
Fast ε-free Inference of Simulation Models with 
Bayesian Conditional Density Estimation 



Types of 
Uncertainty

• There are two major kinds of uncertainty
• Epistemic Uncertainty describes what the 

model doesn’t know. It is attributed to 
inadequate knowledge of the model. This is the 
uncertainty which can be reduced by having 
more data or increasing the model complexity.

• Aleatoric Uncertainty is the inherent 
uncertainty which is part of the data generating 
process. For example, a paper plane which is 
launched by a high precision equipment, which 
maintains the same degree of release, speed of 
release and a thousand other parameters will 
still not fall in the same place each trial. This 
inherent variability is Aleatoric Uncertainty.

Epistemic Uncertainty 

Aleatoric Uncertainty 

Illustration of aleatoric and epistemic uncertainty. Blue dots are 
the data points, red lines are the predictions, and the green 
shades is the ±3 Standard deviation around the prediction. 
Aleatoric uncertainty captures the noise in the dataset and is 
thus constat in the case if a data set with homoscedastic noise 
pictured above. Meanwhile, epistemic uncertainty captures the 
uncertainty of the model and thus decrease when more data 
points are observed 



Bayesian Theorem
Conditional probability of a particular parameter value 𝜃 given data D to the probability of D given 𝜃

𝑝 |𝜃 𝐷 =
𝑝 |𝐷 𝜃 𝑝 𝜃

𝑝 𝐷

Posterior

Likelihood

The Evidence

Prior

Ø Refers to the process of determine the 
best data distribution given a specific 
situation in data.  

Ø Is used to generally maximize the chance 
of a particular situation to occur.  

Ø It is computationally expensive or 
sometimes completely infeasible to 
evaluate

Ø Represents beliefs about 𝜃 before D is 
available

Ø Often specified by choosing a tractable 
distribution such that random generation 
of values of 𝜃 are straight forward.

Ø The probability of an event after taking in 
consideration the evidence.  

Ø Can be calculated be approximated using 
ABC

Ø A collection of observations.  
Ø It is what is being observed and 
measured



Posterior in Practice

Approximation / Simulation methods
Ø Maximum A Posteriori (MAP) Estimation
Ø Full Predictive Distribution
Ø Approximate Predictive Distribution
Ø Monte Carlo Dropout
Ø Stochastic Weight Averaging - Gaussian (SWAG)



Introduction

• Many Statistical models can be simulated forwards but have intractable likelihood as likelihood 
function is of central importance.

• For Simple models, an analytical formula for the likelihood function can typically be derived 
• For complex models, an analytical formula might be very costly to evaluate computationally
• Approximate Bayesian Computation (ABC) methods are used to infer properties of these models 

from data
•  Traditionally these methods approximate the posterior over parameters by conditioning on data 

being inside an ε-ball around the observed data, which is only correct in the limit ε→0.
•  Monte Carlo methods can then draw samples from the approximate posterior to approximate 

predictions or error bars on parameters. These algorithms critically slow down as ε→0, and in 
practice draw samples from a broader distribution than the posterior



Simulation Based Modeling

Ø A simulator-based model is a data-generating process described by a computer program, usually 
with some free parameters we need to learn from data.

Ø Simulator-based modelling lends itself naturally to scientific domains (y biology, ecology, disease 
epidemics, economics and cosmology) 

Ø The application domains mentioned can require properly calibrated distributions that express 
uncertainty over plausible parameters, rather than just point estimates, to reach scientific 
conclusions or make decisions.

Ø As an analytical expression for the likelihood of parameters given observations is typically not 
available for simulator-based models, conventional likelihood-based Bayesian inference is not 
applicable.

Ø An alternative family of algorithms for likelihood-free inference has been developed, referred to 
as Approximate Bayesian Computation (ABC). 

Ø These algorithms simulate the model repeatedly and only accept parameter settings which 
generate synthetic data like the observed data, typically gathered in a real-world experiment



Simulation Based Modeling
Ø Rejection ABC, the most basic ABC algorithm, simulates the model for each setting of proposed parameters, and 

rejects parameters if the generated data is not within a certain distance from the observations.
Ø The accepted parameters form a set of independent samples from an approximate posterior. Markov Chain 

Monte Carlo ABC (MCMC-ABC) is an improvement over rejection ABC which, instead of independently proposing 
parameters, explores the parameter space by perturbing the most recently accepted parameters. 

Ø Sequential Monte Carlo ABC (SMC-ABC) uses importance sampling to simulate a sequence of slowly-changing 
distributions, the last of which approximates the parameter posterior

Ø Conventional ABC algorithms such as the above suffer from three drawbacks.
Ø Only represent the parameter posterior as a set of (possibly weighted or correlated) samples. A sample-

based representation easily gives estimates and error bars of individual parameters, and model predictions. 
However these computations are noisy, and it is not obvious how to perform some other  computations 
using samples, such as combining posteriors from two separate analyses.

Ø Second, the parameter samples do not come from the correct Bayesian posterior, but from an 
approximation based on assuming a pseudo-observation that the data is within an ε-ball centered on the 
data observed. 

Ø Third, as the ε-tolerance is reduced, it can become impractical to simulate the model enough times to 
match the observed data even once. When simulations are expensive to perform, good quality inference 
becomes impractical



likelihood-Free Inference
Ø Proposed a parametric approach to likelihood-free inference
Ø which unlike conventional ABC does not suffer from the above three issues.
Ø Instead of returning samples from an ε-approximation to the posterior, This approach learns a 

parametric approximation to the exact posterior, which can be made as accurate as required.
Ø Preliminary fits to the posterior are used to guide future simulations, which can reduce the 

number of simulations required to learn an accurate approximation by orders of magnitude
Ø This approach uses conditional density estimation with Bayesian neural networks, and draws 

upon advances in parametric density estimation, stochastic variational inference, and 
recognition networks, as discussed in the related work section



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Simulator-based models and ABC
Θ à vector of parameters controlling a simulator-based model
X à  be a data vector generated by the model. 
p(x | θ)à likelihood
X0 -> Given Observation

p(θ |	X − X0 ∝ P(x = X0 | θ) p(θ)

Ø likelihood p(x = xo | θ) is unavailable
Ø Conventional Bayesian inference cannot be carried out



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Simulator-based models and ABC
Ø The principle behind ABC is to approximate p(x = X0 | θ) by p(|| X − X0 < ε | θ) for a 

sufficiently small value of ε ,and then estimate the latter 
Ø (by Monte Carlo—using simulations)
Ø ABC approximates the posterior by p(θ|| X − X0 < ε | θ), which is typically broader and 

more uncertain
Ø ABC can trade off computation for accuracy by decreasing ε , which improves the 

approximation to the posterior but requires more simulations from the mode
Ø the approximation becomes exact only when ε → 0, in which case simulations never 

match the observations, p(|| X − X0 < ε | θ) → 0, and existing methods break down



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Learning the posterior
Ø p(||X − X0 ||< ε| θ)
Ø use the simulations to directly estimate p(θ | X = X0 )
Ø run simulations for parameters drawn from a distribution, p˜(θ)
Ø form a consistent estimate of the exact posterior, using a flexible family of conditional 

densities, qφ(θ | x), parameterized by a vector φ



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Learning the posterior
Intuition: 

if we simulated enough parameters from the prior, the density estimator qφ would 
learn a conditional of the joint prior model over parameters and data, which is the 
posterior p(θ | x). If we simulate parameters drawn from another distribution, we need 
to “importance reweight” the result.

The proposition above suggests the following procedure for learning the posterior: 
Ø propose a set of parameter vectors {θn} from the proposal prior;
Ø for each θn run the simulator to obtain a corresponding data vector xn; 
Ø train qφ with maximum likelihood on {θn, xn}; and
Ø estimate the posterior by

pˆ(θ | X = X0) ∝ " #
$% #

qφ(θ | X0)  



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Choice of conditional density estimator and proposal prior

conditional neural density estimation with Mixed density network (MDN)
qφ(θ | x) = 𝚺k αk N(θ | mk, Sk)

Ø {αk} = mixing coefficients
Ø {mk}  = means
Ø {Sk} = covariance matrices 
Ø computed by a feedforward neural network parameterized by φ, taking x as 

input. 



Mixture Density Networks

Ø Mixture Density Networks are built from two components – a Neural Network and a Mixture 
Model.

Ø The Neural Network can be any valid architecture which takes in the input \mathbf{X} and 
converts into a set of learned features



Mixture 
Density 
Networks

Mixture Density Network: The output of a neural network 
parametrizes a Gaussian mixture model

Sufficient Conditions
Ø The mixing coefficients (π or α ) are probabilities and have to be 

less than one and sum to unity. This can be easily achieved by 
passing the outputs of the mixing coefficients through a 
SoftMax layer.

Ø The variance (σ) should be strictly positive. Bishop suggested 
that we use the exponential function to the raw logits of the 
sigma neuron. He suggested that this had the same effect as 
assuming an uninformative prior and avoids the pathological 
configurations in which one or more of the variances goes to 
zero.

Ø The center parameters (µ) represent location parameters, and 
this should be the raw logits of the mean neuron.

Loss Function
Ø loss function we are minimizing is the Negative Log Likelihood, 

which is equivalent to the Maximum Likelihood Estimation



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Choice of conditional density estimator and proposal prior
To choose density estimator qφ(θ | x) and proposal prior p˜(θ), below criteria needs 
to be meet

Ø qφ should be flexible enough to represent the posterior but easy to train with 
maximum likelihood

Ø p˜(θ) should be easy to evaluate and sample from; and 
Ø the right-hand side expression in Posterior learning Eq should be easily 

evaluated and normalized (pˆ(θ | X = X0) ∝ ! "
#$ " qφ(θ | X0)) 



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Choice of conditional density estimator and proposal prior

conditional neural density estimation with Mixed density network (MDN)
qφ(θ | x) = 𝚺k αk N(θ | mk, Sk)

Ø provided the number of components K and number of hidden units in the neural network are 
sufficiently large—while remaining trainable by backpropagation. 

Ø take the proposal prior to be a single Gaussian p˜(θ) = N (θ | m0, S0), with mean m0 and full 
covariance matrix S0. 

Ø Assuming the prior p(θ) is a simple distribution (uniform or Gaussian, as is typically the case in 
practice), then this choice allows us to calculate pˆ(θ | x = xo) in (pˆ(θ | X = X0) ∝ ! "

#$ " qφ(θ | X0))
Ø That is, pˆ(θ | x = xo) will be a mixture of K Gaussians, whose parameters will be a function of {αk 

, mk, Sk } evaluated at xo



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Learning the proposal prior

Ø Simple rejection ABC is inefficient because the posterior p(θ | x = xo) is typically much 
narrower than the prior p(θ). 

Ø A parameter vector θ sampled from p(θ) will rarely be plausible under p(θ | x = xo) and 
will most likely be rejected.

Ø Practical ABC algorithms attempt to reduce the number of rejections by modifying the 
way they propose parameters

Ø for instance, MCMC-ABC and SMC-ABC propose new parameters by perturbing 
parameters they already consider plausible, in the hope that nearby parameters remain 
plausible



Bayesian Conditional Density Estimation 
For likelihood-free Inference



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Learning the proposal prior

Idea to set up a fixed-point system. 
strategy - learn an efficient proposal prior that closely approximates the posterior as follows

Ø initially take p˜(θ) to be the prior p(θ)
Ø propose N samples {θn} from p˜(θ) and corresponding samples {xn} from the simulator, and train qφ(θ | 

x) on them
Ø approximate the posterior using Equation (deck ref) and set p˜(θ) to it
Ø repeat until p˜(θ) has converged. 

This procedure is summarized in Algorithm 1. In the procedure above, as long as qφ(θ | x) has only one Gaussian 
component (K = 1) then p˜(θ) remains a single Gaussian throughout. Moreover, in each iteration we initialize qφ with 
the density estimator learnt in the iteration before, thus we keep training qφ throughout. This initialization allows us 
to use a small sample size N in each iteration, thus making efficient use of simulations.



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Use of Bayesian neural density estimators
To make Algorithm 1 as efficient as possible, the number of simulations per 
iteration N should be kept small, while at the same time it should provide a 
sufficient training signal for qφ. With a conventional MDN, if N is made too small, 
there is a danger of overfitting, especially in early iterations, leading to over-
confident proposal priors and an unstable procedure. Early stopping could be used 
to avoid overfitting; however, a significant fraction of the N samples would have to 
be used as a validation set, leading to inefficient use of simulations.



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Use of Bayesian neural density estimators
Bayesian version of the MDN using Stochastic Variational Inference (SVI) for neural 
networks.

Ø An MDN-SVI has two sets of adjustable parameters of the same size, the 
means φm and the log variances φs. 

Ø The means correspond to the parameters φ of a conventional MDN.
Ø During training, Gaussian noise of variance exp φs is added to the means 

independently for each training example (θn, xn). 
Ø The Bayesian interpretation of this procedure is that it optimizes a 

variational Gaussian posterior with a diagonal covariance matrix over 
parameters φ. 

Ø At prediction time, the noise is switched off and the MDN-SVI behaves like a 
conventional MDN with φ = φm. 



Bayesian Conditional Density Estimation 
For likelihood-free Inference

Use of Bayesian neural density estimators
using an MDN-SVI instead of an MDN improves the robustness and efficiency of 
Algorithm 1 because 
Ø MDN-SVI is resistant to overfitting, allowing us to use a smaller number of 

simulations N
Ø no validation set is needed, so all samples can be used for training;
Ø since overfitting is not an issue, no careful tuning of training time is necessary. 



Experiments : Mixture of two Gaussians



Experiments : Mixture of two Gaussians

Ø shows the results of neural density estimation using each strategy. 
Ø All MDNs have one hidden layer with 20 tanh units and 2 Gaussian components
Ø except for the proposal prior MDN which has a single component. 
Ø Both MDN with prior and MDN with proposal learn good parametric approximations to the true 

posterior, and the proposal prior is a good Gaussian approximation to it. 
Ø It used 10K simulations to train the MDN with prior, whereas the prior proposal took 4 iterations of 

200 simulations each to train, and the MDN with proposal took 1000 simulations on top of the 
previous 800.

Ø The MDN with prior learns the posterior distributions for a large range of possible observations x 
(middle plot of Figure 1), 

Ø whereas the MDN with proposal gives accurate posterior probabilities only near the value observed 
(right plot of Figure 1)



Experiments : Mixture of two Gaussians



Experiments : Bayesian Liner Regression



Experiments : Bayesian linear regression

Ø As ε is decreased, ABC methods sample from an increasingly better approximation to the
Ø true posterior, however, they eventually reach their failing point or take prohibitively long. The best
Ø approximations are achieved by MDN with proposal and a very long run of SMC-ABC
Ø The middle of Figure 2 shows the increase in number of simulations needed to improve approximation 

quality (as  decreases).
Ø We quote the total number of simulations for MDN training, and the number of simulations per 

effective sample for ABC. 
Ø Section E of the supplementary material describes how the number of effective samples is calculated.
Ø The number of simulations per effective sample should be multiplied by the number of effective 

samples needed in practice. 
Ø Moreover, SMC-ABC will not work well with only one particle, so many times the quoted cost will 

always be needed. 
Ø Here, MDNs make more efficient use of simulations than Monte Carlo ABC methods. Sequentially 

fitting a prior proposal was more than ten times cheaper than training with prior samples, and more 
accurate



Experiments : Bayesian linear regression



Experiments : Lotka–Volterra predator-
prey population model 

The Lotka–Volterra model is a stochastic Markov jump process that describes the continuous time evolution of a 
population of predators interacting with a population of prey. 
There are four possible reactions: 

a predator being born
a predator dying
a prey being born
a prey being eaten by a predator.

Positive parameters θ = (θ1, θ2, θ3, θ4) control the rate of each reaction. 

Given a set of statistics xo calculated from an observed population time series, the objective is to infer θ.
We used a flat prior over log θ, and calculated a set of 9 statistics x. 

The Lotka–Volterra model is commonly used in the ABC literature as a realistic model which can be simulated, but 
whose likelihood is intractable. One of the properties of Lotka–Volterra is that typical nature-like observations only 
occur for very specific parameter settings, resulting in narrow, Gaussian-like posteriors that are hard to recover



Experiments : Lotka–Volterra predator-
prey population model 



Experiments : M/G/1 queue model

Ø The M/G/1 queue model describes the processing of a queue of continuously arriving jobs by a 
single server. 

Ø In this model, the time the server takes to process each job is independently and uniformly 
distributed in the interval [θ1, θ2].

Ø The time interval between arrival of two consecutive jobs is independently and exponentially 
distributed with rate θ3. 

Ø The server observes only the time intervals between departure of two consecutive jobs. Given a 
set of equally-spaced percentiles xo of inter-departure times, the task is to infer parameters θ = 
(θ1, θ2, θ3). 

Ø This model is easy to simulate but its likelihood is intractable, and it has often been used as an 
ABC benchmark 

Ø Unlike Lotka–Volterra, data x is weakly informative about θ, and hence the posterior over θ tends 
to be broad and non-Gaussian. In our setup, we placed flat independent priors over θ1, θ2 − θ1 
and θ3, and we took x to be 5 equally spaced percentiles



Related work : Regression adjustment

An early parametric approach to ABC is regression adjustment, where a parametric regressor 
is trained on simulation data in order to learn a mapping from x to θ. The learnt mapping is 
then used to correct for using a large , by adjusting the location of posterior samples 
gathered by e.g. rejection ABC. Beaumont et al. used linear regressors, and later Blum and 
François used neural networks with one hidden layer that separately predicted the mean and 
variance of θ. Both can be viewed as rudimentary density estimators and as such they are a 
predecessor to our work. However, they were not flexible enough to accurately estimate the 
posterior, and they were only used within some other ABC method to allow for a larger . In 
this work, make conditional density estimation flexible enough to approximate the posterior 
accurately



Related work : Regression adjustment



Related work : Synthetic likelihood

Another parametric approach is synthetic likelihood, where parametric models are used 
to estimate the likelihood p(x | θ). Wood used a single Gaussian, and later Fan et al. 
used a mixture Gaussian model. Both of them learnt a separate density model of x for 
each θ by repeatedly simulating the model for fixed θ. More recently, Meeds and 
Welling used a Gaussian process model to interpolate Gaussian likelihood 
approximations between different θ’s. Compared to learning the posterior, synthetic 
likelihood has the advantage of not depending on the choice of proposal prior. Its main 
disadvantage is the need of further approximate inference on top of it in order to 
obtain the posterior. In our work we directly learn the posterior, eliminating the need 
for further inference, and we address the problem of correcting for the proposal prior



Related work : Efficient Monte Carlo ABC

Recent work on ABC has focused on reducing the simulation cost of sample-based ABC methods. 
Hamiltonian ABC improves upon MCMC-ABC by using stochastically estimated gradients in order to 
explore the parameter space more efficiently. Optimization Monte Carlo ABC explicitly optimizes the 
location of ABC samples, which greatly reduces rejection rate. Bayesian optimization ABC models p 
(|| X − X0 || | θ) as a Gaussian process and then uses Bayesian optimization to guide simulations 
towards the region of small distances || X − X0 ||. In our work we show how a significant reduction 
in simulation cost can also be achieved with parametric methods, which target the posterior 
directly.



Related work : Recognition networks

Use of neural density estimators for learning posteriors is reminiscent of recognition networks in machine 
learning. A recognition network is a neural network that is trained to invert a generative model. The 
Helmholtz machine,  the variational auto-encoder and stochastic backpropagation are examples where a 
recognition network is trained jointly with the generative network it is designed to invert. Feedforward 
neural networks have been used to invert black-box generative models and binary-valued Bayesian 
networks, and convolutional neural networks have been used to invert a physics engine. Our work 
illustrates the potential of recognition networks in the field of likelihood-free inference, where the 
generative model is fixed, and inference of its parameters is the goal.



Bayesian Deep Learning



Frequentist 
perspective

• The frequentist approach to machine 
learning is to optimize a loss function 
to obtain an optimal setting of the 
model parameters.

• An example loss function is cross-
entropy, used for classification tasks 
such as object detection or machine 
translation.

• From a probabilistic perspective, 
frequentists are trying to maximize 
the likelihood p(D|w,M)

maximum likelihood estimation (MLE) Navigating a loss space in the direction of steepest descent using Gradient 
Descent.



Bayesian 
Perspective

• Realistically Quantify Uncertainty
• Instead of a parameter point 
estimate, probability distribution 
over parameters
• The posterior represents our 
belief / hypothesis / uncertainty
• Bayes’ Theorem to compute the 
posterior



Bayesian Perspective

• Start with specifying a prior distribution p(w)  over the parameter to capture our belief about, 
what our model parameter should look like prior to observing any data.
• using our dataset, we can update (multiply) our prior belief with the likelihood p(D|w)
• To obtain a valid posterior probability distribution, however, the product between the likelihood 
and the prior must be evaluated for each parameter setting and normalized. This means 
marginalizing (summing or integrating) over all parameter settings. The normalizing constant is 
called the Bayesian (model) evidence or marginal likelihood p(D)
• p(D)  provides evidence for how good our model
• We sometimes explicitly include the model choice M in the evidence as p(D|M). This enables us 
to compare different models with different parameter spaces



Maximum A 
Posteriori (MAP) 
Estimation
• Very common to produce maximum probability estimates

• MAP is the mode ( highest probability outcome ) of the posterior
• MAP (mode) may not be representative of typical outcomes, 

Also, not a Bayes estimator (unless discrete)

Degenerate loss function



Full Predictive 
Distribution

• The full-fledged Bayesian approach is to specify a predictive 
distribution p(y|D,x)

• This defines the probability for class label y  given new input x 
and dataset D

• marginalize over our parameter settings
• Bayesian Model Averaging, or BMA 
• multiply the posterior probability of each setting w, with the 

probability of label y, given input x  using parameter setting w
• Prior Predictive distribution -  predict of y before seeing x
• Posterior Predictive distribution - we observe x we can 

predict future observations y



Approximate Predictive Distribution

Ø sampling a few parameters settings and combining the resulting models 
Ø Monte Carlo Approximation of the predictive distribution
Ø Monte Carlo Estimation
Ø Sequential Monte Carlo
Ø Markov Chain Monte Carlo
Ø The Metropolis-Hastings algorithm
Ø The Gibbs sampler



Density Estimation
Ø In statistics, density estimation is the procedure of estimating an unknown density p(y) from 

observed data
Ø The very early stage of density estimation techniques traces back to the usage of histograms, 

later followed by kernel density estimation in which the shape of the data is approximated 
through a kernel function with a smoothing parameter (bandwidth)

Ø Due to the difficulty in specifying the bandwidth in kernel density estimation, mixture models 
have become a popular alternative approach

Ø Mixture Densities 



Density Estimation

Ø Conditional Density Estimators
Ø Multivariate density estimation
Ø Copula density estimation



Conditional 
Density 
Estimation
• Conditional density estimation (CDE) is a 

general framing of supervised learning 
problems, subsuming both classification 
and regression.

• Modeling complex and heteroscedastic 
noise distributions is useful in a variety of 
settings for which the full predictive 
distribution rather than its mean is of 
inherent interest or informs subsequent 
decisions.



Conditional 
Density 
Estimation

The conditional density 
estimation concentrates on 
modeling the relationship 
between a response and set 
of covariates x through a 
conditional density function 
p(y|x).

Using mixture of normal densities (thin lines) to mimic a flexible 
density (bold line) 



Conditional Density Estimation



Conditional Density Estimation



Conditional Density Estimation - Notation
and Terminology
Ø Conditional density estimation (CDE) refers to the problem of modeling the conditional, p(y|x, D)
Ø  Parametric methods for CDE propose a class of densities, {p, ω ∈ Ω}, and a class of functions, h, 

indexed by θ ∈ Θ, and use D to choose, hθ : X → Ω, xi → ωi, which is then used to model p(yi|xi) as 
p(yi|ωi = hθ(xi)).

Ø The choice of Ω determines the sort of distributional complexity which may be learned from D, and 
Θ sets the array of input dependent changes which can be learned, ranging from simple global 
translations of a stationary predictive distribution to complex heteroscedastic behavior

Conditional Density Estimation 







Heatmaps representing toy densities learned with three conditional density estimation methods. LEFT) Normalizing flows, MIDDLE) Mixture density 
networks and RIGHT) input noise. The top row demonstrates the performance of simple models and the bottom show performance for higher capacity 
models. Heat represents the conditional probability, p(y|x). Normalizing flows additionally allow us easily find confidence intervals of this conditional 
distribution; we plot the 95% confidence interval in black. The training set consisted of 5000 points. Best viewed in color



Qs

https://openai.com/research/deep-double-descent
- mixture of homoscedastic Gaussian regression models

https://openai.com/research/deep-double-descent
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