational Actor-Critic
(VAC) to non-continuous action spaces where modifications are
inherently discrete. We evaluate the evasion performance of the
proposed AMG-VAC on two reputable machine learning-based
malware detectors. While the proposed method outperforms
extant non-RL and RL-based AMG methods by statistically
significant margins, we show that the obtained evasive action
sequences are useful in shedding light on malware detectors’
vulnerabilities.

Index Terms—binary black-box attack, adversarial malware
generation, static malware detection, reinforcement learning,
variational actor-critic, approximate sampling

I. INTRODUCTION

With the recent increase in the scale of malware attacks,
machine learning (ML) and deep learning (DL) have been
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adopted to enable static malware detection based on the
features automatically extracted from (parts of or the entire)
malware executable [1]. Static malware detectors have gained
attention due to being faster and far less resource intensive than
dynamic malware analysis [2]. These malware detectors have
shown breakthrough performance in detecting unseen malware
variants at an unprecedented scale. However, these ML-based
malware detectors have shown to be vulnerable to adversarial
attacks – functional malware executables meticulously mod-
ified by an adversary to fool the detector into recognizing
them as benign [3]. This process is known as Adversarial
Malware Generation (AMG) [4]. Although AMG is construed
as a major threat when conducted by the adversary, it can
be helpful to autonomous malware detection when performed
on the defender side [5]. AMG can provide an effective way
to improve malware detectors by learning from adversarial
attacks and identifying the vulnerabilities of malware detectors
[6]. Thus, studying the characteristics of adversarial attacks
through AMG is a viable defense mechanism [7].

However, existing studies on AMG has three major lim-
itations. First, most AMG methods require prior knowledge
about the malware detector architecture, its parameters, or
its confidence score [2], [8]–[10]. These assumptions are not
in accordance with realistic attack scenarios in which the
detector’s information is often unknown [11]. Second, existing
AMG research mostly focuses on the additive modifications,
which involves appending content to the empty space at the
end of the malware executable [12]. In reality, human adver-
saries can choose from a broad range of editing adversarial
actions in modifying malware to evade detection. Third, while
the sequential order of adversarial modifications is important
to understand the vulnerabilities of malware detectors and
detect modified malware, this aspect of AMG has not been ex-
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tensively studied. To address these limitations, in this study, we
propose a new threat model featuring a novel Reinforcement
Learning (RL) method, AMG-VAC, to automatically construct
realistic malware variants for evading ML- and DL-based static
malware detectors. AMG-VAC enables more realistic AMG
to help discover vulnerabilities of malware detectors. Drawing
upon the state of the art in RL, AMG-VAC extends Variational
Actor-Critic (VAC), to effectively emulate evasive malware
variants. AMG-VAC applies a set of allowable additive and
editing modifications (i.e., actions) on malware executables to
generate evasive sequences of actions aiming to maximize the
chance of evading malware detectors. The resultant evasive
action sequences from AMG-VAC enable further analysis for
better understanding the detector’s vulnerabilities.

The main contributions of this paper are twofold. AMG-
VAC offers an automated vulnerability discovery method
for both advanced ML-based and DL-based static malware
detectors without requiring any prior knowledge about their
architecture or parameters. Furthermore, AMG-VAC extends
VAC to operate in non-continuous action spaces where discrete
sequential modifications on a malware executable can lead to
evasive malware variants.

II. RELATED WORK AND BACKGROUND

A. Adversarial Malware Example Generation

Adversarial Malware example Generation (referred to as
AMG for brevity), is a specific type of adversarial example
generation, an emerging deep learning research area [7],
[13]. Adversarial example generation often aims at generating
input data that misleads a model into incorrect classifications.
A large body of studies on adversarial example generation
focuses on image applications. Unlike image applications in
which adversarial modifications are continuous (e.g., applying
a noise signal), the modifications for malware executables are
inherently discrete. Moreover, applying arbitrary modifications
(common in adversarial example generation for images) to
a malware executable is likely to affect the functionality of
the executable. Accordingly, AMG concerns automatically
generating such discrete functionality-preserving modifications
to evade malware detectors. It is critical to verify malware
detectors against AMG and improve their robustness as a
viable defense mechanism [7]. This verification goes beyond
current evaluation practices such as precision, recall, accuracy,
and F1-score. Overall, while AMG is damaging when utilized
by adversaries, it could be beneficial for defenders to gain
insights into their vulnerabilities and improve their robustness.

Motivated by the importance of AMG, numerous AMG
methods have been proposed in the recent literature [2], [8]–
[10], [14]–[20]. A large body of these studies target white-
box attack scenario in which the attacker has full knowledge
about the targeted DL-based static malware detector [2], [8],
[21], [22]. These methods often rely on the gradient errors
obtained from the malware detector, which are not accessi-
ble in real-world attacks. As a result, adversarial malware
variants generated by these methods could be unrealistic.

Another group of AMG studies target a more realistic black-
box scenario, in which the adversary only has access to the
confidence score produced by the detector or malware features
that are important to the detector [9], [10], [14]–[17], [20],
[23]. Few studies consider a binary black-box scenario in
which the only information known to the attacker is whether
a generated malware variant is able to evade the detector or
not [12], [18], [19], [24]. Binary black-box attack scenario is
the most realistic type of AMG due to its minimal reliance
on the insider knowledge about the target malware detector.
The binary black-box AMG approaches proposed by Dey et
al. [12] and Ebrahimi et al. [24] rely on additive actions,
which only allow adversaries to append additional content to
the executable. However, human adversaries can leverage a
number of other types of actions in developing adversarial
attacks. For example, editing actions can create a wider range
of modifications such as renaming the code sections in a
malware executable. Anderson et al. [18] and Fang et al.
[19] have shown that deep RL can model the interactions
between the adversary and malware detector in order to learn
effective editing actions that mislead the detector in binary
black-box settings. However, tackling AMG with RL requires
handling environments with combinatorially large state spaces
(i.e., all possible permutations of editing a section name of a
malware executable). These two studies employ mainstream
Actor-Critic RL [18] and deep Q-learning [19], which are not
specifically designed to handle very large state spaces [25].
To address this issue, and motivated by the benefits of RL in
AMG applications, we next review state of the art in RL with
high dimensional state spaces.

B. Deep Reinforcement Learning for AMG
RL features a Markov decision process in which an agent

iteratively interacts with an environment [26]. Given a state
st ∈ S, the agent takes an action at ∈ A. In response, the
environment produces the reward r(st, at). The ultimate goal
of RL is to learn a policy π(at|st) that maximizes the expected
reward (i.e., accumulated reward in the long run). Learning
the policy is accompanied with estimating the state-action
value Qπ(s, a) = E[R|s, a]. Deep RL has shown breakthrough
performance in estimating π and Q using neural networks
[27]. Accordingly, learning the behavior of an adversary is
equivalent to learning a neural network that parameterizes the
policy π. Finding the policy π(at|st, θ) parametrized by vector
θ that maximizes the reward leads to solving an optimization
problem given in Eq. 1.

J(θ∗) = max
θ

∞∑
t=0

Eτ [r(st, at)] (1)

where τ = s0, a0, . . . , st, at denotes the trajectory (se-
quence of state-actions). As seen in Eq. 1, unlike black-box
AMG methods, utilizing the reward signal eliminates the need
for the confidence score from the malware detector. Thus, deep
RL is naturally suited for modeling the interactions between
the adversary and malware detector in AMG. Fig. 1 shows the
RL framework for modeling these interactions.
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Fig. 1. Illustration of AMG in RL Settings

As shown in Fig. 1, the RL agent aims to mimic the adver-
sary by applying functionality-preserving actions to different
parts of a malware executable. At the highest level, a malware
executable consists of Header (i.e., metadata), Sections (i.e.,
executable code and data), and Overlay (i.e., the free space at
the end of the file that is often not executed). Static malware
detectors extract features from these parts to classify the file
either as malicious or benign. The RL agent is rewarded only
when the series of applied actions lead to a functional malware
variant that evades the detector. The states are modeled as
the set of all possible features from the malware executable
[28]. To model the adversary’s actions with deep RL, two
considerations are needed. First, as the attack vector is discrete
(e.g., editing malware timestamp), the action space (i.e., set
of possible modifications that an adversary can apply to a
malware executable) is inherently discrete [2]. Consequently,
Anderson et al. [18] and Fang et al. [19] utilize Actor-Critic
with Experience Replay (ACER) [29] and Double Deep Q
Network (D-DQN) [30] as two recently proposed RL methods
suitable for discrete action spaces to conduct AMG. Second, as
AMG involves large sequences of bytes, deep RL is required
to process a combinatorially large number of states [18] in the
environment. The number of states, for instance, amounts to
at least 162048 states for a 2KB modification in a hex-coded
malware executable. While useful, ACER and DDQN are not
specifically designed for very large state spaces. Recently,
Fellows et al. [25] have proposed Variational Actor-Critic
(VAC) that has yielded the state-of-the-art performance in
tasks with very large number of states. VAC results in 33%
more cumulative reward over ACER and DDQN on average
[25]. However, VAC is not directly applicable to discrete
action spaces. Motivated by its success in high-dimensional
state spaces, we propose a novel method to extend VAC to
discrete action spaces. We next introduce a threat model to
conduct AMG and discuss core VAC framework. Finally, we
introduce our proposed AMG-VAC to conduct AMG using
VAC on discrete action spaces.

III. METHOD

A. Threat Model

Following [18] and [31], we define the threat model for
binary black-box AMG attacks against static malware detec-
tors. Unlike the threat model in [18], our threat model is able
to launch attacks against both traditional machine learning-

and deep learning-based malware detectors. Our threat model
consists of three components:
• Adversary’s Goal: Automatically generating mal-

ware variants that evade static ML- and DL-based detec-
tors.

• Adversary’s Capability: Applying allowable
(i.e., functionality preserving) additive and editing actions
on malware binary.

• Adversary’s Knowledge: The parameters and
deep learning architecture of the malware detector are
not available to the adversary. Moreover, the adversary
does not have access to any real-valued confidence score
generated by the detector. The only available information
is whether the generated malware variant can evade the
detector or not (binary black-box scenario).

To implement this threat model, we first introduce the
baseline VAC method and then show how AMG-VAC builds
on VAC to accomplish AMG by discretizing the action space
using approximate sampling.

B. Preliminary: Variational Actor-Critic (VAC)

VAC builds upon Actor-Critic (AC) model [32]. AC has
two main iterative steps carried out by two complementary
components called actor and critic:

1) Policy improvement, in which the actor finds a policy
π that is compatible with current action value function
Q. The actor is characterized by a neural network that
accepts states and outputs actions to estimate the policy
distribution πθ(a|s)

2) Policy evaluation, in which the critic estimates the action
value function consistent with the current policy π. The
critic is characterized by a neural network that accepts
state-action pair and outputs the expected value of state-
action pairs to estimate Qw(s, a).

Derived from Eq. 1, this iterative process translates to AC’s
objective given in Eq. 2:

J(θ) = Eτ [

∞∑
t=0

log πθ(at|st)Qw(st, at)] (2)

in which, πθ(at|st) is learned by the actor network, while
Qw(st, at) is learned by the critic network. In their seminal
work, Fellow et al. [25] show that AC’s learning objective is
solved more effectively via variational inference and propose
Variational AC (VAC). Variational inference approximates the
action posterior πθ(at|st) with a tractable family of distri-
butions suitable for large number of states. However, VAC’s
policy is assumed to have a continuous distribution, and thus
is not directly applicable to discrete action spaces required in
AMG [25].

C. The Proposed Variational Actor-Critic for Discrete Adver-
sarial Malware Generation (AMG-VAC)

Our proposed AMG-VAC aims to emulate the adversary’s
evasion behavior, given a set of discrete actions that do not
change the functionality of malware executable. To this end,
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AMG-VAC discretizes continuous actions from the VAC’s
actor network to accommodate for discrete additive and editing
actions via an approximate sampling operator. The overview
of AMG-VAC and the approximate sampling is depicted in
Fig. 2.

Fig. 2. Abstract view of the proposed AMG-VAC

The RL agent consists of actor and critic network explained
earlier. The components of the malware environment were
depicted in Fig. 1. The approximate sampling component
outputs approximated actions given the policy πθ. We next
characterize the action space and the procedure of approximate
sampling in AMG-VAC.

1) Action Space: Following Anderson et al. [18] and Fang
et al. [19], we identified ten functionality-preserving actions
including five additive and five editing actions shown in Table
I. Additive and editing actions are denoted by A and E,
respectively.

TABLE I
DISCRETE ACTION SPACE FOR AMG-VAC

Action Name Description Type
Add Import (AI) Adds a library or function to the

import table
A

Add Section (AS) Adds a new section to
executables

A

Break Checksum (BC) Sets file’s checksum E
Change Timestamp

(TS)
Sets timestamp E

Overlay Append (OA) Appends Bytes to the end of PE
file

A

Remove Debug (RD) Unlinks debug section from
header

A

Remove Signature
(RS)

Unlinks digital signature from
certificate table

A

Section Rename (SR) Change sections’ name in
malware executable

E

UPX Compression
(UC)

Compress malware executables E

UPX Decompression
(UD)

Decompress malware
executables

E

2) Approximate Sampling of Actions with Concrete Dis-
tribution: As mentioned above, the actor network in VAC
performs policy improvement and outputs actions to interact
with the environment. The policy improvement translates into
estimating πθ(a|s) via the actor neural network (shown in

Fig. 2). The actor network learns a distribution over actions.
Learning this action distribution in AMG involves sampling
from discrete actions described in Table I. As the sampling
operation is not differentiable, it inhibits gradient propagation
in stochastic gradient ascent – required for learning the neural
network parameters [33]. That is, the discrete stochastic ac-
tion sampling precludes the gradient flow needed for policy
improvement in the actor network. Maddison et al. [34]
showed that discrete samples can be approximated via using a
differentiable Concrete distribution. Concrete distribution, also
known as Gumbel-Softmax distribution, is a well-established
differentiable distribution in statistical machine learning [33].
Inspired by Maddison et al. [34], we propose to approximate
the discrete action distribution over discrete AMG modifica-
tions (shown in Table I) by Concrete distribution.

Let πk denote the probability assigned to each action ak
by the policy (i.e., actor) network. Approximate sampling
from discrete actions with Concrete distribution entails a few
sequential steps. First, the probability of the sampled discrete
action from the actor network is projected to a logarithmic
scale for numerical stability [34]. Second, independent and
identically distributed (i.i.d.) random variables are sampled
from Gumbel distribution Gk. Third, the obtained sample
from Gumbel distribution is combined with the discrete action
probabilities via component-wise addition and a softmax op-
erator. The softmax operator is parameterized by temperature
τ that could be hand-tuned. Following this process leads to
a Concrete distribution over the outputs of the actor network,
which is expressed via Eq. 3.

ak =
exp((log πk +Gk)/τ)∑n
i=1 exp((log πi +Gk)/τ)

(3)

where the obtained output (i.e., action sample ak) is dif-
ferentiable and thus can be used in learning the parameters
of the actor network via gradient ascent. Such an approxi-
mate sampling process enables AMG-VAC to learn policies
on discrete action spaces seen in modifications on malware
executables. The discrete samples are approximated via using
a differentiable Concrete distribution over the attack vectors
after receiving the discrete actions from the actor network. The
novelty of AMG-VAC lies in extending VAC via approximate
sampling to handle discrete action environments in AMG
applications while still benefiting from stochastic gradient
ascent.

IV. EVALUATION

We conducted a series of evaluation experiments to rig-
orously assess AMG-VAC on emulating adversarial malware
files in comparison with baseline AMG methods.

A. Research Testbed

Following the malware testbed construction in [18], [19],
our research testbed comprised approximately 19,650 (15.38
GB) recent Windows malware executables from VirusTotal –
a renowned aggregator of emerging malware from multiple
contributors worldwide [18], [35]. The date of these malware
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executables ranges from 2017 to 2019. About 3,429 (1.68
GB) of the malware executables were dedicated for training
the AMG-VAC. The testbed included five types of common
malware files, including botnet, ransomware, rootkit, spyware,
and virus. The distribution of these types is given in Table II.

TABLE II
DISTRIBUTION OF MALWARE TYPES IN OUR TESTBED

Malware Type Train Size
Botnet 526 (151.2 MB)

Ransomware 900 (454.2 MB)
Rootkit 731 (511.1 MB)
Spyware 640 (377.2 MB)

Virus 659 (186.3 MB)
Total 3,429 (1.68 GB)

B. Experimental Setup

The performance of AMG-VAC was evaluated in compar-
ison with the state-of-the-art AMG methods. In our exper-
iment, all AMG methods were trained on the 1.68 GB of
training malware testbed. The generated adversarial malware
variants of these trained AMG methods were tested against
two renowned malware detectors: EMBER and MalConv.
Endgame Malware Benchmark for Research (EMBER) is
a well-established malware detector developed by Endgame
Inc. EMBER leverages gradient boosting and gradient-based
sampling for malware detection [18], [36]. MalConv is a
premier deep learning-based malware detector, developed by
the Laboratory of Physical Sciences [1]. MalConv uses a large
convolutional neural network (CNN), which was trained on
over a million malware executables.

We adopted the evasion rate metric as our performance
evaluation criterion. Evasion rate is a widely used metric for
measuring the AMG performance [18], [24], [37]. The evasion
rate of an AMG method against a given malware detector is
defined as follows:

Evasion Rate =
|E ∩ F |
N

(4)

Where E is the set of generated adversarial malware variants
capable of evading the malware detector, F is the set of
generated adversarial malware variants that are functional,
and N is the total number of adversarial malware variants
generated by the AMG method. A higher evasion rate suggests
that the AMG method is capable of evading the malware
detector more effectively.

AMG-VAC was compared against three state-of-the-art
black-box and binary black-box AMG methods: Benign
Feature Append (BFA) [9], [17], Double Deep Q-Network
(DDQN) [19], [30], and Actor-Critic with Experience Replay
(ACER) [18], [29]. BFA is a widely-adopted non-RL method
that appends parts of benign files to the end of malware
executables to generate evasive malware variants. BFA is a
black-box attack method and has access to the confidence
score of the malware detector. Therefore, BFA benefits from
more insider information than binary black-box benchmark

methods (i.e., DDQN, ACER, and AMG-VAC). Double Deep
Q-Network (DDQN) is a well-established RL-based binary
black-box method that leverages two neural networks for
better estimation of the action-value function. Actor-Critic
with Experience Replay (ACER) is an effective RL-based
binary black-box method that yields the malware variant by
applying variance reduction techniques to reduce the instability
of learned policies in the baseline AC model [29]. Consistent
with [18] and [19], all experiments were implemented using
a modified version of the OpenAI Gym environment with the
same parameter settings and neural network sizes.

1) Functionality Preservation: The functionality of all gen-
erated adversarial malware variants were checked using the
academic license of VirusTotal API. The API provides a
malware behavior report, including static and dynamic analysis
of the malware file. The report reflects the network behavior
of the malware file, file access patterns, etc. We compared the
behavior reports of the modified malware variants with the
unmodified malware files to ensure that the behavior stays the
same after modification. With this process, we assured that the
modified malware files can be executed on Windows operating
system while maintaining their malicious behavior.

C. Results

Table III summarizes the benchmark evaluation results,
comparing AMG-VAC’s performance against two renowned
ML- and DL-based malware detectors (EMBER and MalConv)
across five malware types. We identified two major findings
from these results. First, while RL-based AMG methods
(DDQN and ACER) did not use the confidence score from the
malware detector for generating malware variants, the malware
variants generated by these methods were more effective (e.g.,
average of 28.44% and 37.18% for EMBER) than those
generated by the confidence score-based BFA (e.g., average
of 3.90% for EMBER). This finding highlights the general
effectiveness of RL in AMG. Second, and more importantly,
AMG-VAC outperformed the state-of-the-art baseline methods
across all malware types and on both malware detectors with
statistically significant margins as measured by paired t-test.

Overall, while BFA had the lowest evasion rate across all
malware categories, RL-based AMG methods had significantly
higher evasion rates for all malware types. On average, AMG-
VAC’s evasion rate across all five malware types and against
both malware detectors was considerably higher than all
baseline methods with 51.67% for EMBER, and 44.01% for
MalConv. Specifically, AMG-VAC outperformed the second
best-performing method (ACER) by 14% (51.67% vs. 37.18%)
for EMBER and by 9% (44.01% vs. 35.04%) for MalConv on
average. These results indicate that enhancing VAC to operate
on discrete action spaces via our proposed AMG-VAC yielded
considerably stronger adversarial malware variants that are
capable of evading malware detectors.

D. Discussion

To gain further insight into the vulnerabilities of malware
detectors, we qualitatively analyzed AMG-VAC’s output by
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TABLE III
COMPARING AMG-VAC’S PERFORMANCE (EVASION RATE) AGAINST TWO RENOWNED MALWARE DETECTORS ACROSS FIVE MALWARE TYPES

Malware
Detector

Method Botnet Ransomware Rootkit Spyware Virus Average

EMBER
BFA 3.02% 4.44% 4.73% 5.34% 6.16% 3.90%

DDQN 23.00% 44.33% 39.12% 19.80% 27.77% 28.44%
ACER 30.99% 60.11% 27.51% 26.87% 62.82% 37.18%

AMG-VAC
(Ours)

48.29%* 65.22%* 61.15%* 29.53%* 82.40%* 51.67%*

MalConv
BFA 3.90% 4.42% 2.96% 3.28% 5.56% 3.76%

DDQN 6.08% 11.89% 16.83% 27.50% 30.50% 16.63%
ACER 37.07% 25.33% 29.41% 56.09% 44.76% 35.04%

AMG-VAC
(Ours)

44.68%* 26.89%* 50.48%* 65.31%* 48.41%* 44.01%*

Best performances are highlighted in boldface fonts. Asterisks denote that P-values evaluated by paired t-test are significant at 0.05.

TABLE IV
MOST EVASIVE ACTION SEQUENCES PRODUCED BY AMG-VAC FOR GENERATING ADVERSARIAL MALWARE ATTACKS

Malware
Detector

Most Evasive Action Sequences

EMBER
Append Import → Break Checksum → Section Rename → Section Rename
Change Timestamp → Add Import → Change Timestamp → Compression
Remove Signature → Overlay Append → Compression → Section Rename

MalConv
Compression → Remove Debug → Overlay Append → Overlay Append →Section Rename

Add Import → Overlay Append → Change Timestamp
Remove Debug → Remove Signature → Add Import → Compression

examining its action sequences that led to evasive malware
variants. To this end, we obtained the most frequent actions
leading to the creation of evasive malware variants against the
EMBER and MalConv malware detectors. Table IV shows the
top three most frequent action sequences for each malware
detector.

For EMBER, two editing actions (i.e., Compression and
Section Rename; boldfaced in Table IV) were the most fre-
quent actions. Compression and Section Rename appeared
in 16% and 14% of the evasive sequences, respectively. For
MalConv, while Compression was also the most frequent
action in evasive attacks with 39% occurrence, Import Append
(boldfaced in Table IV) was the second most frequent additive
action with 12% occurrence. In sum, the sequences generated
by AMG-VAC provided three useful observations about the
examined malware detectors. First, the Compression action
affected both ML- and DL-based malware detectors as the
most effective action in generating malware variants. Second,
EMBER was more vulnerable to editing actions (e.g., Section
Rename). This is expected since EMBER’s decisions are
mainly based on the features extracted from the executable’s
metadata, which is not modified by additive actions (e.g., Add
Import). Third, unlike EMBER, MalConv was more vulnerable
to additive actions as MalConv is based on automated repre-
sentation learning from the whole malware executable. Such
observations from examining AMG-VAC’s sequences can lead
to better adversarial attack mitigation for static deep learning-
based malware detectors.

V. CONCLUSION

It is vital to defend malware detectors against evolving
adversaries who can generate adversarial attacks at scale. This
calls for automated adversarial malware generation (AMG) at
the defender side. To emulate adversarial malware attacks, we
propose AMG-VAC, a novel RL method designed specifically
to support discrete modifications of malware executables in
AMG tasks. Through rigorous evaluation, we show that AMG-
VAC outperforms extant RL-based and non-RL-based AMG
methods. AMG-VAC contributes to deep learning research
community by offering a novel approach to extending the
state-of-the-art RL framework to AMG. Furthermore, AMG-
VAC is an effective and explainable AMG technique that
contributes to the malware analysis research community. A
promising future direction could be a rigorous procedure for
using the adversarial malware variants generated by AMG-
VAC to enhance the robustness of DL-based malware detectors
against adversarial attacks.
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