Denoising Diffusion Implicit Models

Kayla Bennett

University of Arizona

March 20, 2024



Paper Contributions

DDIM: Implicit model trained with the same objective function as DDPMs
Generalize the forward process from DDPMs to non-Markovian process

Consider non-Markovian forward process to skip iterations during reverse process
Much faster diffusion model with small impact on quality

Noise in DDIM acts as a latent encoding, enabling reconstruction & interpolation
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Background: DDPMs

» Approximate samples from distribution q(xp) using learned model py(xp)

» Forward process: Markov chain g(x;.7|xp) adds gaussian noise each step of T

» Generative process: pg(xo.7) samples intractable reverse process q(xt—1|xt)
po(x0) = [ po(xo:7)dx:T,  where py(x0.7) := po(x7) 11 Pét)(Xt—l\Xt)

» models are learned with a fixed inference procedure

» Parameters 6 learn to fit g(xp) by maximizing the VLB:

mthEq(mo)Unge(xo)] < maxEy(ey 2, ar) [log po(xo:7) — log g(x1.7|x0)] )



Background: DDPMs (2)

» Special property of forward process q(x:|xo)

q(xt|x0) = [ q(xv1:t|x0)dx1.(e—1) = N (Xt /arxo, (1 — ar)l)

> x; is a linear combination of xg and noise ¢
x; = Joyxg ++1— e, where e~ N(0,1).

» Ast at approaches 0, g(x7|xo) becomes pure gaussian noise
» We can sample x7 as pure Gaussian noise: py(x7) = N(0,1)



Background: DDPMs (3)

» Variational lower bound in equation 2 simplifies to:

T
2
L,Y(Eg) = E ’YtECEONq(:EO)aftNN((),I) [Heét)(, /oy + V1 — atet) — 6t||2} 5)
t=1

P ¢y - set of learned gaussian noise functions for each time step
P> ~ - vector of positive variance coefficients that depend on « hyperparameter

» To sample xq:

1. sample x7 from py(x7) (just Gaussian noise)
2. iteratively sample x;_1 from pg(x;—1|x:)



Background: The Problem with DDPMs

» Number of iterations T is a hyperparameter
» A large T is needed to get a good approximation; T=1000 from Ho et al. (2020)
» Sampling from pg(x¢—1|x¢) means iterations can't be parallelized

» Main contribution of DDIMs paper: Sample py(xp) faster by making it
non-Markovian!



Variational Inference for Non-Markovian Forward Processes

» Inference (forward) process iteratively adds noise, generative process reverses it

> To make the reverse process non-Markovian, define the forward process to be
non-Markovian

> Key observation: objective L, depends directly on marginals g(x¢|xp) but not on
joint g(x1.7|x0)

» Many joints have the same marginals, use this fact to define non-Markovian
inference process below

@ — @) — @)— @
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Defining a Non-Markovian Forward Process

» consider family Q of inference distributions
» index family by vector o € RIO

T

4o (Tr.7|0) = g0 (@r|20) [ [ 0 (11|01, 20) (6)
t=2

where g, (z7|xo) = N (y/arzo, (1 — ar)I) and forall ¢ > 1,
Go(Ti_1|Tt, ) = N (‘ far_1xo+ /1 — a1 — 0 - % 'CZ:DO,UfI) . 7

» g, (xt|x0) = N(Varxo, (1 — at)l) for all t
» Each x; depends on xp and our noise parameters
» Define whole forward process from Bayes rule

4 Lt—1|Tt, Lo q Lt| g
QU(wt|wt_1,:C0) = J( t | t ) 0’( t| )
o (Tt-1|T0)




Generative process and Unified Variational Inference Objective

» Define trainable py(xp.7) where pg(x¢—1|xt) leverages gy (xt—1|x¢, X0)
> Given x;:

1. Predict xp using equation 4

2. Use predicted xp and noise €; in g, (xt—1|X¢, X0) to sample x;_1

> Model e((f) predicts €; from x;



Generative Process (2)

» Predict xg using equation 4, and define generative process:

F(@) = (@ — VT —ay - € (@1)) ) au.

We can then define the generative process with a fixed prior pp(z1) = N(0, I) and

N (1), 02 ift =1
pét)(mtfl‘wt): (9 ( 1) (1t)) '
Qo (i—1|2¢, fy (1)) oOtherwise,

» Optimize 6 parameter as VLB on ¢y:

Js(€0) := Eeo.r~qo (@oir) [log ¢ (x1.7|20) — log pa(xo.7)]
T

€))

(10)

an

T
= Egp.rmgo (o) {log go(@r|z0) + Y log go(i—1|ze, 20) — > log plf’ (1 |2:) — log pe (1)
t=1

t=2



Denoising Diffusion Implicit Models

» From py(x1.7) above, generate x;_1 from x; as:

(t)
x — V1 —ouey’ (T
¢ _att 0 ( t)> + 1-— Q1 — O'tz . Gét)(.’ﬂt) + Tt€¢ (12)

“ predicted o~

Ti—1 = /Qt—1 (

random noise

“direction pointing to ;"

» Changing o results in a different generative process

P 2 special cases:
1. o =+/(1—a;i—1/(1 — a))y/1 — ar/a;—1 , markovian DDPM
2. o =0 for all t results in a deterministic forward process becomes deterministic except
when t =1
P> model becomes an implicit probablistic model, which the authors call DDIM
» Forward process is no longer a diffusion
» Samples generated from x7 using a fixed generative process
> Since the generative process is fixed, we can think of x as an encoding of xp




Accelerated Generation Process

» With g,(x¢t|x0) fixed, L doesn’t depend on the specific forward process

» This means we can skip some iterations when sampling

» Define 7 as the sequence of iterations we actually run, call its length S

» Refer to reversed(7) as the sampling trajectory

> Now we can train with many steps in the forward process, but only sample some of
those steps in the generative process
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q(xs3|x, iBo)
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Above: Generation model when 7 = [1,3]
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Relation to Neural ODEs

P Rewriting eq. 12 shows similarity to Euler Integration:

Li—At Ty + 1— i 1—a e(t)(az )
= = 1/ t
VOt—At AVASY, Qg—At g o

» DDIM is basically solving this ODE:

da(t) = (S5 ) do)

» with initial condition x(T) ~ N(0,0(T))
» Suggests that DDIM can obtain latent x7 and reconstruct xg

13)

(14)



Experiments

» Show that DDIMs produce similar quality images as DDPMs in less time
> Asses sample quality using Frechet Inception Distance (FID)
» Lower is better
» Demonstrate that DDIMs can interpolate directly from latent space since
generative process is fixed
» DDPMs can't do this due to stochasticity

» Evaluate DDIM ability to reconstruct CIFAR-10 images



Experiment Setup

v

Authors use same trained model for each dataset, with 7 = 1000, v = 1 for all
experiments

Authors only change 7 and o during experiments

define hyperparameter “stochastity” 7 to manipulate o

or(n) = /(1= ar ) /(1= az)y/1 = ar far,

Note: n = 1 case and & case are DDPMs, 1 = 0 case is the DDIM
& - DDPM with standard deviation >1
Details in appendix D



Results: FID scores with changing 7 and 1

Table 1: CIFARI1O0 and CelebA image generation measured in FID. n = 1.0 and & are cases of
DDPM (although Ho et al. (2020) only considered 7" = 1000 steps, and S < T can be seen as
simulating DDPMs trained with .S steps), and 7 = 0.0 indicates DDIM.

CIFARI10 (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

00| 13.36  6.84 4.67 4.16 4.04 17.33  13.73 917 6.53 3.51
02| 14.04 7.11 477 4.25 4.09 17.66  14.11 9.51 6.79 3.64
T 05| 1666 835 5.25 4.46 4.29 19.86 16.06 11.01 8.09 4.28
1.0 | 41.07 1836  8.01 5.78 4.73 33.12  26.03 1848 1393 5098

6 | 36743 13337 3272  9.99 317 |299.71 183.83 7171 4520 3.26

dim(t) =10

dim(t) =100 i _dim(7) =100

Figure 3: CIFAR10 and CelebA samples with dim(7) = 10 and dim(7) = 100.



Results: Image Quality and Consistency at Different Timesteps

sample timesteps sample timesteps

> Starting from the same xt produces similar high-level features, sample iterations
seem to just add detail
» Strong evidence that xt is actually a latent encoding of xg



Results: Compute Time

» Compute time scales linearly with number of sampling steps
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Figure 4: Hours to sample 50k images with one Nvidia 2080 Ti GPU and samples at different steps.



Results: Sample Quality

» Increasing dim(7) gives better results, as expected

» with low dim(7), n = 0 gives best results

» DDIM does much better than DDPM with fewer sampling steps
» Sampling time scales linearly



Results: Interpolation

» If x7 is a latent encoding, we can perturb it to interpolate between two samples




Results: CIFAR-10 Sample Reconstruction

Table 2: Reconstruction error with DDIM on CIFAR-10 test set, rounded to 10~%.

S | 10 20 50 100 200 500 1000
Error | 0.014 0.0065 0.0023 0.0009 0.0004 0.0001 0.0001

» evaluation metric: per-dimension MSE



Questions?
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