
Variational Inference

Prof. Jason Pacheco
Material adapted from: David Blei, NeurIPS 2016 Tutorial

CSC696H: Probabilistic Methods in ML



Outline

• Variational Inference

• Stochastic Variational



Outline

• Variational Inference

• Stochastic Variational



Posterior Inference Review

Posterior on latent variable    given data     by Bayes’ rule:

Ø Posterior: belief over unknowns, given observed data (knowns)

Marginal likelihood given by,

Ø Marginal Likelihood: quality of model fit to the observed data



Variational Inference Preview

Ø Formulate statistical inference as an optimization problem
Ø Maximize variational lower bound on marginal likelihood

Ø Solution to RHS yields posterior approximation

Ø Constraint set     defines tractable family of approximating distributions
Ø Very often     is an exponential family



Variational Inference

[ Source: David Blei ]



Expectation Maximization (EM) Lower Bound

Recall EM lower bound of marginal likelihood

( Multiply by q(x)/q(x)=1 )

( Definition of Expected Value )

( Jensen’s Inequality )



A Little Information Theory

• The entropy is a natural measure of the inherent uncertainty:

• Interpretation Difficulty of compression of some random variable

• The relative entropy or Kullback-Leibler (KL) divergence is a non-negative, but 
asymmetric, “distance” between a given pair of probability distributions:

• The KL divergence equals zero if and only if                         for all x.
• Interpretation The cost of compressing data from distribution p(x) with a code 

optimized for distribution q(x)

p(x) = q(x)



EM Lower Bound

Bound gap is the Kullback-Leibler divergence KL(q||p),

( Multiply by 1 )

( Definition of KL )

Solution to E-step is,
This doesn’t help us if

is intractable



Ø If posterior is in set                      then exact inference

Variational Lower Bound

Idea Restrict optimization to a set     of analytic distributions

Ø Otherwise, if                      posterior is closest approximation in KL

… and we recover strict lower bound on marginal likelihood with gap



Variational Lower Bound

Average (negative) Energy
Encourages q(x) to “agree” 

with model p(x,y)

Entropy
Encourages q(x) to have 

large uncertainty (good for 
generalization)

Two competing terms in variational bound…



Variational Approximation

Minimize KL between         and posterior              .

[ Source: David Blei ]



Relation to EM

Ø EM is means for approximate learning, but we are using it to 
motivate approximate inference

Ø EM lower bound takes same form as VI lower bound, but with 
different constraint sets

Ø Connection with variational inference (VI) is in E-step, which 
performs inference with fixed parameters



Variational Inference

Different sets     yield different VI algorithms to optimize bound:

Ø Mean Field Ignore posterior dependencies among variables
Ø Loopy BP Locally consistent marginals (exact for tree-

structured models)
Ø Expectation Propagation (EP) Locally consistent moments 

(equivalent to Loopy BP for tree-structure exponential families)



Why is it called “variational”?

Differential Calculus
Ø Typically, we optimize a function                  w.r.t. a variable X
Ø Use standard derivatives/gradients 
Ø Extrema given by zero-gradient conditions

Calculus of Variations
Ø Optimize a functional (function of a function): 
Ø Functional derivative characterizes change w.r.t. function q(x)
Ø Extrema given by Euler-Lagrange equation; analogous to zero-

gradient condition

In practice, we typically parameterize          and take standard gradients 
w.r.t. parameters    



Summary: Variational Inference

3) Maximize variational lower bound on marginal likelihood:

4) Maximizer is posterior approximation (in KL divergence)

1) Begin with intractable model posterior:

Marginal
Likelihood

2) Choose a family of approximating distributions     that is tractable

Still need to show…
a) How to define approximating variational family

b) How to optimize lower bound
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A Generic Class of Directed Models

Ø Bayesian mixture models

Ø Time series & sequence models
(HMMs, Linear dynamical systems)

Ø Matrix factorization
(factor analysis, PCA, CCA)

Ø Multilevel regression 
(linear, probit, Poisson)

Ø Stochastic block models

Ø Mixed-membership models
(Linear discriminant analysis)

[ Source: David Blei ]



Example: Gaussian Mixture Model

Global variables:

GMM

Local variables Z control component assignments

Low Likelihood High Likelihood

Source: Bishop, PRML



Variational Approximation

Minimize KL between               and posterior                 .

[ Source: David Blei ]



Variational Lower Bound – ELBO

Ø KL is intractable; VI optimizes evidence lower bound (ELBO)
Ø Lower bounds log p(x) – marginal likelihood, or evidence
Ø Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

Ø The ELBO trades off two terms
Ø The first term prefers q(.) to place mass on the MAP estimate
Ø Second term encourages q(.) to be diffuse (maximize entropy)

Ø The ELBO is non-convex

[ Source: David Blei ]
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Mean Field for Generic Directed Model

Recall: mean field family is fully factorized 

Conditional conjugacy: Each factor is the same expfam as complete conditional 

PGM of Mean Field Approximation

Variational Parameters

[ Source: David Blei ]



Mean Field for Generic Directed Model

Recall: mean field family is fully factorized 

Global parameter ensure conjugacy to (z,x):

PGM of Mean Field Approximation

Variational Parameters

where    is prior hyperparameter and t(.) are sufficient statistics for [zi,xi]
[ Source: David Blei ]



Mean Field for Generic Directed Model

Optimize ELBO,

Traditional VI uses coordinate ascent,

PGM of Mean Field Approximation

Iteratively update each parameter, holding others fixed
• Obvious relationship with Gibbs sampling
• Remember, ELBO is not convex

Don’t forget… entropy
decomposes as sum

over individual entropies 

[ Source: David Blei ]



Coordinate Ascent Mean Field for Generic Model

Need to visit every
data point

Need to sum every
data point

[ Source: David Blei ]



Stochastic (Mean Field) Variational Inference

Classical mean field VI is inefficient for large data
• Do some local computation for each data point
• Aggregate computations to re-estimate global structure
• Repeat

Idea visit random subsets of data to estimate gradient updates on full dataset
[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

Ø Use cheaper noisy gradient estimates [Robbins and Monro, 1951]

Ø Guaranteed to converge to local optimum [Bottou, 1996]

Ø Popular in modern machine learning (e.g. learning deep neural nets)
[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

Ø Stochastic gradients update:

Ø Gradient estimator must be unbiased

Ø Sequence of step sizes     must follow Robbins-Monro conditions

[ Source: David Blei ]



Stochastic Variational Inference

[ Source: David Blei ]



Stochastic Variational Inference

[ Source: David Blei ]



Topic Models

Topic models discover hidden thematic structure in large 
collections of documents

[ Source: David Blei ]



Topic Models

• Each topic is a distribution over words (vocabulary)
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of the topics (they are distributions)

• But we only observe documents; everything else is hidden (unsupervised learning problem)
• Need to calculate posterior (for millions of documents; billions of latent variables):

P(topics, proportions, assignments | documents)
[ Source: David Blei ]



Topic Models

Blei, D. et al., JMLR 2003

Allows unsupervised learning 
of document corpus via mixture 

modeling

Word
Topic

Assignment

Latent Dirichlet Allocation (LDA)

Topic

Topic
Proportion

# Documents# Words



Example: Latent Dirichlet Allocation

• Assumes words are exchangeable (“bag-of-words” model)
• Reduces parameters while still yielding useful insights
• Complete conditionals are closed-form (we can do mean field)

Latent Dirichlet Allocation (LDA):

[ Source: David Blei ]



Example: Latent Dirichlet Allocation

[Hoffman et al., 2010]

• Stochastic VI (online) shows faster learning as compared to 
standard (batch) updates

• Similar learning rate when dataset increased from 98K to 3.3M 
documents

• Perplexity measures posterior uncertainty (lower is better)

[ Source: David Blei ]



Summary: Variational Inference

3) Maximize variational lower bound on marginal likelihood:

4) Maximizer is posterior approximation (in KL divergence)

1) Begin with intractable model posterior:

Marginal
Likelihood

2) Choose a family of approximating distributions     that is tractable

Different approximating families    lead to different 
forms of optimizing variational bound



Summary: Mean Field VI
Ø Mean field family assumes fully factorized approximating distribution

Ø Mean field algorithm performs coordinate ascent on lower bound

Ø Coordinate ascent updates require complete conditionals to be conjugate
Ø  Similar, but stricter, assumption to Gibbs sampling

Ø MF update takes specific form depending on model  p(.), e.g. pairwise MRF:



Summary: Stochastic (Mean Field) VI

Ø MF coordinate ascent updates require visiting all data
Ø  Doesn’t scale to large datasets

Ø Stochastic VI updates using stochastic gradient ascent
Ø  Randomly subsample dataset
Ø  Compute stochastic estimate of full gradient based on subsample
Ø  Stochastic gradient step on variational parameters (    here):

Ø Step sizes must decrease over time while satisfying Robbins-Monro conditions

Ø Often call standard MF “batch” since updates based on full data


