
“Creating noise from data is 
easy; creating data from noise 

is generative modeling”

Source: Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." arXiv preprint arXiv:2011.13456 (2020). 
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Introduction



Introduction

Two successful classes of probabilistic 
generative models employing corruption and 

then denoising of data
Score matching with Langevin 

dynamics (SMLD)
Denoising diffusion probabilistic 

modeling (DDPM)

∇x log pt(x)Score function:
Langevin dynamics:

xi+1 ← xi + ε∇x log p(x) +
√
2εzi

i = 0, 1, . . . ,K,

x0 ≈ π(x)

zi ∼ N (0, I)

Training

Sampling



Introduction
Two successful classes of probabilistic 

generative models employing corruption and 
then denoising of data

Score matching with Langevin 
dynamics (SMLD)

Denoising diffusion probabilistic 
modeling (DDPM)

Score-based generative models

For continuous state spaces, DDPM implicitly computes 
scores at each noise scale (Song & Ermon, 2019).



Introduction
Goal: propose a unified framework that generalizes previous approaches      
through Stochastic Differential Equations (SDEs).

Why?
• To enable new and efficient sampling methods.
• Extend capabilities of score-based generative models.

How?
• Generalize number of noise scales to infinity.
• Formulate forward process with continuous noise scales using SDE.
• Derive reverse SDE (that describes reverse process) from forward SDE.
• Approximate reverse-time SDE by training a NN to estimate the score. 



Introduction

Solving a reverse time SDE yields a score-based generative model. This SDE can be 
reversed if we know the score of the distribution at each intermediate timestep ∇x log pt(x)



Background



Background: SMLD training

perturbation kernel

and

Train a Noise Conditional Score Network (NCSN) weighted  with a sum of 
denoising score matching objectives:

sequence of positive noise scales



Background: SMLD sampling

• For sampling, run M steps of Langevin MCMC to get a sample for each               
                        sequentially: 

where                  is the step size, and          is standard normal.

• Repeat for with                                                 and 

when 

•           becomes an exact sample from                                             as                                  
and                 under some  regularity conditions. 



Background: DDPM training

•                                                                                        ; perturbation kernel

•                                                            ; sequence of positive noise scales

where

•  For each , a discrete Markov chain
is constructed s.t.

•   

Parametrization of the variational 
Markov chain in the reverse direction



Background: DDPM training

Trained with a re-weighted variant of the evidence lower bound 
(ELBO):



Background: DDPM sampling

Once we get optimal score model                       from training, samples 
can be generated by starting from                                 and following: 

Ancestral sampling
since it amounts to performing ancestral sampling from

the graphical model



Background: SMLD and DDPM comparison

• DDPM training:

• SMLD training:



Background: Stochastic Process

• Stochastic process: a sequence of random variables                   
defined on a common probability space                                                    

    where:
    

{X(t) : t ∈ T}

T : parameter space or time space
range(X(t)) : state space



Score-based Generative 
Modeling with SDEs



Overview

Overview of score-based generative modeling through SDEs



Forward diffusion process

Data Noise

Forward diffusion process (fixed)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI)



Forward diffusion process

Data Noise

Forward diffusion process (fixed)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI)

xt =
√
1− βt xt−1 +

√
βt N (0, I)

=
√

1− β(t)∆txt−1 +
√

β(t)∆tN (0, I)

Taylor series expansion of
around                             

≈ xt−1 −
β(t)∆t

2
xt−1 +

√

β(t)∆tN (0, I) f(∆t) =
√

1− β(t)∆t

∆t = 0

consider the limit of many small steps



Forward diffusion process

Data Noise

Forward diffusion process (fixed)

xt ≈ xt−1 −
β(t)∆t

2
xt−1 +

√

β(t)∆tN (0, I)

Stochastic Differential Equation (SDE) 
describing the diffusion in infinitesimal limit

∆t → 0as 

dxt = −

1

2
β(t)xt dt+

√

β(t)dωt



Differential Equations: A review 
Ordinary Differential Equation (ODE):
dx

dt
= f(x, t) dx = f(x, t)dtor



Differential Equations: A review 
Ordinary Differential Equation (ODE):

dx = f(x, t)dtor

x(t) = x(0) +

∫
t

0

f(x, τ) dτAnalytical 
Solution:

Iterative 
Numerical 
Solution:

x(t+∆t) ≈ x(t) + f(x(t), t)∆t

• Highly complex non-linear function
• Integration might not be possible

dx

dt
= f(x, t)



Differential Equations: A review 
Stochastic Differential Equation (SDE):

dx

dt
= f(x, t) + σ(x, t)ωt

drift coefficient diffusion coefficient

Wiener Process (Gaussian 
White Noise)

(

dx = f(x, t) dt+ σ(x, t) dωt

)

x(t+∆t) ≈ x(t) + f(x(t), t)∆t+ σ(x(t), t)
√
∆tN (0, I)



Differential Equations: A review 
Stochastic Differential Equation (SDE):

dx

dt
= f(x, t) + σ(x, t)ωt

drift coefficient diffusion coefficient

Wiener Process (Gaussian 
White Noise)

(

dx = f(x, t) dt+ σ(x, t) dωt

)

x(t+∆t) ≈ x(t) + f(x(t), t)∆t+ σ(x(t), t)
√
∆tN (0, I)



Forward diffusion process as SDE

Forward Diffusion SDE: dxt = −

1

2
β(t)xt dt+

√

β(t)dωt

drift term 
(pulls towards mode)

diffusion term 
(injects noise)



Perturbing data with an SDE
Perturbing the data distribution with continuously growing levels of 
noise.

The noise perturbation procedure is a continuous-time stochastic process. 
Source: https://yang-song.net/blog/2021/score/#introduction  

https://yang-song.net/blog/2021/score/


Perturbing data with an SDE

• Goal: construct a diffusion process                   indexed by a 
continuous time variable                   s.t.:  

• Many stochastic processes are solutions of stochastic differential 
equations (SDEs). 

and 

Data distribution Prior distribution



Perturbing data with an SDE

dx = f(x,t)dt + g(t)dw

Drift coefficient
f(·, t) : Rd

→ R
d

1

Standard Wiener process

Diffusion coefficient
g(t) ∈ R

dw
Infinitesimal white noise

• Therefore, the diffusion process can be modeled as the solution 
to an Itô SDE:



Generating Samples By Reversing The SDE 

Generate data from noise by reversing the perturbation procedure.

Source: https://yang-song.net/blog/2021/score/#introduction  

https://yang-song.net/blog/2021/score/


Generating Samples By Reversing The SDE 

• Reverse of diffusion process is also a diffusion process and 
is given by the reverse-time SDE:

Infinitesimal 
negative 
timestep

Standard Wiener 
process when time 

flows backward 
We have to estimate the 

score function



Notation
: the probability density of 

: transition kernel from             to

where



Estimating Scores For The SDE

• To estimate                         , we can train a time train a time-dependent 
score-based model                   using:

∇x log pt(x)

; is a positive weighting function

t ∼ U(0, 1) ; time is uniformly sampled

*Given enough data and model capacity*:
sθ∗(x, t) ≈ ∇x log pt(x)

for almost all      and       



Examples: Variance Exploding (SE) SDE
; perturbation kernel of SMLD

where

as

Variance Exploding (VE) 
SDE corresponding to 

where

pσi
(x̃ | x) := N (x̃;x,σ2

i
I)



Examples: Variance Preserving (VP) SDE
; perturbation kernel of DDPM

as

Variance Preserving 
(VP) SDE corresponding 
to 



Examples: VE and VP



Examples: sub-VP SDE

• New type of SDEs which perform particularly well on likelihoods 
given by:

• The variance of the stochastic process induced by the above SDE is 
always bounded by the VP SDE at every intermediate time step.         



Solving the Reverse SDE



Solving the Reverse SDE

• We can use the trained        to construct the reverse-time SDE. 
• We can then simulate it with numerical approaches to generate 

samples from      . 



General-purpose Numerical SDE Solvers

• Some general-purpose numerical SDE solvers include:
• Euler-Maruyama
• Stochastic Runge-Kutta

• These solvers correspond to different discretizations of the 
stochastic dynamics.

• Ancestral Sampling is also a generative SDE sampler!
• Authors propose reverse diffusion samplers:
• Discretize the reverse-time SDE in the same way as the forward 

one.



Predictor-Corrector Samplers

Predictor - Corrector

Numerical SDE Solver (e.g. Euler-Maruyama)

Score-based MCMC approach using

(e.g. Langevin MCMC)



Predictor-Corrector Samplers

Example: when using the reverse diffusion SDE solver (Appendix E) 
as the predictor, and annealed Langevin dynamics as the corrector



Predictor-Corrector Samplers (results)



Predictor-Corrector Samplers (results)



Probability Flow and Connection To Neural 
ODEs
• For all diffusion processes, there exists a corresponding 

deterministic process whose trajectories share the same marginal 
probability densities                    .

• This deterministic process satisfies an ODE: 

Probability flow ODE
• When the score function is approximated by the time-dependent 

score-based model, which is typically a neural network, this is an 
example of a neural ODE.



Probability Flow ODE 



Synthesis with SDE vs. ODE



Why Should We Care About Neural ODEs?

• Enables use of advanced ODE solvers.
• Deterministic encoding and generation (semantic image 

interpolation, etc.)
• Log-likelihood computation (instantaneous change of variables)

• Efficient sampling by solving neural ODE from different final 
conditions



Semantic Image Interpolation with 
Probability Flow ODE



Semantic Image Interpolation with 
Probability Flow ODE

Samples from the probability flow ODE for VP SDE on 256 x 256 
CelebA-HQ: spherical interpolations between random samples



Semantic Image Interpolation with 
Probability Flow ODE

Samples from the probability flow ODE for VP SDE on 256 x 256 CelebA-HQ: temperature 
rescaling (reducing norm of embedding)



Efficient sampling



Architecture improvements



Architecture improvements

Samples on 1024x1024 CelebA-HQ from a modified NCSN++ model trained with the VE SDE.



Architecture improvements

Samples on 1024x1024 CelebA-HQ from a modified NCSN++ model trained with the VE SDE.



Architecture improvements

Samples on 1024x1024 CelebA-HQ from a modified NCSN++ model trained with the VE SDE.



Controllable Generation



Controllable Generation

• We can also produce data samples from                            if      is known.
• Given a forward SDE                                           , we can sample from
   by starting from                             and solving a conditional reverse 
   time SDE:



Controllable Generation



Thank you
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