Denoising Diffusion Implicit Models

Kayla Bennett

University of Arizona

March 20, 2024

Paper Contributions

- DDIM: Implicit model trained with the same objective function as DDPMs
- Generalize the forward process from DDPMs to non-Markovian process
- Consider non-Markovian forward process to skip iterations during reverse process
- Much faster diffusion model with small impact on quality
- ▶ Noise in DDIM acts as a latent encoding, enabling reconstruction & interpolation

Background: DDPMs

- Approximate samples from distribution $q(x_0)$ using learned model $p_{\theta}(x_0)$
- Forward process: Markov chain $q(x_{t:T}|x_0)$ adds gaussian noise each step of T
- Generative process: $p_{\theta}(x_{0:T})$ samples intractable reverse process $q(x_{t-1}|x_t)$

$$p_{ heta}(x_0) = \int p_{ heta}(x_{0:T}) dx_{1:T}, \quad ext{where} \quad p_{ heta}(x_{0:T}) \coloneqq p_{ heta}(x_T) \prod_{t=1}^T p_{ heta}^{(t)}(x_{t-1}|x_t)$$

models are learned with a fixed inference procedure

• Parameters θ learn to fit $q(x_0)$ by maximizing the VLB:

$$\max_{\theta} \mathbb{E}_{q(\boldsymbol{x}_0)}[\log p_{\theta}(\boldsymbol{x}_0)] \le \max_{\theta} \mathbb{E}_{q(\boldsymbol{x}_0, \boldsymbol{x}_1, \dots, \boldsymbol{x}_T)} \left[\log p_{\theta}(\boldsymbol{x}_{0:T}) - \log q(\boldsymbol{x}_{1:T} | \boldsymbol{x}_0)\right]$$
(2)

Background: DDPMs (2)

Special property of forward process $q(x_t|x_0)$

$$q(x_t|x_0) := \int q(x_{1:t}|x_0) dx_{1:(t-1)} = \mathcal{N}(x_t; \sqrt{\alpha_t}x_0, (1-\alpha_t))$$

 \blacktriangleright x_t is a linear combination of x_0 and noise ϵ

$$\boldsymbol{x}_t = \sqrt{\alpha_t} \boldsymbol{x}_0 + \sqrt{1 - \alpha_t} \epsilon$$
, where $\epsilon \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

Ast α_T approaches 0, q(x_T|x₀) becomes pure gaussian noise
 We can sample x_T as pure Gaussian noise: p_θ(x_T) = N(0, I)

Background: DDPMs (3)

Variational lower bound in equation 2 simplifies to:

$$L_{\gamma}(\epsilon_{\theta}) := \sum_{t=1}^{T} \gamma_{t} \mathbb{E}_{\boldsymbol{x}_{0} \sim q(\boldsymbol{x}_{0}), \epsilon_{t} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})} \left[\left\| \epsilon_{\theta}^{(t)} (\sqrt{\alpha_{t}} \boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t}} \epsilon_{t}) - \epsilon_{t} \right\|_{2}^{2} \right]$$
(5)

 \blacktriangleright ϵ_{θ} - set of learned gaussian noise functions for each time step

 \blacktriangleright γ - vector of positive variance coefficients that depend on α hyperparameter

To sample x₀:

- 1. sample x_T from $p_{\theta}(x_T)$ (just Gaussian noise)
- 2. iteratively sample x_{t-1} from $p_{\theta}(x_{t-1}|x_t)$

Background: The Problem with DDPMs

- Number of iterations T is a hyperparameter
- ▶ A large T is needed to get a good approximation; T=1000 from Ho et al. (2020)
- Sampling from $p_{\theta}(x_{t-1}|x_t)$ means iterations can't be parallelized
- Main contribution of DDIMs paper: Sample p_θ(x₀) faster by making it non-Markovian!

Variational Inference for Non-Markovian Forward Processes

- Inference (forward) process iteratively adds noise, generative process reverses it
- To make the reverse process non-Markovian, define the forward process to be non-Markovian
- Key observation: objective L_γ depends directly on marginals q(x_t|x₀) but not on joint q(x_{1:T}|x₀)
- Many joints have the same marginals, use this fact to define non-Markovian inference process below

Defining a Non-Markovian Forward Process

- consider family Q of inference distributions
- index family by vector $\sigma \in \mathbb{R}_{\geq 0}^T$

$$q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) := q_{\sigma}(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \prod_{t=2}^{T} q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}, \boldsymbol{x}_{0})$$
(6)

where $q_{\sigma}(\boldsymbol{x}_T | \boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_T} \boldsymbol{x}_0, (1 - \alpha_T) \boldsymbol{I})$ and for all t > 1,

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t-1} - \sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t} - \sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1 - \alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right).$$
(7)

*q*_σ(*x*_t|*x*₀) = N(√α_t*x*₀, (1 − α_t)*I*) for all *t* Each *x*_t depends on *x*₀ and our noise parameters
 Define whole forward process from Bayes rule

$$q_{\sigma}(m{x}_t | m{x}_{t-1}, m{x}_0) = rac{q_{\sigma}(m{x}_{t-1} | m{x}_t, m{x}_0) q_{\sigma}(m{x}_t | m{x}_0)}{q_{\sigma}(m{x}_{t-1} | m{x}_0)}$$

Generative process and Unified Variational Inference Objective

- Define trainable p_θ(x_{0:T}) where p_θ(x_{t-1}|x_t) leverages q_σ(x_{t-1}|x_t, x₀)
 Given x_t:
 - 1. Predict x_0 using equation 4
 - 2. Use predicted x_0 and noise ϵ_t in $q_\sigma(x_{t-1}|x_t, x_0)$ to sample x_{t-1}
- Model $\epsilon_{\sigma}^{(t)}$ predicts ϵ_t from x_t

Generative Process (2)

• Predict x_0 using equation 4, and define generative process:

$$f_{\theta}^{(t)}(\boldsymbol{x}_t) := (\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)) / \sqrt{\alpha_t}.$$
(9)

We can then define the generative process with a fixed prior $p_{\theta}(\boldsymbol{x}_T) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ and

$$p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \begin{cases} \mathcal{N}(f_{\theta}^{(1)}(\boldsymbol{x}_1), \sigma_1^2 \boldsymbol{I}) & \text{if } t = 1\\ q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, f_{\theta}^{(t)}(\boldsymbol{x}_t)) & \text{otherwise,} \end{cases}$$
(10)

• Optimize θ parameter as VLB on ϵ_{θ} :

$$J_{\sigma}(\epsilon_{\theta}) := \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} [\log q_{\sigma}(\boldsymbol{x}_{1:T} | \boldsymbol{x}_{0}) - \log p_{\theta}(\boldsymbol{x}_{0:T})]$$
(11)
$$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} \left[\log q_{\sigma}(\boldsymbol{x}_{T} | \boldsymbol{x}_{0}) + \sum_{t=2}^{T} \log q_{\sigma}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) - \sum_{t=1}^{T} \log p_{\theta}^{(t)}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}) - \log p_{\theta}(\boldsymbol{x}_{T}) \right]$$

Denoising Diffusion Implicit Models

From
$$p_{\theta}(x_{1:T})$$
 above, generate x_{t-1} from x_t as:

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}}\right)}_{\text{"predicted } \boldsymbol{x}_0\text{"}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t\text{"}} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$
(12)

• Changing σ results in a different generative process

2 special cases:

1.
$$\sigma_t = \sqrt{(1 - lpha_{t-1}/(1 - lpha))} \sqrt{1 - lpha_t/lpha_{t-1}}$$
 , markovian DDPM

- 2. $\sigma_t = 0$ for all t results in a deterministic forward process becomes deterministic except when t = 1
 - model becomes an implicit probablistic model, which the authors call DDIM
 - Forward process is no longer a diffusion
 - Samples generated from x_T using a fixed generative process
 - Since the generative process is fixed, we can think of x_T as an encoding of x_0

Accelerated Generation Process

- With $q_{\sigma}(x_t|x_0)$ fixed, L doesn't depend on the specific forward process
- This means we can skip some iterations when sampling
- Define τ as the sequence of iterations we actually run, call its length S
- Refer to reversed(τ) as the sampling trajectory
- Now we can train with many steps in the forward process, but only sample some of those steps in the generative process

Above: Generation model when $\tau = [1,3]$

Relation to Neural ODEs

Rewriting eq. 12 shows similarity to Euler Integration:

$$\frac{\boldsymbol{x}_{t-\Delta t}}{\sqrt{\alpha_{t-\Delta t}}} = \frac{\boldsymbol{x}_t}{\sqrt{\alpha_t}} + \left(\sqrt{\frac{1-\alpha_{t-\Delta t}}{\alpha_{t-\Delta t}}} - \sqrt{\frac{1-\alpha_t}{\alpha_t}}\right) \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)$$
(13)

DDIM is basically solving this ODE:

$$\mathrm{d}\bar{\boldsymbol{x}}(t) = \epsilon_{\theta}^{(t)} \left(\frac{\bar{\boldsymbol{x}}(t)}{\sqrt{\sigma^2 + 1}}\right) \mathrm{d}\sigma(t), \tag{14}$$

with initial condition x(T) ~ N(0, σ(T))
 Suggests that DDIM can obtain latent x_T and reconstruct x₀

Experiments

- Show that DDIMs produce similar quality images as DDPMs in less time
 - Asses sample quality using Frechet Inception Distance (FID)
 - Lower is better
- Demonstrate that DDIMs can interpolate directly from latent space since generative process is fixed
 - DDPMs can't do this due to stochasticity
- Evaluate DDIM ability to reconstruct CIFAR-10 images

Experiment Setup

- ▶ Authors use same trained model for each dataset, with T = 1000, $\gamma = 1$ for all experiments
- \blacktriangleright Authors only change τ and σ during experiments
- \blacktriangleright define hyperparameter "stochastity" η to manipulate σ_{τ}

$$\sigma_{\tau_i}(\eta) = \eta \sqrt{(1 - \alpha_{\tau_{i-1}})/(1 - \alpha_{\tau_i})} \sqrt{1 - \alpha_{\tau_i}/\alpha_{\tau_{i-1}}}$$

- Note: η = 1 case and ô case are DDPMs, η = 0 case is the DDIM
 ô DDPM with standard deviation >1
- Details in appendix D

Results: FID scores with changing τ and η

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta = 1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T = 1000 steps, and S < T can be seen as simulating DDPMs trained with S steps), and $\eta = 0.0$ indicates DDIM.

			CIFA	R10 (32	× 32)		CelebA (64×64)				
	S	10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

Figure 3: CIFAR10 and CelebA samples with $\dim(\tau) = 10$ and $\dim(\tau) = 100$.

Results: Image Quality and Consistency at Different Timesteps

- Starting from the same x_T produces similar high-level features, sample iterations seem to just add detail
- Strong evidence that x_T is actually a latent encoding of x_0

Results: Compute Time

Compute time scales linearly with number of sampling steps

Figure 4: Hours to sample 50k images with one Nvidia 2080 Ti GPU and samples at different steps.

Results: Sample Quality

- Increasing dim (τ) gives better results, as expected
- with low dim (τ) , $\eta = 0$ gives best results
- DDIM does much better than DDPM with fewer sampling steps
- Sampling time scales linearly

Results: Interpolation

▶ If x_T is a latent encoding, we can perturb it to interpolate between two samples

Table 2: Reconstruction error with DDIM on CIFAR-10 test set, rounded to 10^{-4} .

S	10	20	50	100	200	500	1000
Error	0.014	0.0065	0.0023	0.0009	0.0004	0.0001	0.0001

evaluation metric: per-dimension MSE

Questions?

