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Introduction

• Paper talk about concept of, “how to designing experiments ?”

• Goal is to maximize the information gathering from experiments 

• Bayesian optimal experimental design (BOED) is a principled framework for making 
efficient use of limited experimental resources

• Applicability of BOED is hampered by the difficulty of obtaining accurate (EIG) estimates of 
the expected information gain of an experiment.
 

• Writers have introduced several classes of fast EIG estimators by building on ideas from 
amortized variational inference.



What is the need?

• To have a predictive model

• To know the expected information gain (EIG) from an experiment.

• To compute the EIG before the experiment is conducted.

• EIG is computed in context of a given design d.

• Evaluate and choose the design for its outcome and EIG in parameters of interest 𝜃



How is it done ?

• Predictive model p(y|𝜃, d) is constructed 

• Model is created for possible outcomes y

• Given a design d

• Given a value of parameters of interest 𝜃



Formulation

• EIG(d) : Expected Information Gain when an experiment is performed, or data point d is collected 

• Ep(y|d) : Expected value over the probability distribution p(y|d)

• H(p(θ)): Entropy of the prior distribution over the parameters θ.

• H(p(θ|y, d)): Entropy of the posterior distribution of the parameters θ given the outcome y and the design d. 



Features

• BOED framework is particularly powerful when it allows the results of previous 
experiments to be used in guiding the design for future experiments.  
*we ask a participant a series of questions in a psychology trial, we can use the information gathered from previous responses to ask 
more pertinent questions in the future, that will, in turn, return more information

• The ability to design experiments that are self-adaptive can substantially increase their 
efficiency: fewer iterations are required to uncover the same level of information

• In practice BOED is often hampered by the difficulty of obtaining fast and high-quality 
estimates of EIG, due to intractability of the posterior p(θ|y,d), it constitutes a nested 
expectation problem, so conventional Monte Carlo (MC) estimation methods cannot be 
applied.
*Nested MC(NMC) can only achieve, at best, a rate of O(T−1/3) in the total computational cost T [33], compared with O(T−1/2) for 
conventional MC. 



Approach taken by Paper
• To address this challenge : 

• Writers have proposed a variational BOED approach that sidesteps the double 
intractability of the EIG in a principled manner and yields estimators with convergence 
rates in line with those for conventional estimation problems.

• Introduced four estimators for EIG, with different advantages.
I. Variational Posterior
II. Variational Marginal
III. Variational NMC
IV. Implicit likelihood



Approach taken by Paper

• Theoretically, this paper is showing that they all have a convergence rate of O(T−1/2) 
when the variational family contains the target distribution.

• These estimators can  provide significant empirical gains in EIG estimation over 
previous methods and that these gains lead, in turn, to improved end-to-end 
performance



Background
• It is a Model-based approach for choosing an experiment design d in a manner that optimizes the information gained 

about some parameters of interest θ from the outcome y of the experiment : 

• Example of implementation : 

• Choose the question d in a psychology trial to maximize the information gained about an underlying psychological 
property of the participant θ from their answer y to the question. The framework with a prior p(θ) and a predictive 
model p(y|θ,d)

• In order to define a metric to assess the utility of the design d  take the expectation of IG(y,d) under the marginal 
distribution over outcomes 

• p(y|d) = Ep(θ)[p(y|θ,d)] as per (1).
• *  The difference of integrals : EIG is difference between two terms 

• The expectation of log p(θ) under the joint distribution, p(θ ,y | d)
• The expectation of log  p(θ | y, d) under the same joint distribution.



Background

• Using the properties of logarithms and probabilities, log p(θ|y,d) can be decomposed 
into log p(y |θ,d) – log p(y|d) as p(θ|y,d)  is proportional to p(y|θ,d) p(θ) by Baye’s 
theorm and p(y|d) is the normalizing constant (marginal likelihood).

• With the result of following equation EIG can also be interpreted as the mutual 
information between θ and y given d

• Computing the EIG is challenging since neither p(θ|y,d) or p(y|d) can in general be 
found in closed form



Nested Monte Carlo

• One common way of getting around this is to employ a nested MC (NMC ) estimator



Variational Estimators

• Though consistent , the convergence rate of the NMC (Nested Monte Carlo) is slow for multiple practical 
problems.

• This  paper show how the idea from amortized variational inference can be used to resolve the double 
intractability of EIG  and getting faster convergence rate.

• Variational approaches introduced in this paper looks to directly learn a functional approximation. 

 Example : 
compute an approximation of y → p(y|d) and evaluate this approximation at multiple points to estimate 
the integral ( sharing information across different values of y ).

For M evaluations made in the learning approximation is O(n) “Big O” 
Where n is Input data size and Number of Operations have complexity linear with size of the input



Variational Estimators

• We draw samples of p(y,θ|d) by sampling θ ∼ p(θ) and then y|θ ∼ p(y|θ,d). We can think 
of this approach as amortizing the cost of the inner expectation, instead of running 
inference separately for each y.

• Variational posterior :

• It is based on learning an amortized approximation   to the posterior p(θ|y,d) 
and then using this to estimate the EIG :
* The term "amortization" comes from finance and refers to spreading out a cost over time. In this context, it means spreading the 
computational cost of the optimization across all data points

* The term “approximation” refers to the process of finding a simpler or more computationally tractable distribution that is close 
to true.



Variational Estimators
• Variational marginal :



Variational Estimators
• Variational NMS  :

• Variational posterior and Variational Marginal can provide substantially faster convergence rate than 
NMC. However, to address the problem of biased estimation (if variational family does not contain the 
target distribution ), EIG estimator NMC is proposed.

• This estimator allows user to trade-off resources between fast learning of biased estimator permitted by 
variational approaches and ability of NMC to eliminate this bias.

• Think of NMC estimator as approximating p(y|d) using M samples from prior.

•  VNMC is based around learning a proposal qv(θ|y,d) and then using samples from this proposal to make 
an importance sampling estimate of p(y|d), potentially requiring far fewer samples than NMC.



Variational Estimators
• Variational NMS  :

• Important features of UVNMC(d,L) are summarized in the following lemma;



Variational Estimators
• Implicit likelihood  :

• Many models of interest have implicit likelihoods from which we can draw samples, but not evaluate directly. For example, models 
with nuisance latent variables ψ (such as a random effect models) are implicit likelihood models because p(y|θ,d) = Ep(ψ|θ) 
[p(y|θ,ψ,d)] is intractable, but can still be straightforwardly sampled from.

• Although variational marginal is not directly applicable in this setting, it can be modified to accommodate implicit likelihoods. 
Specifically, we can utilize two approximate densities: qm(y|d) for the marginal and q(y|θ,d) for the likelihood. We then form the 
approximation



Variational Estimators
• Implicit likelihood  :

• The following lemma shows that we can bound the EIG estimation error of 



Related work

Alternative approaches to EIG estimation for BOED that will form the baseline for empirical 
comparisons. 
• Nested Monte Carlo (NMC)

• Laplace approximation to the posterior : 
• This approach is fast but is limited to continuous variable and can exhibit bias.

• Likelihood-free inference by Ratio Estimation (LFIRE)

• Donsker-Varadhan (DV)  :
• representation of KL divergence as used by Belghazi for mutual information 

estimation. Included this as a baseline for illustrative purposes.



Experiments – EIG estimation accuracy
Four experiment design scenarios inspired by applications of Bayesian data analysis in science and industry :

1. A/B testing is used across marketing and design to study population traits.
• The design is the choice of A and B group sizes, and the Bayesian model is a Gaussian linear model.

2. Revealed preference is used in economics to understand the consumer behavior.
• We Consider an experiment design setting in which we aim to learn the underlying utility function of an economic agent by 

presenting them with proposal  ( such as offering them a price for commodity ) and  observing their revealed preference.

3. Fixed effects and random effects (nuisance variables ) are combined in mixed effect models.
• We Consider an example inspired by item-response theory [13] in psychology. We seek information only about the fixed effect, 

making this an implicit likelihood problem.

4. Labelled data from one region of design space must be used to predict labels in target region by extrapolation.

Summary : Two model with explicit likelihoods (A/B testing, preference) and two that are implicit (mixed effect, extrapolation)



Experiments – EIG estimation accuracy
Estimated the EIG across a grid of designs with fixed computational budget for each estimator and calculated the true EIG analytically or 
with brute force computation as appropriate.



Experiments – EIG estimation accuracy
Laplace method, performed best for Gaussian linear model where its approximation becomes exact.
All methods outperformed NMC.



Experiments – Convergence rates
1. Consider the convergence in N after a fixed number of K updates to the variational parameters.

2. RMSE initially decreases as we increase N, before plateauing due to the bias in the estimator.

3. ˆ µpost substantially outperforms ˆ µmarg.

4. The errors decrease with time and that when a small value of N = 5 is taken, we again see a plateauing effect, with the variance of the final MC estimator now becoming the 

limiting factor

5. In Figure 1c we take N = K and increase both, obtaining the predicted convergence rate O(T−1/2) (shown by the dashed lines). We conjecture that the better performance of ˆ 

µpost is likely due to θ being lower dimensional (dim = 2) than y (dim = 10). 

6. In Figure 1d, we instead fix T =N+Ktoinvestigate the optimal trade-off between optimization and MC error: it appears the range of K/T between 0.5 and 0.9 gives the lowest 

RMSE



Experiments – Convergence rates

• ˆ µVNMC can improve over NMC by using an improved 

variational proposal for estimating p(y|d). 

• In Figure 2, plot the EIG estimates obtained by first 

running K steps of stochastic gradient with L = 1 to learn 

qv(θ|y,d), before increasing M and N.



Experiments – Convergence rates

• Spending some of our time budget training qv(θ|y,d) 

leads to noticeable improvements in the estimation, but 

also that it is important to increase N and M. Rather than 

plateauing like ˆ µpost and ˆ µmarg, ˆ µVNMC continues 

to improve after the initial training period as, albeit at a 

slower O(T−1/3) rate. RMSE



Experiments – End-to-end sequential experiments



Experiments – End-to-end sequential experiments

• Despite the relative simplicity of the design problem (with 36 possible designs) using BOED 

with ˆ µm+ leads to a more certain (i.e. lower entropy) posterior than random design.



Selecting an estimator
• How to choose between estimators in practice.

• First, Variational marginal and Implicit likelihood rely on 

approximating a distribution over y; ^ post and ^ VNMC 

approximate distributions over θ;

• Second, ^marg and ^VNMC require an explicit likelihood 

whereas ^post and ^m+` do not. 

• If an explicit likelihood is available, it typically makes 

sense to use it—one would never use ^m+` over ^marg 

for example. 



Selecting an estimator
• How to choose between estimators in practice.

• Finally, if the variational families do not contain the 

target densities, ^VNMC is the only method guaranteed 

to converge true EIG(d) in the limit as the 

computational budget increases. 

• So, we might prefer ^VNMC when computation time 

and cost are not constrained.



Conclusion

• We have developed efficient EIG estimators that are applicable to a wide range of 

experimental design problems.

• By tackling the double intractability of the EIG in a principled manner, they provide 

substantially improved convergence rates relative to previous approaches, and our 

experiments show that these theoretical advantages translate into significant practical gains



Conclusion

• Our estimators are well suited to modern deep probabilistic programming languages, and 

we have provided an implementation in Pyro.

• We note that the interplay between variational and MC methods in EIG estimation is not 

directly analogous to those in standard inference settings because the NMC EIG estimator is 

itself inherently biased

• Our ˆ µVNMC estimator allows one to play off the advantages of these approaches, namely 

the fast learning of variational approaches and asymptotic consistency of NMC.



END



Experiments – End-to-end sequential experiments
• We demonstrate the Utility of methods for designing sequential experiments.

• Variational estimators are sufficiently robust and fast to be used for adaptive experiments with a class of models that are of practical importance in many 

scientific disciplines.

• We run an adaptive psychology experiment with human participants recruited from Amazon Mechanical Turk to study how humans respond to features of 

stylized faces.

• To account for fixed effects—those common across the population—as well as individual variations that we treat as nuisance variables, we use the mixed 

effects regression model introduced in Sec. 6.1

• To estimate the EIG for different designs, we use        since it yields the best performance on our mixed effects model benchmark (see Table 2). 

• Our EIG estimator is integrated into a system that presents participants with a stimulus, receives their response, learns an updated model, and designs the 

next stimulus, all online



Experiments – End-to-end sequential experiments
• We consider a more challenging scenario in which a random design strategy gleans very little.

• We compare random design against two BOED strategies: ˆ µmarg and ˆ µNMC. Building on the revealed preference example in Sec. 6.1, we consider an 

experiment to infer an agent’s utility function which we model using the Constant Elasticity of Substitution (CES) model [2] with latent variables ρ,α,u.

• We seek designs for which the agent’s response will be informative about θ = (ρ,α,u)

• We estimate the EIG using ˆ µmarg because the dimension of y is smaller than that of θ, and select designs d ∈ [0,100]6 using Bayesian optimization

• To investigate parameter recovery, we simulate agent responses from the model with fixed values of ρ,α,u.


