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Energy-Based Models (High-Level)

• Non-normalized probabilistic models that specify a probability density 
or mass function up to an unknown normalization constant
• No restriction on the tractability of normalizing constant

• Allows for more flexibility and ability to model a broader family of probability 
distributions

• Unknown normalization constant makes training difficult
• How do we train such models?

• Three major ways
1. Maximum Likelihood Training with MCMC sampling
2. Score Matching
3. Noise Contrastive Estimation



Energy-Based Models (EBMs)

Assume unconditional EBMs over a single dependent variable 𝒙. The density of 
an EBM is given by

where 𝐸!(𝒙) (the energy) is a nonlinear regression function with parameters 𝜃 
and 𝑍! denotes the normalizing constant (partition function)

which is constant w.r.t. 𝒙 but is a function of 𝜃 which results in intractability for 
evaluation and differentiation of log 𝑝!(𝒙) w.r.t. its parameters.



Maximum Likelihood Training with MCMC

• Defacto standard for learning probabilistic models from i.i.d. data is MLE so 
we start here.
• Let 𝑝!(𝒙) be a probabilistic model parameterized by 𝜃 and 𝑝"#$#(𝒙) be the 

underlying data distribution of a dataset.
• We fit 𝑝!(𝒙) to 𝑝"#$#(𝒙) by maximizing the expected log-likelihood over the 

data distribution

• Maximizing the likelihood is equivalent to minimizing the KL divergence 
between 𝑝"#$#(𝒙) and 𝑝!(𝒙)



Maximum Likelihood Training with MCMC

• We cannot compute the likelihood of an EBM due to the intractability in the 
normalizing constant 𝑍!.
• We can estimate the gradient of the log-likelihood with MCMC allowing for 

likelihood maximization with gradient ascent.
• The gradient of the log-probability of an EBM can be decomposed as two 

sums

• The first term is straight forward with modern auto-differentiation. We must 
figure out how to approximate the second term which is intractable.
• We can rewrite this gradient as an expectation



Maximum Likelihood Training with MCMC

Gradient Chain Rule

Gradient Chain Rule

EBM Definition
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Maximum Likelihood Training with MCMC

• Thus, we can obtain an unbiased one-sample Monte Carlo estimate of the 
log-likelihood gradient by

where +𝒙~𝑝! 𝒙  is a random sample from the distribution over 𝒙 given by the 
EBM.
• As long as we can sample the model, we can estimate the log-likelihood 

gradient allowing for easy optimization



Maximum Likelihood Training with MCMC

• Drawing samples is not trivial, so we focus on efficient MCMC sampling of 
EBMs
• Langevin MCMC and Hamiltonian Monte Carlo both use the fact that the gradient of the 

log-probability w.r.t. 𝒙 (the score) is equal to the negative gradient of the energy

• When using Langevin MCMC, to sample from 𝑝! 𝒙 , we first draw initial 
sample 𝒙% from some simple prior and simulate an (overdamped) Langevin 
diffusion process for 𝐾 steps with step size 𝜖 > 0

• When 𝜖 ⟶ 0 and 𝐾 ⟶ ∞, 𝒙& is guaranteed to distribute as 𝑝! 𝒙



Score Matching

• We can additionally learn an EBM by approximately matching the first 
derivatives of its log-PDF to the first derivatives to the log-PDF of the data 
distribution.
• If the derivatives match, then the EBM captures the data distribution exactly.
• We call the first order gradient of a log-PDF the score of that distribution. 

• It is useful to use equivalence of scores because the score of an EBM does 
not involve the typically intractable normalizing constant

Score



• Let 𝑝!"#"(𝒙) be the underlying data distribution, but we do not know its PDF.

• The score matching objective minimizes the discrepancy between two distribution called the Fisher 
divergence

• The expectation in this objective allows for unbiased Monte Carlo estimation using the empirical mean 
of samples 𝒙~𝑝!"#" 𝒙 .

• The second term is generally intractable since it requires knowing the true gradient of the log-data 
distribution.

• Rewrite the Fisher divergence using integration by parts

where 𝑑 is dimensionality of 𝒙
• In general, computation of second derivatives is quadratic with 𝑑, thus it does not scale well with high-

dimensional data. Thus, this can only be applied to relatively simple energy function.

Score Matching



Denoising Score Matching (DSM)
• Previous score matching objective requires several regularity conditions 

(continuously differentiable, finite everywhere), but these may not hold in practice 
(e.g., images).

• We can alleviate this issue by adding noise to each datapoint: !𝒙 = 𝒙 + 𝝐
• As long as 𝑝(𝝐) is smooth, the resulting noise data distribution 𝑞 &𝒙 = ∫𝑞 &𝒙|𝒙 𝑝!"#" 𝒙 𝑑𝒙 is also 

smooth and thus 𝐷$(𝑞 &𝒙 ||𝑝%(&𝒙)) is a proper objective

• We still need second order derivatives if using the Fisher divergence, but we can 
circumvent this by showing

• Here we have avoided the unknown 𝑝!"#" 𝒙  and expensive second order 
derivatives.



Denoising Score Matching (DSM)

• If 𝑝"#$# 𝒙  is already well-behaved (i.e., satisfies regularity constraints), 
then	𝐷.(𝑞 +𝒙 ||𝑝!(+𝒙)) ≠ 𝐷.(𝑝"#$#(𝒙)||𝑝!(𝒙)) and DSM is not a consistent 
objective.
• This inconsistency is non-negligible when 𝑞 #𝒙  significantly differs from 𝑝!"#"(𝒙)

• We can attenuate this inconsistency if we choose 𝑞 ≈ 𝑝"#$# 𝒙  (i.e., use a 
small noise perturbation)
• This comes at the cost of significantly increasing the variance of the objective values



Denoising Score Matching (DSM): Example
• Suppose 𝑞 #𝒙|𝒙 = 𝒩(#𝒙; 𝒙, 𝜎$𝐼) and 𝜎 ≈ 0. The corresponding DSM objective is

• When 𝜎 ⟶ 0, we can leverage Taylor series expansion to rewrite the Monte Carlo estimator 
as 

• When estimating with samples, the variance of summation terms will grow unbounded as 
𝜎 ⟶ 0

• We construct a variable that is, for small 𝜎, positively correlated with the DSM objective

• If we subtract this from the DSM objective, we obtain an estimator with reduced variance for 
DSM training



Sliced Score Matching (SSM)
• Recall that DSM does not give a consistent estimator of the data distribution

• One cannot directly obtain an EBM that exactly matches the data distribution even with unlimited 
data

• Instead of minimizing the Fisher divergence between two vector-valued scores, randomly 
sample a projection vector 𝒗, take the inner product between 𝒗 and the two scores, and then 
compare the resulting two scalars
• Sliced Score Matching (SSM) minimizes the sliced Fisher divergence

where 𝑝 𝒗  denotes a projection distribution such that 𝔼% 𝒗 [𝒗𝒗'] is positive definite.

• Sliced Fisher divergence has an implicit form that does not involve the true log-likelihood 
given by



Sliced Score Matching (SSM)
• We still have second order derivative terms, but this can be computed efficiently with linear 

cost in dimensionality 𝑑 because

• Many choices of 𝑝 𝒗  yield a partly closed form solution to the SSM objective leading to 
lower variance. For example, when 𝑝 𝒗  is a standard normal

• Thus, we have



Score-Based Generative Models
• Goal: Use an EBM to create new 

samples that are similar to training 
data.

• Solution: Train an EBM with Score 
Matching, and then sample from it 
with MCMC approaches
• We only need a model for score when 

training Score Matching and sampling 
with score-based MCMC and do not 
have to model the energy explicitly.

• Score models share weights and are 
implemented with a single neural 
network conditioned on noise scale 
(Noise-Conditional Score Network)



Noise Contrastive Estimation (NCE)

• Learn an EBM by contrasting it with another distribution with known density
• Let 𝑝"#$#(𝒙) be the data distribution and 𝑝/(𝒙) be a chosen distribution with 

know density, called the noise distribution.
• Usually pick 𝑝((𝒙) to be simple with known PDF, such as standard normal

• Let 𝑦 be a binary variable with Bernoulli Distribution used to define a mixture 
distribution of noise and data:
• 𝑝(,!"#" 𝒙 = 𝑝(𝑦 = 0) 𝑝((𝒙) + 𝑝(𝑦 = 1) 𝑝!"#"(𝒙) 

• Given a sample 𝒙 from this mixture, the posterior probability of 𝑦 = 0 is

where 𝑣 = 𝑝(𝑦 = 1)/𝑝(𝑦 = 0)



Noise Contrastive Estimation (NCE)
• Suppose we define our EBM as previously.
• We will now treat 𝑍* as a learnable (scalar) parameter
• Given this EBM, we define a mixture of noise and the model distribution

• 𝑝&,% 𝒙 = 𝑝 𝑦 = 0 𝑝& 𝒙 + 𝑝 𝑦 = 1 𝑝%(𝒙)

• Similarly, the posterior of 𝑦 = 0 from this mixture model is

• We indirectly fit 𝑝*(𝒙) to 𝑝!"#"(𝒙) by fitting  𝑝(,* 𝑦|𝒙  to 𝑝(,!"#" 𝑦|𝒙  through conditional 
maximum likelihood objective via SGD

• When the model is sufficiently powerful, 𝑝(,*∗ 𝑦|𝒙  will match 𝑝(,!"#" 𝑦|𝒙  at the optimum



Noise Contrastive Estimation (NCE)

• NCE provides the normalizing constant as a by-product of its training 
procedure
• When the EBM is expressive (e.g., DNN) we can assume it is able to 

approximate a normalized probability distribution and absorb 𝑍! into the 
parameters of 𝐸!(𝒙) 
• The resulting EBM trained via NCE will be self-normalized (normalizing 

constant is close to 1)
• We must choose 𝑝/(𝒙) correctly for success
• Works best when 𝑝/(𝒙) is close to data distribution 



Adversarial Training
• We can additionally sidestep expensive MCMC sampling  by learning an auxiliary model 

through adversarial training to allow for fast sampling
• We can rewrite the maximum likelihood objective by introducing a variational distribution 
𝑞+(𝒙)

• For training, we can first minimize this upper bound w.r.t. 𝑞+(𝒙) so that it is closer to the 
likelihood objective, and then maximize w.r.t. 𝐸*(𝒙) as a surrogate for maximizing likelihood

• This optimization is similar to GANs and can be achieved by adversarial training

Jensen’s Inequality


