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Paper Contributions

I DDIM: Implicit model trained with the same objective function as DDPMs
I Generalize the forward process from DDPMs to non-Markovian process
I Consider non-Markovian forward process to skip iterations during reverse process
I Much faster diffusion model with small impact on quality
I Noise in DDIM acts as a latent encoding, enabling reconstruction & interpolation



Background: DDPMs

I Approximate samples from distribution q(x0) using learned model pθ(x0)
I Forward process: Markov chain q(xt:T |x0) adds gaussian noise each step of T
I Generative process: pθ(x0:T ) samples intractable reverse process q(xt−1|xt)

pθ(x0) =
∫

pθ(x0:T )dx1:T , where pθ(x0:T ) := pθ(xT )
∏T

t=1 p(t)
θ (xt−1|xt)

I models are learned with a fixed inference procedure
I Parameters θ learn to fit q(x0) by maximizing the VLB:



Background: DDPMs (2)

I Special property of forward process q(xt |x0)

q(xt |x0) :=
∫

q(x1:t |x0)dx1:(t−1) = N (xt ;
√
αtx0, (1− αt)I)

I xt is a linear combination of x0 and noise ε

I Ast αT approaches 0, q(xT |x0) becomes pure gaussian noise
I We can sample xT as pure Gaussian noise: pθ(xT ) = N (0, I)



Background: DDPMs (3)

I Variational lower bound in equation 2 simplifies to:

I εθ - set of learned gaussian noise functions for each time step

I γ - vector of positive variance coefficients that depend on α hyperparameter

I To sample x0:
1. sample xT from pθ(xT ) (just Gaussian noise)
2. iteratively sample xt−1 from pθ(xt−1|xt)



Background: The Problem with DDPMs

I Number of iterations T is a hyperparameter

I A large T is needed to get a good approximation; T=1000 from Ho et al. (2020)

I Sampling from pθ(xt−1|xt) means iterations can’t be parallelized

I Main contribution of DDIMs paper: Sample pθ(x0) faster by making it
non-Markovian!



Variational Inference for Non-Markovian Forward Processes
I Inference (forward) process iteratively adds noise, generative process reverses it

I To make the reverse process non-Markovian, define the forward process to be
non-Markovian

I Key observation: objective Lγ depends directly on marginals q(xt |x0) but not on
joint q(x1:T |x0)

I Many joints have the same marginals, use this fact to define non-Markovian
inference process below



Defining a Non-Markovian Forward Process
I consider family Q of inference distributions
I index family by vector σ ∈ RT

≥0

I qσ(xt |x0) = N (√αtx0, (1− αt)I) for all t
I Each xt depends on x0 and our noise parameters
I Define whole forward process from Bayes rule



Generative process and Unified Variational Inference Objective

I Define trainable pθ(x0:T ) where pθ(xt−1|xt) leverages qσ(xt−1|xt , x0)
I Given xt :

1. Predict x0 using equation 4
2. Use predicted x0 and noise εt in qσ(xt−1|xt , x0) to sample xt−1

I Model ε(t)
σ predicts εt from xt



Generative Process (2)

I Predict x0 using equation 4, and define generative process:

I Optimize θ parameter as VLB on εθ:



Denoising Diffusion Implicit Models

I From pθ(x1:T ) above, generate xt−1 from xt as:

I Changing σ results in a different generative process
I 2 special cases:

1. σt =
√

(1− αt−1/(1− α))
√
1− αt/αt−1 , markovian DDPM

2. σt = 0 for all t results in a deterministic forward process becomes deterministic except
when t = 1

I model becomes an implicit probablistic model, which the authors call DDIM
I Forward process is no longer a diffusion
I Samples generated from xT using a fixed generative process
I Since the generative process is fixed, we can think of xT as an encoding of x0



Accelerated Generation Process
I With qσ(xt |x0) fixed, L doesn’t depend on the specific forward process
I This means we can skip some iterations when sampling
I Define τ as the sequence of iterations we actually run, call its length S
I Refer to reversed(τ) as the sampling trajectory
I Now we can train with many steps in the forward process, but only sample some of

those steps in the generative process

Above: Generation model when τ = [1,3]



Relation to Neural ODEs

I Rewriting eq. 12 shows similarity to Euler Integration:

I DDIM is basically solving this ODE:

I with initial condition x(T ) ∼ N (0, σ(T ))
I Suggests that DDIM can obtain latent xT and reconstruct x0



Experiments

I Show that DDIMs produce similar quality images as DDPMs in less time
I Asses sample quality using Frechet Inception Distance (FID)
I Lower is better

I Demonstrate that DDIMs can interpolate directly from latent space since
generative process is fixed
I DDPMs can’t do this due to stochasticity

I Evaluate DDIM ability to reconstruct CIFAR-10 images



Experiment Setup

I Authors use same trained model for each dataset, with T = 1000, γ = 1 for all
experiments

I Authors only change τ and σ during experiments
I define hyperparameter “stochastity” η to manipulate στ

I Note: η = 1 case and σ̂ case are DDPMs, η = 0 case is the DDIM
I σ̂ - DDPM with standard deviation >1
I Details in appendix D



Results: FID scores with changing τ and η



Results: Image Quality and Consistency at Different Timesteps
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I Starting from the same xT produces similar high-level features, sample iterations
seem to just add detail

I Strong evidence that xT is actually a latent encoding of x0



Results: Compute Time

I Compute time scales linearly with number of sampling steps



Results: Sample Quality

I Increasing dim(τ) gives better results, as expected
I with low dim(τ), η = 0 gives best results
I DDIM does much better than DDPM with fewer sampling steps
I Sampling time scales linearly



Results: Interpolation

I If xT is a latent encoding, we can perturb it to interpolate between two samples



Results: CIFAR-10 Sample Reconstruction

I evaluation metric: per-dimension MSE



Questions?


