
Deep Adaptive Design:
Amortizing Sequential Bayesian
Experimental Design Discussion

Presented by
James Johnson

Authors

• Adam Foster
• Senior Researcher at Microsoft Research AI4Science

• Desi R. Ivanova
• StatML CDT programme at the University of Oxford

• Ilyas Malik
• AI Research Engineer|ex Amazon, IBM Research, Oxford

• Tom Rainforth
• Senior Researcher in Machine learning and leader of the RainML

Research Lab at the Dept of Statistics in the University of Oxford.

Contents

• Introduction
• Bayesian Optimal Experimental Design (BOED)
• Deep Adaptive Design (DAD)
• Experiments
• Conclusion

Introduction

• We want to design experiments so that outcomes are very
informative.
• Experiments may have multiple iterations and decisions so an

update to the experimental design may be necessary.
• Example Marco Polo Game where player 2 doesn’t move.
• Player 1 closes there eyes and yells Marco.
• Player 2 responds Polo.
• Player 1 moves in direction of Player 2.
• Player calls out Marco again from the new location and continues until

player 2 is found.

Bayesian Optimal Experimental Design
(BOED)
• Goal of the BOED framework is to aid in the design of experiments

so that the outcomes will be as informative as possible.
• BOED framework modeled in a Bayesian manner
• y is the experiment outcome.
• 𝜉 is our controllable design
• 𝜃 is the set of parameters we wish to learn about.
• p(θ) is the prior. What we know about the parameters before data.
• p(y|θ, 𝜉) is the likelihood.

• Key idea is to optimize 𝜉 to maximize the expected amount of
information that will be gained about variables of interest 𝜃 upon
observing outcome y.

Entropy and the conventional iterative
approach.
• Entropy of a discrete random variable X with dist p over K states.

• Optimize 𝜉 to maximize the expected information gained about 𝜃

• BOED is truly realized when it’s used to design a sequence of

experiments 𝜉1, … , 𝜉𝑇
• To construct adapative strategies which utilize information from past data to

tailor each successive design 𝜉t during the progress of the experiment.
• The conventional iterative approach for selecting each 𝜉t is to fit the

posterior .

BOED Framework

• After running a hypothetical experiment with design 𝜉 and
observing y, our updated beliefs are the posterior p(θ|𝜉, y).

• Expected Information Gain
• Formed by taking the expectation over possible outcomes y, using the

model itself to simulate these.

BOED Framework Cont.

• Marginal Likelihood

• Expected Information Gain (EIG)

BOED Framework Cont.

• The optimal design is defined as 𝜉 ∗= argmax𝜉Ξ𝐼(𝜉)the space of
feasible designs.
• Ξ: The space of feasible designs.
• The power of the BOED framework can thus be significantly

increased by using an adaptive design strategy that chooses each
𝜉t dependent upon 𝜉1:t-1, y1:t-1.
• Enables us to use what we learned previous experiments to design the

next one optimally.

Iterative Approach is computational
expensive.
• Significant Computational time between each step of the

experiment in order to update the posterior and compute the next
optimal design.
• I(𝜉) is doubly intractable and its optimization constitutes a

significant computational bottleneck.

Conventional Approach

• The conventional approach is to fit the posterior distribution at
each step and then optimize the EIG objective that uses this
posterior in place of the prior.

Theorem 1

Theorem 1

• 𝐼𝑇(𝜋) is the expected
reduction in entropy from
the prior 𝑝 𝜃 to the final
posterior 𝑝 𝜃 ℎ𝑇 without
considering the
intermediate posteriors at
all.
• Paper generalizes

conventional BOED
frameworks to having a fixed
T.

Thinking in terms of Policy

• 𝐼𝑇(𝜋) is a function of the
policy, not the designs
themselves.
• Conventional adaptive

BOED approximates 𝜋s .
• Once 𝜋 is learned, it can just

be directly evalutated during
the experiment itself.

Optimal Design in terms of 𝜉: 𝜉 ∗= argmax𝜉Ξ𝐼(𝜉)
Optimal Design in terms of 𝜋: 𝜋 ∗= arg	max𝜋𝐼𝑇(𝜋)

Policy

• List of actions a system or
agent learns.
• 𝑎 = 𝜋(𝑥)
• Specifies which action to take

in response to each possible
input.
• Ex. of 2 policies

• 𝜋1 = 𝑑𝑜𝑤𝑛, 𝑟𝑖𝑔ℎ𝑡, 𝑟𝑖𝑔ℎ𝑡	 → 𝑃𝑒𝑎𝑟
• 𝜋2 = 𝑟𝑖𝑔ℎ𝑡	𝑟𝑖𝑔ℎ𝑡	𝑟𝑖𝑔ℎ𝑡	𝑑𝑜𝑤𝑛	𝑑𝑜𝑤𝑛	𝑑𝑜𝑤𝑛 → 𝐴𝑝𝑝𝑙𝑒

Deep Adaptive Design (DAD)

• A method for amortizing the cost of adaptive Bayesian
experimental design
• DAD looks to approximate 𝜋∗in the policy optimal design eq.
• Constructs a single design network 𝜋" learned by simulating

hypothetical experimental trajectories with trainable params 𝜙.
• Input:

• Designs and Observations from previous stages
• Output:

• The design to use for the next experiment.

Deep Adaptive Design (DAD)

• Learns a design policy which makes decisions as a function of the
past data, and we optimize the parameters of this policy rather
than an individual design.
• Can be learned without any direct posterior or marginal

likelihood estimation.

Deep Adaptive Design Algorithm

Contrastive bounds for sequential
experiments
• To train 𝜋" with stochastic gradient methods
• Optimize the lower bounds on 𝐼.(𝜋/)
• Equations we looked at before:

Contrastive bounds for sequential
experiments

• Given a sample 𝜃!, ℎ"~𝑝(𝜃, ℎ"|𝜋)
• Estimation can be made by

introducing L independent
contrastive samples 𝜃#:%~𝑝(𝜃).

• Equation 9 and 10 computes the log
ratio in eq 8 in 2 ways.
• 𝑔% cannot exceed log(L+1)
• 𝑓% is potentially unbounded.

Theorem 2

Contrastive Bounds

• Upper bound: Sequential Nested Monte Carlo (sNMC)

• Theorem 4 in Appendix A shows that 𝑈# satisfies
complementary properties of 𝐿#

• The bounds are:

Gradient Estimation
• Design network parameters 𝜙 can be optimized using a stochastic

optimization scheme
• Using the reparameterization trick and the law of unconscious

statician we can write:

•

Gradient Estimation

• One approach to computing the gradient is to sum over all
possible histories ℎ#integrating out the variables 𝑦$:# and take
gradients with respect to 𝜙:

Unbiased gradient estimates can be computed using samples
from the prior.

Gradient Estimation

• This gradient estimator has a computational cost 𝑂(𝑌 #).
• Number of experiments T and # of outcomes |Y| need to be

relatively small.

Score Function Gradient Estimator

• Gradient is amenable to existing variance reduction methods.
• Unbiased estimates may again be obtained using samples.
• A complete derivation of the gradients estimators are in Appendix

C.

Theorem 3 (Permutation invariance)

Deep Learning Architecture

• Permutation invariance
• Summing or combining

multiple inputs into a single
representation that is
invariant to their order.

• 𝐸"$ is a neural
network encoder with
parameters 𝜙$ to be
learned.

Deep Learning Architecture

• 𝑅 ℎ& is a pooled representation.
• 𝜋" '# = 𝐹"((𝑅 ℎ&) where 𝐹"(is a learned emitter network.
• The trainable parameters are 𝜙 = {𝜙$, 𝜙(}.
• Combining simple networks in way that is sensitive to the

permutation invariance of the problem
• 𝐸$% is re-used for each input pair and for each time step t.
• Improved performance compared to networks that are forced to learn

the relevant symmetries of the problem.

Experiments (Location Finding)

• This experiment there are K
hidden objects or sources in
ℝ) , 𝑑𝜖 1,2,3
• Aims to learn their locations,
𝜃 = {𝜃*}*+$, .
• K sources is assumed to be

known
• Source is located at 𝜃*
• We measure at 𝜉

DAD vs Fixed baseline

Experiments (Location Finding)

• Random baseline
• Select designs uniformly at

random.

• Fixed baseline
• Ignores opportunity for

adaptation.
• Uses static design to learn a

fixed 𝜉8, … , 𝜉.before the
experiment.
• SG-BOED approach with the

PCE bound to optimize 𝜉8:.

Experiments (Location Finding)

• Variational
• SG-BOED approach
• Traditional iterative approach to

approximate 𝜋9
• Requires significant runtime

computation.

• Reports upper and lower
bounds for each strategy

Deployment times for Hyperbolic Temporal
Discounting methods
• Total design time for T = 20

experiments.
• Binary Question:
• Would you prefer R pounds

today or 100 pounds in D
days.
• 𝑊𝑖𝑡ℎ	𝑑𝑒𝑠𝑖𝑔𝑛	𝜉 = (𝑅, 𝐷)

• Time required to deploy
each method is in the
table.

Deployment times for Hyperbolic Temporal
Discounting methods
• Kirby: A human

constructed fixed set of
designs
• Frye: A problem specific

adaptive strategy
• DAD: Using a fixed

designed policy
• Badapted: Partially

customized sequential
BOED method that use
Pop. Monte Carlo

Deployment times for Hyperbolic Temporal
Discounting methods
• Total design time for T = 20

experiments.
• Binary Question:
• Would you prefer R pounds

today or 100 pounds in D
days.
• 𝑊𝑖𝑡ℎ	𝑑𝑒𝑠𝑖𝑔𝑛	𝜉 = (𝑅, 𝐷)

• Time required to deploy
each method is in the
table.

Hyperbolic Temporal Lower and Upper
bounds on the total Information

• This table shows the
performance of each
method.
• The bounds are finite

sample estimates of LT (π, L)
and UT (π, L) with L = 5000.
• The errors indicate ±1 s.e.

over the sampled histories.

Designs learnt by Frye, Badapted, and DAD

• Observe that DAD and Badapted are similar.
• This demonstrates the accuracy of DAD

Death Process

• The design problem
• Choose observation

times 𝜉 > 0 at which to
observe the number of
infected individuals
• T = 4

Discussion

• DAD outperforms non-amortized approaches despite using a
tiny fraction of the resources at deployment time.
• Conventional methods must approximate posterior 𝑝(𝜃|ℎ:) at each

stage.
• The policy learned by DAD has the potential to be non-myopic.

• It does not choose a design that is optimal for the current experiment in
isolation, but takes into account that there are more experiments to perform
later.

DAD vs Optimal myopic strategies.

Conclusion

• Focuses on learning a design policy and can deploying it during
the live experiment to quickly make adaptive design decisions.
• Eliminates the need to estimate intermediate posterior

distributions or optimize over designs
• An approach to allow adaptive BOED to be run in real-teim for

general problems.

References

• Deep Adaptive Design: Amortizing Sequential Bayesian
Experimental Design, Adam Foster, Desi R. Ivanova, Ilyas Malik
Tom Rainforth
• Probabilistic Machine Learning. Murphy, Kevin P.
• https://www.baeldung.com/cs/ml-policy-reinforcement-learning

