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Introduction

• We want to design experiments so that outcomes are very 
informative.  
• Experiments may have multiple iterations and decisions so an 

update to the experimental design may be necessary.  
• Example Marco Polo Game where player 2 doesn’t move.
• Player 1 closes there eyes and yells Marco.  
• Player 2 responds Polo.  
• Player 1 moves in direction of Player 2.  
• Player calls out Marco again from the new location and continues until 

player 2 is found.  



Bayesian Optimal Experimental Design 
(BOED)
• Goal of the BOED framework is to aid in the design of experiments 

so that the outcomes will be as informative as possible.  
• BOED framework modeled in a Bayesian manner
• y is the experiment outcome.  
• 𝜉 is our controllable design
• 𝜃 is the set of parameters we wish to learn about.  
• p(θ) is the prior. What we know about the parameters before data.   
• p(y|θ, 𝜉)  is the likelihood.  

• Key idea is to optimize 𝜉 to maximize the expected amount of 
information that will be gained about variables of interest 𝜃 upon
observing outcome y.



Entropy and the conventional iterative 
approach.  
• Entropy of a discrete random variable X with dist p over K states.  

• Optimize 𝜉 to maximize the expected information gained about 𝜃
 
•   BOED is truly realized when it’s used to design a sequence of 

experiments 𝜉1, … , 𝜉𝑇
• To construct adapative strategies which utilize information from past data to 

tailor each successive design 𝜉t during  the progress of the experiment.
•   The conventional iterative approach for selecting each 𝜉t is to fit the 

posterior .



BOED Framework

• After running a hypothetical experiment with design 𝜉 and 
observing y, our updated beliefs are the posterior p(θ|𝜉, y).

• Expected Information Gain 
• Formed by taking the expectation over possible outcomes y, using the 

model itself to simulate these.  



BOED Framework Cont.

• Marginal Likelihood

• Expected Information Gain (EIG) 



BOED Framework Cont.

• The optimal design is defined as 𝜉 ∗= argmax𝜉Ξ𝐼(𝜉)the space of 
feasible designs.
• Ξ: The space of feasible designs.  
• The power of the BOED framework can thus be significantly 

increased by using an adaptive design strategy that chooses each 
𝜉t dependent upon 𝜉1:t-1, y1:t-1. 
• Enables us to use what we learned previous experiments to design the 

next one optimally.  



Iterative Approach is computational 
expensive.   
• Significant Computational time between each step of the 

experiment in order to update the posterior and compute the next 
optimal design.  
• I(𝜉) is doubly intractable and its optimization constitutes a 

significant computational bottleneck.  



Conventional Approach

• The conventional approach is to fit the posterior distribution at 
each step and then optimize the EIG objective that uses this 
posterior in place of the prior.  



Theorem 1



Theorem 1

• 𝐼𝑇(𝜋) is the expected 
reduction in entropy from 
the prior 𝑝 𝜃  to the final 
posterior 𝑝 𝜃 ℎ𝑇  without 
considering the 
intermediate posteriors at 
all.  
• Paper generalizes 

conventional BOED 
frameworks to having a fixed 
T.  



Thinking in terms of Policy

• 𝐼𝑇(𝜋) is a function of the 
policy, not the designs 
themselves.  
• Conventional adaptive 

BOED approximates 𝜋s .
• Once 𝜋 is learned, it can just 

be directly evalutated during 
the experiment itself.  

Optimal Design in terms of 𝜉:  𝜉 ∗= argmax𝜉Ξ𝐼(𝜉)
Optimal Design in terms of 𝜋:  𝜋 ∗= arg	max𝜋𝐼𝑇(𝜋)



Policy

•  List of actions a system or 
agent learns. 
• 𝑎 = 𝜋(𝑥) 
• Specifies which action to take 

in response to each possible 
input.  
• Ex. of 2 policies

• 𝜋1 = 𝑑𝑜𝑤𝑛, 𝑟𝑖𝑔ℎ𝑡, 𝑟𝑖𝑔ℎ𝑡	 → 𝑃𝑒𝑎𝑟
• 𝜋2 = 𝑟𝑖𝑔ℎ𝑡	𝑟𝑖𝑔ℎ𝑡	𝑟𝑖𝑔ℎ𝑡	𝑑𝑜𝑤𝑛	𝑑𝑜𝑤𝑛	𝑑𝑜𝑤𝑛 → 𝐴𝑝𝑝𝑙𝑒



Deep Adaptive Design (DAD)

• A method for amortizing the cost of adaptive Bayesian 
experimental design
• DAD looks to approximate 𝜋∗in the policy optimal design eq.   
• Constructs a single design network 𝜋"  learned by simulating 

hypothetical experimental trajectories with trainable params 𝜙.  
• Input:

• Designs and Observations from previous stages
• Output:  

• The design to use for the next experiment.  



Deep Adaptive Design (DAD)

• Learns a design policy which makes decisions as a function of the 
past data, and we optimize the parameters of this policy rather 
than an individual design.  
• Can be learned without any direct posterior or marginal 

likelihood estimation.  



Deep Adaptive Design Algorithm



Contrastive bounds for sequential 
experiments
• To train 𝜋"  with stochastic gradient methods 
• Optimize the lower bounds on 𝐼.(𝜋/)
• Equations we looked at before:  



Contrastive bounds for sequential 
experiments

• Given a sample 𝜃!, ℎ"~𝑝(𝜃, ℎ"|𝜋) 
• Estimation can be made by 

introducing L independent 
contrastive samples 𝜃#:%~𝑝(𝜃).

• Equation 9 and 10 computes the log 
ratio in eq 8 in 2 ways.  
• 𝑔%  cannot exceed log(L+1)
• 𝑓%  is potentially unbounded.  



Theorem 2



Contrastive Bounds

• Upper bound: Sequential Nested Monte Carlo (sNMC) 

• Theorem 4 in Appendix A shows that 𝑈#  satisfies 
complementary properties of 𝐿#

• The bounds are:  



Gradient Estimation
• Design network parameters 𝜙 can be optimized using a stochastic 

optimization scheme
• Using the reparameterization trick and the law of unconscious 

statician we can write:  

•  



Gradient Estimation

• One approach to computing the gradient is to sum over all 
possible histories ℎ#integrating out the variables 𝑦$:#  and take 
gradients with respect to 𝜙:

Unbiased gradient estimates can be computed using samples 
from the prior.  



Gradient Estimation

• This gradient estimator has a computational cost 𝑂( 𝑌 #).  
• Number of experiments T and # of outcomes |Y| need to be 

relatively small.  



Score Function Gradient Estimator

• Gradient is amenable to existing variance reduction methods.
• Unbiased estimates may again be obtained using samples.  
• A complete derivation of the gradients estimators are in Appendix 

C.    



Theorem 3 (Permutation invariance)



Deep Learning Architecture

• Permutation invariance
• Summing or combining 

multiple inputs into a single 
representation that is 
invariant to their order.  

• 𝐸"$  is a neural 
network encoder with 
parameters 𝜙$ to be 
learned.  



Deep Learning Architecture

• 𝑅 ℎ&  is a pooled representation.  
• 𝜋" '# = 𝐹"((𝑅 ℎ& ) where 𝐹"( is a learned emitter network. 
• The trainable parameters are 𝜙 = {𝜙$, 𝜙(}.  
• Combining simple networks in way that is sensitive to the 

permutation invariance of the problem
• 𝐸$% is re-used for each input pair and for each time step t.  
• Improved performance compared to networks that are forced to learn 

the relevant symmetries of the problem.   



Experiments (Location Finding)

• This experiment there are K 
hidden objects or sources in 
ℝ) , 𝑑𝜖 1,2,3  
• Aims to learn their locations, 
𝜃 = {𝜃*}*+$, .
• K sources is assumed to be 

known
• Source is located at 𝜃*
• We measure at 𝜉



DAD vs Fixed baseline



Experiments (Location Finding)

• Random baseline
• Select designs uniformly at 

random.  

• Fixed baseline
• Ignores opportunity for 

adaptation.  
• Uses static design to learn a 

fixed 𝜉8, … , 𝜉.before the 
experiment.  
• SG-BOED approach with the 

PCE bound to optimize 𝜉8:.



Experiments (Location Finding)

• Variational
• SG-BOED approach
• Traditional iterative approach to 

approximate 𝜋9
• Requires significant runtime 

computation.  

• Reports upper and lower 
bounds for each strategy



Deployment times for Hyperbolic Temporal 
Discounting methods
• Total design time for T = 20 

experiments.  
• Binary Question:
• Would you prefer R pounds 

today or 100 pounds in D 
days.   
• 𝑊𝑖𝑡ℎ	𝑑𝑒𝑠𝑖𝑔𝑛	𝜉 = (𝑅, 𝐷)

• Time required to deploy 
each method is in the 
table.  



Deployment times for Hyperbolic Temporal 
Discounting methods
• Kirby:  A human 

constructed fixed set of 
designs
• Frye: A problem specific 

adaptive strategy
• DAD: Using a fixed 

designed policy
• Badapted:  Partially 

customized sequential 
BOED method that use 
Pop. Monte Carlo



Deployment times for Hyperbolic Temporal 
Discounting methods
• Total design time for T = 20 

experiments.  
• Binary Question:
• Would you prefer R pounds 

today or 100 pounds in D 
days.   
• 𝑊𝑖𝑡ℎ	𝑑𝑒𝑠𝑖𝑔𝑛	𝜉 = (𝑅, 𝐷)

• Time required to deploy 
each method is in the 
table.  



Hyperbolic Temporal  Lower and Upper 
bounds on the total Information

• This table shows the 
performance of each 
method.  
• The bounds are finite 

sample estimates of LT (π, L) 
and UT (π, L) with L = 5000.
• The errors indicate ±1 s.e. 

over the sampled histories.



Designs learnt by Frye, Badapted, and DAD

• Observe that DAD and Badapted are similar.  
• This demonstrates the accuracy of DAD



Death Process

• The design problem
• Choose observation 

times 𝜉 > 0 at which to 
observe the number of 
infected individuals
• T = 4



Discussion

• DAD outperforms non-amortized approaches despite using a 
tiny fraction of the resources at deployment time.  
• Conventional methods must approximate posterior 𝑝(𝜃|ℎ:) at each 

stage.  
• The policy learned by DAD has the potential to be non-myopic.  

• It does not choose a design that is optimal for the current experiment in 
isolation, but takes into account that there are more experiments to perform 
later.



DAD vs Optimal myopic strategies.  



Conclusion

• Focuses on learning a design policy and can deploying it during 
the live experiment to quickly make adaptive design decisions.  
• Eliminates the need to estimate intermediate posterior 

distributions or optimize over designs 
• An approach to allow adaptive BOED to be run in real-teim for 

general problems.  
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