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Computation



Introduction to Bayesian Computation

• In all model-based statistical inference, the likelihood function is of 
central importance.  
• For simple models, an analytical formula for the likelihood function 

can typically be derived.  
• For complex models, an analytical formula might be computationally 

very costly to evaluate.  
• ABC methods bypass the evaluation of the likelihood function.  
• These methods can inevitably make assumptions and approximations 

whose impact still needs to be carefully assessed.  



History

• ABC related ideas date back to the 1980s
• Initially, systematic simulation schemes were used to approximate the 

likelihood.  
• Simon Tavaré was first to propose an ABC algorithm for posterior 

inference.  
• The term Approximate Bayesian Computation was established by 

Mark Beaumont in his ABC-approach for problems in population 
genetics.  



Bayes theorem

• Baye’s	Theorem
• Conditional	probability	of	a	particular	parameter	
value	𝜃	given	data	D	to	the	probability	of	D	given	𝜃.	
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Bayes theorem

•The	Evidence
•A	collection	of	
observations.		
• It	is	what	is	
being	observed	
and	measured.			
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Bayes theorem

• The	Posterior
• The	probability	of	an	event	
after	taking	in	
consideration	the	
evidence.		
• Can	be	calculated	be	
approximated	using	ABC.		
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Bayes theorem

• The	Prior
• Represents	beliefs	about	𝜃	
before	D	is	available
• Often	specified	by	
choosing	a	tractable	
distribution	such	that	
random	generation	of	
values	of	𝜃	are	straight	
forward.
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Bayes theorem

• The	Likelihood
• Refers	to	the	process	of	
determine	the	best	data	
distribution	given	a	
specific	situation	in	data.		
• Is	used	to	generally	
maximize	the	chance	of	a	
particular	situation	to	
occur.		
• It	is	computationally	
expensive	or	sometimes	
completely	infeasible	to	
evaluate.		
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The ABC Rejection Algorithm

• Given a sampled parameter point 𝜃, dataset A𝐷 is then simulated 
under the statistical model M specified by 𝜃.  
• If the generated A𝐷 is too different from the observed data D, the 

sampled parameter value is discarded.  
• A𝐷 is accepted with tolerance 𝜀 ≥ 0 if: p(A𝐷, 𝐷) ≤ 𝜀 
• The outcome of which is a sample of parameter values approximately 

distributed according to the desired posterior distribution without 
needing to evaluate the likelihood function.  
• -High dimensional data without using a summary statistics the 

likelihood will be low.    



What is a Summary Statistics?

• A Summary statistic is a basic statistic
• As an example
• Suppose we wanted to observe the heights of everyone in the university.  
• Instead of getting a list of every different height in the university we can use 

the mean of several close related heights to reduce the amount of dimensions 
we are using.  

• What are other examples of summary statistics?



Conceptual 
Overview 



Example

• The probability to 
transition to states A-B, B-A 
is 𝜃
•  The probability to remain 

in each state is 1-𝜃
• The probability to measure 

the state correctly is 𝛾.  
• The probability to measure 

the state incorrectly is 1- 𝛾



Example

• There are conditional 
dependencies between 
each state.  
• Computational issue of 

basic ABC is due to the 
large dimensionality of the 
data.  
• Can be reduced by 

Summary Statistic S
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Approximating the Posterior

• Step 1:  Assume that the observed data are the state sequence 
AAAABAABBAAAAAABAAAA generated with 𝜃=0.25 with a summary 
statistic (Number of switches between states) 𝜔! = 6
•  Step 2:  Assume nothing is known about 𝜃, a uniform prior in the 

interval [0,1]
• 𝑛 parameter points are drawn from the prior and the model is simulated for 

each of the parameter points 𝜃!	, 𝑖 = 1,… , 𝑛, .  In this example 𝑛 = 5.

• Step 3: The summary statistic is being computed for each sequence 
for each sequence of simulated data, 𝜔",$ 	𝑖 = 1,… . , 𝑛



Approximating the Posterior from the table

• Step 4:  Calculate the distance between the observed and simulated 
transition frequencies for all parameter points. 
• ρ(𝜔",!, 𝜔$)=|𝜔%,! −𝜔$|.  
• Parameter points for which the distance is smaller than or equal to 𝜀 are 

accepted as approximate samples from the posterior.  

• Step 5: The posterior distribution is approximated with the accepted 
parameter points.  
• The posterior distribution should have a non-negligible probability for 

parameter values in a region around the true value of 𝜃 in the system.  
• In this example, the posterior probability mass is evenly split between the 

values of .08 and 0.43.  



Example table of ABC rejection Algorithm



Posterior probabilities using large n

• Observe how the worked example 
doesn’t match the true posterior.  
Why do you think that is?    

• Observe 𝜀=0 and using full data 
that it matches closely to the true 
posterior.  

• Why does the summary statistic 
with 𝜀=0 have a closer posterior 
probability than when 𝜀=2?



Model Comparison Question

• The ABC-framework can be used to compute the posterior 
probabilities of different candidate models.  
• First a model is sampled from the prior distribution for the models
• Then given the model sampled, the model parameters are sampled 

from the prior distribution assigned to that model.  
• Then do a simulation as before.  
• The relative frequencies for the different models now approximate 

the posterior distribution for these models.  



Model Comparison Question

• Once the posterior probabilities of models have been estimated, 
Bayesian model comparison can be performed.  
• Compare the relative plausibility's of two models
• We can computer their posterior ratio
• Which is related to the Bays factor 𝐵',(:
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• If the model priors are equal 𝑝 𝑀1 = 𝑝 𝑀2  the Bayes factor equals the 
posterior ratio.  

• Why do you think we should be cautious of this model comparison?  
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• If the model priors are equal 𝑝 𝑀1 = 𝑝 𝑀2  the Bayes factor equals the 
posterior ratio.  

• Why do you think we should be cautious of this model comparison?  
• These measures can be highly sensitive to the choice of parameter prior 

distributions and summary statistics.  



Potential Risks and remedies



Approximation of the Posterior

• As an attempt to correct some of the error due to a non-zero 𝜀, the 
usage of local linear weight regression with ABC to reduce the 
variance of the posterior
• The method assigns weights to the parameters according to how well 

the simulated summaries adhere to the observed ones and performs 
linear regression between the summaries and the weighted 
parameters in the vincinity of the observed summaries.  
• The regression coeffiecients are used to correct sampled parameters 

in the direction of observed summaries.  



Approximation of the Posterior

• Statistical inference using ABC with a non-zero tolerance 𝜀 is not 
inherently flawed:  
• The optimal 𝜀 can sometimes be not zero.   
• The bias caused by a non-zero tolerance can be characterized and 

compensated by introducing a specific form of noise to the summary 
statistics.  
• Asymptotic consistency for “noisy ABC” has been established and 

together with formulas for the asymptotic variance of the parameter 
estimates for a fixed tolerance.  



Choosing Summary Statistics

• Poorly chosen summary statistics will often lead to inflated credible 
intervals due to the implied loss of information.  
• One approach to capture most of the information present in data 

would be to use many statistics
• Accuracy and stability of ABC appears to decrease rapidly with increasing 

numbers of summary statistics.  

• Another approach is to focus on relevant statistics only
• Relevancy depending on the whole inference problem, on the model used 

and on the data at hand.  



Choosing Summary Statistics

• There’s an algorithm that iteratively assess whether an additional 
statistic introduces a meaningful modification of the posterior.  
• The challenge is that a large ABC approximation error may heavily influence 

the conclusions about the usefulness of a statistic at any stage of the 
procedure.  

• Another method uses 2 main steps
• First, a reference approximation of the posterior is constructed by minimizing 

the entropy.  
• Secondly, sets of candidate summaries are then evaluated by comparing the 

ABC approximated posteriors with the reference posterior.  



Choosing Summary Statistics

• Recently a method for 
• Another method uses 2 main steps
• First, a reference approximation of the posterior is constructed by minimizing 

the entropy.  
• Secondly, sets of candidate summaries are then evaluated by comparing the 

ABC approximated posteriors with the reference posterior.  

• A subset of statistics is selected from a large set of candidate statistics
• Methods for identifying summary statistics that could also 

simultaneously assess the influence on the approximation of the 
posterior would be valuable.  



Choosing Summary Statistics

• Why would these methods be valuable?  



Choosing Summary Statistics

• Why would these methods be valuable? 
• The paper suggests that the choice of summary statistics and the choice of 

tolerance constitute two sources of error in the resulting posterior 
distribution.   
• These errors may lead to incorrect model predictions.  



Bayes Factor with ABC and Summary Statistics

• A combination of Insufficient summary statistics and ABC for model 
selection can be problematic.  
• Let S(D) be denoted by𝐵+,,- then the relation between 𝐵+,, and 𝐵+,,-  

takes the form:  



Bayes Factor with ABC and Summary Statistics

• Thus a summary statistic S(D) is sufficient for comparing two models 
𝑀+and 𝑀, if and only if:  

• Which results in that 𝐵+,, = 𝐵+,,-
• From the equation above if the condition is not satisfied there 

might be a huge difference between 𝐵+,, and 𝐵+,,- .
• 𝑀+ and 𝑀, alone or for both models does not guarantee sufficiency 

for ranking the models.  



Bayes Factor with ABC and Summary Statistics

• Any Sufficient summary statistic for a model M in which both 𝑀"and 𝑀# are nested is valid for 
ranking the nested models.  

• The computation of Bayes factors on S(D) may be misleading for model selection purposes, unless 
the ratio between the Bayes factors on D and S(D) would be available or approximated reasonably 
well.  

• This issue is only relevant for model selection when the dimension of the data has been reduced



Indispensable Quality Controls

• A number of heuristic approaches to the quality control of ABC
• Such as the quantification of the fraction of parameter variance
• A common class of methods aims at assessing whether or not the inference 

yields valid results, regardless of the actually observed data.  

• Another class of methods assesses whether the inference was 
successful in light of the given observed data.  
• For example by comparing the posterior predictive distribution of summary 

statistics to the summary statistics observed.  



Indispensable Quality Controls

• Cross-validation techniques and predictive checks represent 
promising future strategies to evaluate the stability and out-of-sample 
predictive validity of ABC inferences.  
• Out-of-sample predictive checks can reveal potential systematic 

biases within a model and provide clues on to how to improve its 
structure or parametrization.  



Indispensable Quality Controls

• Another quality control based method for model selection employs 
ABC to approximate the effective number of model parameters and 
the deviance of the posterior predictive distributions of summaries 
and parameters.  
• The Deviance information criterion is then used as measure of model 

fit.  
• Models preferred based on this criterion can conflict with those 

supported by Bayes factors.  
• For this reason it is useful to combine different methods for model 

selection to obtain correct conclusions.  



General Risks in Statistical Inference

• There are risks that are not specific to ABC that the paper discusses.  
• These risks include:
• Prior distribution and parameter ranges
• Small number of models
• Large Datasets
• Curse of dimensionality



Prior Distribution and parameter ranges

• The specification of the range and the prior distribution of 
parameters strongly benefits from previous knowledge.  
• It is typically necessary to constrain the parameter ranges.  
• Educated guesses are used at times for the parameter ranges.  
• Bayes factors highly sensitive to the prior distribution of parameters
• Conclusions on model choice based on Bayes factor can be misleading 

unless the sensitivity of conclusions to the choice of priors is carefully 
considered.  



Small number of models

• Model-based methods have been criticized for not exhaustively 
covering the hypothesis space.  
• There’s a high computational cost to evaluate a single model in some 

instances.  
• There isn’t strategy that works for all model development.  



Large datasets

• Large datasets may constitute a computational bottleneck for model-
based methods.  
• It was pointed out that in some ABC-based analyses, part of the data 

needed to be omitted.  



Large datasets

• A few proposed ideas to reduce this problem:
• Using Metropolis-Hastings algorithm with ABC

• Pro:  Increased acceptance rate than plain ABC.  
• Con:  Inherits the general burdens of Markov Chain Monte Carlo (MCMC) such as 

difficulty to assess convergence correlation among the samples from the posterior and 
relatively poor parallelizability

• Sequential Monte Carlo(SMC) and population Monte Carlo
• Takes an iterative approach to the posterior from the prior through a sequence of target 

distributions.  
• The advantage is the samples from the resulting posterior are independent.  
• Tolerance levels are not specified prior to analysis and must be adjusted adaptively.  
• It is straightforward to parallelize a number of steps using rejection sampling and SMC



Curse of dimensionality

• High dimensional datasets and high-dimensional parameter spaces 
can require an extremely large number of parameter points to get a 
reasonable level of accuracy for the posterior inferences.  
• Computational cost is severely increased 
• Computational analysis can become intractable.  
• The probability of accepting the simulated values under a given 

tolerance with ABC rejection algorithm decreases EXPONENTIALLY 
with increasing dimensionality.  



Software for Application of ABC



Summary and Discussion

• For numerous applications calculating the likelihood and the prior is 
computationally expensive.  
• ABC is a useful tool to approximate the posterior distribution.  
• ABC toolkit is best suited for inference about parameters or predictive 

inferences about observables in the presence of a 1 or few candiate 
models
• Large sets of models or high dimensional target parameter spaces are 

major issues  with ABC.  


