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Paper Contributions

I Variational approximation to Information Bottleneck objective function
I Apply Variational IB method to neural networks
I Objective is robust to adversarial attack



Background: Mutual Information

I Measures mutual dependence between variables
I Always non-negative
I Invariant to reparameterizations
I I(X ; Y ) = DKL(P(X ,Y )||P(X )⊗ P(Y ))
I In words: KL divergence between marginal distribution and product of distributions



Background: Information Bottleneck Method

RIB(θ) = I(Z ,Y ; θ)− βI(Z ,X ; θ)

I Learn informative encoding Z about target Y while ignoring input data X
I Intractable for most models

I Exceptions: All variables are discrete, or all are jointly gaussian
I β > 0 hyperparameter trades between objectives
I High β fails to learn anything
I Experiments further explore β



Method: Overview

I Use variational approximations to compute lower-bound of IB objective
I Use local reparameterization trick & Monte Carlo sampling to estimate the gradient
I Optimize using SGD and train a deep neural network



Factoring the Joint

I Assume factorization:

p(X ,Y ,Z ) = p(Z |X ,Y )p(Y |X )p(X ) = p(Z |X )p(Y |X )p(X )

I Markov chain: Y ↔ X ↔ Z
I Representation Z can’t depend directly on Y



First Term of IB Objective

I(Z ,Y ) =
∫

dy dz p(y , z) log p(y ,z)
p(y)p(z) =

∫
dy dz p(y , z) log p(y |z)

p(y)

p(y |z) from Markov chain:

p(y |z) =
∫

dx p(x , y |z) =
∫

dx p(y |x)p(x |z) =
∫

dx p(y |x)p(z|x)p(x)
p(z)



Approximating the First Term

I p(y |z) is intractable
I define variational approximation q(y |z)
I q(y |z) is a second neural network with its own parameters



Lower Bound on I(Z ,Y ) using q(y |z)

KL Divergence is always nonnegative:

KL[p(Y |Z ), q(Y |Z )] ≥ 0→
∫

dy p(y |z) log p(y |z) ≥
∫

dy p(y |z) log q(y |z)

I(Z ,Y ) ≥
∫

dy dz p(y , z) log q(y |z) + H(Y )

Ignore H(Y ) since it doesn’t depend on the optimization.



Lower Bound on I(Z ,Y ) continued

Rewrite using Markov Chain assumption:

p(y , z) =
∫

dx p(x , y , z) =
∫

dx p(x)p(y |x)p(z |x)

I(Z ,Y ) ≥
∫

dx dy dz p(x)p(y |x)p(z |x) log q(y |z)

Above lower bound only requires samples from our data and stochastic encoder, as well
as tractable q(y |z)!



Approximating βI(Z ,X )

I(Z ,X ) =
∫

dz dx p(x , z) log p(z|x)
p(z)

=
∫

dz dx p(x , z) log p(z |x)−
∫

dz p(z) log p(z)

I Computing marginal p(z) could be difficult
I Define variational approximation r(z)
I Use nonnegativity of KL to get an upper bound:

I(Z ,X ) ≤
∫

dx dz p(x)p(z |x) log p(z|x)
r(z)



Combining Terms and Approximating Empirically

I(Z ,Y )− βI(Z ,X )

≥
∫

dx dy dz p(x)p(y |x)p(z |x) log q(y |z)

−β
∫

dx dz p(x)p(z |x) log p(z|x)
r(z)

= L

I Approximate p(x , y) empirically:

p(x , y) = 1
N

∑N
n=1 δxn(x)δyn(y)



Finally the Objective Function

I p(z |x) = N(z |f µe (x), f Σ
e (x))

I MLP encoder outputs K-dimensional µ and σ
I Apply Reparameterization trick: p(z |x)dz = p(ε)dε and z = f (x , ε)
I Final objective function to minimize:



MNIST Experiments

I Use existing MLP model and compare with other regularization methods
I Stochastic encoder: p(z |x) = N(z |f µe (x), f Σ

e (x))
I fe : MLP w/ layers: 784− 1024− 1024− 2K
I Final layer: K means and K standard deviations
I Try bottleneck sizes K = 256 and K = 2
I Decoder q(y |z) is a logistic regression model
I r(z) is a K-dimensional spherical gaussian



MNIST: Comparison



MNIST: 2D Embedding

I worse results than K=256 embedding, but same trends
I Mostly interesting for visualizations



MNIST: Error and MI statistics



MNIST: 2D Embedding Visualization



Adversary ML Models

I Train model to add noise to a sample and change class prediction

I Could be targeted or untargeted

I Authors evaluate robustness to two adversary models:
I L2 Optimizer
I Fast Gradient Sign - Evaluate gradient and take one step of size ε



MNIST: Adversarial Experiment

I Perturb 10 zeroes to classify as ones
I use L2 adversary from Carlini & Wagner (2016)



MNIST: Adversarial Results



L2 Perturbation vs Beta, Compare with Deterministic
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L2 Perturbation vs Beta, Compare with Dropout
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Accuracy vs Beta, L2 Adversary



Accuracy vs Beta, FGS Adversary



ImageNet: Adversarial Experiment

I 1M images, 1K classes
I Use pretrained Inception Resnet V2 at 80.4% accuracy
I apply the pretrained model to each image and extract latent representation
I resulting representation is 1536 dimensions
I input these to model mostly similar to MNIST experiments



ImageNet: Classification results

I All results lower than 80.4% baseline
I Likely need more training time or better hyperparameters
I Best accuracy: 80.12% with β = 0.01
I β = 0.01→ roughly 45 bits in I(X ,Z )
I β = 0→ 10,000 bits, but only 78.87% accuracy



ImageNet: Adversarial Results



ImageNet Perturbations: Clean & VIB



ImageNet Perturbations: Deterministic & Unmodified ResNet



ImageNet: Magnitude of Perturbations



Final Thoughts

I I’m reasonably convinced this is a good regularizer
I Some examples support adversarial robustness, others not so much
I Learning β is probably nontrivial



Questions?
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