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Introduction

* We want to designh experiments so that outcomes are very
iInformative.

* Experiments may have multiple iterations and decisions so an
update to the experimental desigh may be necessary.

 Example Marco Polo Game where player 2 doesn’t move.
* Player 1 closes there eyes and yells Marco.
* Player 2 responds Polo.
* Player 1 moves in direction of Player 2.

* Player calls out Marco again from the new location and continues until
player 2 is found.



Bayesian Optimal Experimental Design
(BOED)

* Goal of the BOED framework is to aid in the design of experiments
so that the outcomes will be as informative as possible.

* BOED framework modeled in a Bayesian manner

* yis the experiment outcome.

e £ isour controllable design

* 0 isthe set of parameters we wish to learn about.

* p(0)is the prior. What we know about the parameters before data.

* p(y|6, &) is the likelihood.

* Key idea is to optimize ¢ to maximize the expected amount of
information that will be gained about variables of interest 8 upon

observing outcome y.



Entropy and the conventional iterative
approach.

* Entropy of a discrete random variable X with dist p over K states.
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* Optimize ¢ to maximize the expected information gained about 6
IG(&,y) = H[p(0)] — H[p(0|€, )]

* BOED istruly realized when it’s used to design a sequence of

experiments &4, ..., &

* To construct adapative strategies which utilize information from past data to
tailor each successive design ¢, during the progress of the experiment.

* The conventional iterative approach for selecting each &, is to fit the
posterior.
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BOED Framework

* After running a hypothetical experiment with design ¢ and
observingy, our updated beliefs are the posterior p(6|¢, y).

IG(&,y) =H[p(0)] — H[p(0l¢,y)]

* Expected Information Gain

* Formed by taking the expectation over possible outcomesy, using the
model itself to simulate these.



BOED Framework Cont.

* Marginal Likelihood

* Expected Information Gain (EIG)
I(§) :==Epyje) [IG(£, y)]

&) [logp(6

y [log p(y

£, y) —logp(0)]

0,&) — log p(y|€)]



BOED Framework Cont.

* The optimal design is defined as § = argmax;z/ (¢ )the space of
feasible designs.

* =: The space of feasible designs.

* The power of the BOED framework can thus be significantly
Increased by using an adaptive design strategy that chooses each
srdependent upon §q..q V.1,

* Enables us to use what we learned previous experiments to design the
next one optimally.



lterative Approach is computational
expensive.

* Significant Computational time between each step of the
experiment in order to update the posterior and compute the next

optimal design.
* |(§) is doubly intractable and its optimization constitutes a
significant computational bottleneck.



Conventional Approach

* The conventional approach is to fit the posterior distribution at
each step and then optimize the EIG objective that uses this
posterior in place of the prior.
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Theorem 1

Theorem 1. The total expected information gain for policy
™ over a sequence of T experiments is

T .
Ir () == Ep(o)p(hr|o,m) [thl Iht_l(ét)] (7)
log p(hr|0,7) — log p(hr|m)] (8)

where p(hr|m) = E, ) [p(hr|0, )]

=Ep0)p(hr|6,m) |




Theorem 1

* [() is the expected
reduction in entropy from
the prior p(@) to the final Theorem 1. The total expected information gain for policy
poste rior p (Q | hT) without m over a sequence of T experiments is
considering the T - |
intermediate posteriors at Ir(m) := Ep(o)p(hr,m) [thl In,_, (ff)] (7)
all.

* Paper generalizes
conventional BOED
frameworks to having a fixed
T.

=E,0)p(hr6,7) logp(hr|0, ) —logp(hr|m)] (8)

where p(hr|m) = E, ) [p(hr|0, 7))



Thinking in terms of Policy

* [(m) is afunction of the
policy, not the designs
themselves.

 Conventional adaptive
BOED approximates ..

* Once mis learned, it can just
be directly evalutated during
the experiment itself.

Theorem 1. The total expected information gain for policy
m over a sequence of T experiments is

T | |
Ir(7) :== Epo)p(hy|o.x) [Zle Ih, (ft)] (7)
=E,0)p(hr0.7) logp(hr|0,7) —logp(hr|m)] (8)

where p(hr|m) = E, ) [p(hr|0, 7))

Optimal Design interms of &: & ‘= argmaxgzI (&)

Optimal Design in terms of m: "= arg max,I(m)



Policy

* List of actions a system or
agent learns.

*a=m(x)

* Specifies which action to take
In response to each possible
Input.

* Ex. of 2 policies

* 1, = down,right,right - Pear
* 1, =right right right down down down — Apple




Deep Adaptive Design (DAD)

* A method for amortizing the cost of adaptive Bayesian
experimental design

* DAD looks to approximate r*in the policy optimal design eq.

* Constructs a single design network ity learned by simulating
hypothetical experimental trajectories with trainable params ¢.
* |Input:
* Designs and Observations from previous stages

* Output:
* The design to use for the next experiment.



Deep Adaptive Design (DAD)

* Learns a design policy which makes decisions as a function of the
past data, and we optimize the parameters of this policy rather
than an individual design.

* Can be learned without any direct posterior or marginal
likelihood estimation.



Deep Adaptive Design Algorithm

Algorithm 1 Deep Adaptive Design (DAD)
Input: Prior p(0), likelihood p(y|#, &), number of steps T°
Output: Design network 7

while training compute budget not exceeded do
Sample 0y ~ p(f) and set hg = &
fort=1,....,T do

Compute §; = 7y (ht—1)
Sample y; ~ p(y|6o, &)
Set ht — {(gla yl)a seey (€t7 yt)}

end

Compute estimate for dLp/d¢ as per § 4.2
Update ¢ using stochastic gradient ascent scheme

end

At deployment, 7, is fixed, we take & = my(hi—1), and
each y; 1s obtained by running an experiment with &;.




Contrastive bounds for sequential
experiments

* To train 4 with stochastic gradient methods
* Optimize the lower bounds on It (1y)
* Equations we looked at before:

— ]Ep(ﬂ)p(h”()ﬂ) [108 1)(hI|9 ”T) o 108 1)(}11”/1')] (8)
where p(hr|m) = Ey ) [p(hr|0, ).

p(0)p(hr|0,7) = p(6) HT

A—

1;v(;z/z.l(f-.é“z)- (5)



Contrastive bounds for sequential
experiments

e Givenasample 8,, h~p(0, h+|m

. Estimat?on cgn ge r};(adegly ) =Ep0)p(hr|6.7) log p(hr|0,7) —log p(hr|m)] (8)
introducing L independent

contrastive samples 6., ~p(0).
* Equation 9 and 10 computes the log T
ratio in eq 8 in 2 ways. ])(Q)PUITW-, 77) = 1)((7’) H -

* g; cannot exceed log(L+1) =
* f, is potentially unbounded.

where p(hr|m) = Ep,g [p(hr|0, 7).
p(ye)0, &) (5)

p(hr|6y, )
%H Zf:o p(hrl|6e, )
p(hr|6o, ™)
+ Zle p(hr|0s, )

gr(0o:L, hr) = log 9)

fL (0():[/7 h-T) — 108;

(10)



Theorem 2

Theorem 2 (Sequential PCE). For a design function ™ and
a number of contrastive samples L > 0, let

£T(7T: L) = ]Ep(eo,hThr)p(Ol;L) [QL (0():L7 hT)] (11)

where gr,(0o.1, hr) is as per (9), and 0y, hr ~ p(0, hp|m),
and 61.;, ~ p(0) independently. Given minor technical
assumptions discussed in the proof. we have’

Lr(m,L) 1 Zr(m)as L — oo (12)
at a rate O (L_l).



Contrastive Bounds

 Upper bound: Sequential Nested Monte Carlo (sNMC)
Ur(m, L) =B,y hplm)po,.,) L (0oL, hr)] . (13)

* Theorem 4 in Appendix A shows that U satisfies

complementary properties of Ly
* The bounds are:



Gradient Estimation

* Design network parameters ¢ can be optimized using a stochastic
optimization scheme

* Using the reparameterization trick and the law of unconscious
statician we can write:

d

= ]EP(HO:L)I)(EI:T) |:@QL(903L‘ h‘T)] ’ (14)

dﬂT
do




Gradient Estimation

* One approach to computing the gradient is to sum over all
possible histories hrintegrating out the variables y,.;r and take
gradients with respect to ¢:

1
Z il (p(h,.:r|9()),(][,(6’();1;. hT))] . (15)

do

dLr

=
do

T

Unbiased gradient estimates can be computed using samples
from the prior.



Gradient Estimation

* This gradient estimator has a computational cost O(|Y|?).

* Number of experiments T and # of outcomes |Y| need to be
relatively small.



Score Function Gradient Estimator

1L p(hr|6o, 74 1
‘ ,TzIE log ]f)( rlbo, 7s) (, log p(hr|6y, 7e)
de > o P(hr|0p, my) ) A9
d =
_% log Zp(hﬂ(?g, 71‘0)] (16)
=0

* Gradient is amenable to existing variance reduction methods.
* Unbiased estimates may again be obtained using samples.

* A complete derivation of the gradients estimators are in Appendix
C.



Theorem 3 (Permutation invariance)

Theorem 3 (Permutation invariance). Consider a permu-
tation o € Sy acting on a history h;, vielding h?

(Eo(1)s Yo (1))s s (o (k) Yo (k) )- For all such o, we have

"
E Y In,_, (&) = hi
| $=3

such that the EIG is unchanged under permutation. Further,

=K

| AP
Z Ih¢_1 (gt)
=1

hy = h2

the optimal policies starting in h}lC and hz, are the same.




Deep Learning Architecture

e Permutation invariance
* Summing or combining

multiple inputs into a single

representation thatis
invariant to their order.

R(hy) = Z:_:l Es, (€ uk).

* Epqpis aneural
network encoder with

parameters ¢, to be
learned.

(17)

Theorem 3 (Permutation invariance). Consider a permu-
tation o € Sy acting on a history h}, vyielding hi =
(§o(1)s Yo (1))s -3 (§o(k)s Yo(k))- For all such o, we have

{ g !
zlht—l(gt) Zlhz—l(gt)
) | =1

such that the EIG is unchanged under permutation. Further,
the optimal policies starting in h,l_c and th are the same.

E

. h,{,] —E

hy = hz]



Deep Learning Architecture

R(h¢) : Zk 1E<2’>1 Eks Yk ) (17)

* R(h,) is a pooled representation.
* Tpn,) = Fp2(R(h)) where Fy, is a learned emitter network.

* The trainable parameters are ¢ = {1, P, }.

* Combining simple networks in way that is sensitive to the
permutation invariance of the problem
* Eyq isre-used for each input pair and for each time step t.

* Improved performance compared to networks that are forced to learn
the relevant symmetries of the problem.



Experiments (Location Finding)

* This experiment there are K

hidden objects or sources in Method Lower bound, 3o  Upper bound, ¥s

d
R ) d6{1;2;3} Random 8.303 £ 0.043 8.322 £+ 0.045
e Aims to learn their locations Fixed 8.838 + 0.039 8.914 + 0.038
9 = {0 K ’ DAD 10.926 + 0.036 12.382 + 0.095
— { k}k=1 y Variational 8.776 + 0.143 9.064 £+ 0.187
* Ksources is assumed to be Table 1. Upper and lower bounds on the total EIG, Z3((7), for the
known location finding experiment. Errors indicate +1 s.e. estimated over

256 (variational) or 2048 (others) rollouts.
* Source is located at 6,

* We measure at ¢



DAD vs Fixed baseline

Figure 1. An example of the designs learnt by (a) the DAD network
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and (b) the fixed baseline for a given 6 sampled from the prior.




Experiments (Location Finding)

e Random baseline

* Select designs uniformly at
random.

* Fixed baseline

* [gnores opportunity for
adaptation.

* Uses static design to learn a

fixed &4, ..., Erbefore the
experiment.

« SG-BOED approach with the
PCE bound to optimize ;.7

Method Lower bound, £39  Upper bound, U3

Random 8.303 4+ 0.043 3.322:3+:0.045
Fixed 8.838 + 0.039 8.914 + 0.038
DAD 10.926 + 0.036 12.382 + 0.095
Variational 8.776 + 0.143 9.064 + 0.187

Table 1. Upper and lower bounds on the total EIG, Z3q(7), for the
location finding experiment. Errors indicate +1 s.e. estimated over
256 (variational) or 2048 (others) rollouts.



Experiments (Location Finding)

e Variational

* SG-BOED approach Method Lower bound, £37 Upper bound, U3

* Traditional iterative approachto  "Random 8.303 + 0.043 8.322 + 0.045
approximate g Fixed 8.838 £+ 0.039 8.914 + 0.038
* Requires significant runtime DAD 10.926 + 0.036 12.382 + 0.095

o Reports upper a nd lower Table 1. Upper and lower bounds on the total EIG, Z3q(7), for the

location finding experiment. Errors indicate +1 s.e. estimated over

bounds for each st rategy 256 (variational) or 2048 (others) rollouts.



Deployment times for Hyperbolic Temporal
Discounting methods

* Total design time for T = 20
experiments.

* Binary Question:

* Would you prefer R pounds
today or 100 poundsinD
days.

 With design ¢ = (R, D)

* Time required to deploy
each method is in the

table.

Method Deployment time (s)
Frye et al. (2016) 0.0902 + 0.0003
Kirby (2009) N/A
Fixed N/A
DAD 0.0901 £ 0.0007
Badapted 25.2679 £+ 0.1854



Deployment times for Hyperbolic Temporal
Discounting methods

* Kirby: A human
constructed fixed set of

desi gns Method Deployment time (s)
e Frye et al. (2016) 0.0902 + 0.0003

* Frye: A problem specific Kgby (2009) N/A
adaptive strategy Fixed N/A

e DAD: Using a fixed DAD 0.0901 £ 0.0007

designed policy Badapted 25.2679 £ 0.1854

 Badapted: Partially
customized sequential

BOED method that use
Pop. Monte Carlo



Deployment times for Hyperbolic Temporal
Discounting methods

* Total design time for T = 20
experiments.

* Binary Question:

* Would you prefer R pounds
today or 100 poundsinD
days.

 With design ¢ = (R, D)

* Time required to deploy
each method is in the

table.

Method Deployment time (s)
Frye et al. (2016) 0.0902 + 0.0003
Kirby (2009) N/A
Fixed N/A
DAD 0.0901 £ 0.0007
Badapted 25.2679 £+ 0.1854



Hyperbolic Temporal Lower and Upper
bounds on the total Information

 This table shows the
performance of each
method.

* The bounds are finite

sample estimates of L; (1, L)
and U; (tt, L) with L = 5000.

* The errors indicate =1 s.e.
over the sampled histories.

Method Lower bound  Upper bound
Frye et al. (2016) 3.500 £ 0.029 3.513 £+ 0.029
Kirby (2009) 1.861 +£0.008 1.864 + 0.009
Fixed 2.518 £ 0.007 2.524 + 0.007
DAD 5.021 + 0.013 5.123 + 0.015
Badapted 4.454 +£0.016 4.536 = 0.018



Designs learnt by Frye, Badapted, and DAD

E (a) Frye (b) Badapted (c) DAD
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* Observe that DAD and Badapted are similar.
* This demonstrates the accuracy of DAD



Death Process

* The design problem

* Choose observation
times ¢ > 0 atwhich to
observe the number of
infected individuals

e T=4

Method Deployment time (s) Lr(m)
Fixed N/A  2.023 £ 0.007
DAD 0.0051 &= 12% 2.113 = 0.008
Variational 19350 £ 2% 2.076 £ 0.034
SeqBED* 25911.0 1.590



Discussion

* DAD outperforms non-amortized approaches despite using a
tiny fraction of the resources at deployment time.
* Conventional methods must approximate posterior p(6|h;) at each
stage.

* The policy learned by DAD has the potential to be non-myopic.

* |t does not choose a design that is optimal for the current experiment in
isolation, but takes into account that there are more experiments to perform
later.



DAD vs Optimal myopic strategies.
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Figure 4. 1D location finding with 1 source, T' = 2. [Left] the
design function, dashed lines correspond to the first design &1,

which is independent of y1. [Right] Z2(7), the total EIG +£1 s.e.



Conclusion

* Focuses on learning a design policy and can deploying it during
the live experiment to quickly make adaptive design decisions.

* Eliminates the need to estimate intermediate posterior
distributions or optimize over designs

* An approach to allow adaptive BOED to be run in real-teim for
general problems.
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