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Why use MINE

- Versatile: Able to calculate mutual
information for any distribution that we can
sample from (joint and marginal)

- Scalable: Boasts a (almost) linear scalability
with dimensionality and sample size

- Ease of use: Model is a typical neural network
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Equations: Mutual Information

Mutual information:
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Mutual Information quantifies the dependence of two
random variables
If the random variables are independent, | is zero



Equations: Mutual Information

- Reduction in uncertainty given Z
- Rewritten as KL Divergence

I1(X;Z):= H(X) - HX|Z)

I(X;Z) = Dk (p(z, z)||p(z) * p(2))



Equations: Dual Representations

Donsker-Varadhan Representation:

Dicr(pllg) = sup E,[T] - log(E, [e])

- Supremum is taken over all functions T such that the two
expectations are finite

- We are not going to worry about how we get to this form,
only about how to use it



Equations: Dual Representations

Using a class of functions F with DK:

origina. Dz (pllq) = sup Ep[T] — log(E,[eT])
T:CQ2Q—>R

Modified: Dicr,(pl|q) > supE,[T] — log(Eqle”])
TEF
- T satisfies the integrability constraints of the theorem



Equations: Dual Representations

F-divergence representation:

Dkr(pllg) = T:S;;‘EREP [T] — (Eqle” 1))

- Both dual representations are tight under optimal function
-

- However, the DK representation is a stronger bound
(greater right hand side)



Equations: Dual Representations

Note, Gibbs density:

ple) = %:E)eT*,Where 7 = B, [e*]

- When the bound is tight with optimal function T*, the
marginal can be expressed as above



Equations: Key points

- We have two representations:
- DK
- F-divergence

- Both have tight bounds when optimal
function T* can be found

- Next, we will see how using a neural network
to approximate T has desirable properties



Properties: Statistics Network

|dea (Statistics Network): choose F to be the family of
functions T, : X x Z — R parameterized by a deep
neural network with parameters 8 € 0.

We then get the following bound:

Where the RHS is called the neural information
measure (more on this on the next slide)



Properties: Neural Information

The neural information measure is defined as:

Ie(X;Z) = SugEPm,z To] — log(Ep, p, [BTO])
€

Recall the DK representation (and def of mutual info):

Dicr(plla) = sup E,[T] - log(E,[e"])



Properties: Empirical Neural Information

We then sample to estimate the neural information:

I (X 2 = uplys [To] — log(Fyne [e™])
=

Neural information definition below for comparison:

lo(X;Z) = zungm,z T — log(Ep, p, [eTG])
€



Properties: Gradient

The following follows from a simple application of
stochastic gradient estimation:

]EB [V@Tg €T9]
EB [€T9]
This is unfortunately a biased gradient

Authors claim: bias can be made arbitrarily low with
an exponential moving average + small learning rates

Gp = Eg[VeTH] —



Properties: Algorithm

Algorithm 1 MINE

0 < initialize network parameters

repeat
Draw b minibatch samples from the joint distribution:
(m(1)7 z(l)), i (m(b), z(b)) ~Pxg
Draw n samples from the Z marginal distribution:
z . 20 L Py
Evaluate the lower-bound: -

V(O) « 138 To(x®, 2) —log(2 b, eTo =2

Evaluate bias corrected gradients (e.g., moving aver-
age):  _
G(0) + VyV(0)
Update the statistics network parameters:
60+ G(0)

until convergence




Properties: Checkpoint

- We defined a lower bound, the neural

information measure, in terms of a new class
of functions

- We showed that this class can be

approximated by a parameterized neural
network

- We showed a way to optimize the neural
network



Properties: Consistency

An estimator is strongly consistent if for all € > O,
there exists a positive integer N and a choice of
statistics network such that:

Vi = N, ICX: Z) — (X2 €& me



Properties: Lemma 1

Lemma 1: Let € > O. There exists a neural network
parameterized function with parameters 6 in some
compact domain ® C RK, s.t..

I(X,Z) - Io(X,Z)| < € ace.

Lemma 1 is covered by universal approximation
theorems for neural networks



Properties: Lemma ¢

Lemma 2: Let € > 0. Given a family of neural network
functions with parameters 6 in some bounded domain
O C RX,thereexistsann € Ns.t.:

vn > N,|[(X;Z)n — Io(X;Z)| <, ae.

Lemma 2 is covered by the classical consistency
theorems for extremum estimators



Properties: Consequences of Lemmas

Lemma 1+ Lemma 2 = MINE is strongly consistent
(proof by triangle inequality)

Lemma 1 |I(X’Z)—I@(X,Z)| SG, .5

Lemma 2 \/TI,ZN,|IA(X,Z)n—I@(X,Z)| SE, a.c.

Consistency anNa |I(X,Z)—f(X,Z)n1 SE, a.c.



Properties: PAC

PAC, refinement of lemma 2. Following assumptions:
the functions T are M-bounded and L-Lipschitz with
respect to the parameters. Further, the domain ® C R
is bounded, so that ||6|| < K for some constant K.

A

B 2., ~ Is(X: B £ &) = 1—3

The above holds only when n is greater than the SC



Properties: Analyzing the sample complexity

g 2M?(dlog(16 K L/d/€) + 2dM + log(2/9))

n
€2

M - The size of the function family

d - the dimensionality of Big-Theta

K - The boundedness of little-theta

L - the Lipschitz constant with respect to little-theta

This is how they get (almost) linear with respect to
dimensionality and sample complexity



Results: Overview

Empirical results, test the theory and

accuracy
GAN (we have seen this with InfoGAN) to
help combat against mode dropping
ALI-Improve inference and reconstruction
Allows for tractable application of
information bottleneck methods



Results: Empirical
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Figure 1. Mutual information between two multivariate Gaussians
with component-wise correlation p € (—1,1).



Results: Empirical

sin(x)
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Figure 2. MINE is invariant to choice of deterministic nonlinear
transformation. The heatmap depicts mutual information estimated
by MINE between 2-dimensional random variables X ~ U(—1,1)
and Y = f(X) + o ® ¢, where f(z) € {z,z°, sin(x)} and
e ~N(0,I).
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(a) GAN (b) GAN+MINE

Figure 3. The generator of the GAN model without mutual in-
formation maximization after 5000 iterations suffers from mode
collapse (has poor coverage of the target dataset) compared to
GAN+MINE on the spiral experiment.



(a) Original data (b) GAN (¢) GAN+MINE

Figure 4. Kernel density estimate (KDE) plots for GAN+MINE
samples and GAN samples on 25 Gaussians dataset.



Stacked MNIST
Modes

(Max 1000) L
DCGAN 99.0 3.40
ALI 16.0 5.40
Unrolled GAN 48.7 4.32
VEEGAN 150.0 2.95
PacGAN 1000.0 £ 0.0 0.06 &+ 1.0e™2

GAN+MINE (Ours) 1000.0 £0.0 0.05 + 6.9¢°

Table 1. Number of captured modes and Kullblack-Leibler diver-
gence between the training and samples distributions for DC-
GAN (Radford et al., 2015), ALI (Dumoulin et al., 2016), Un-
rolled GAN (Metz et al., 2017), VeeGAN (Srivastava et al., 2017),
PacGAN (Lin et al., 2017).



Results: AL

- Basically a GAN that also does inference
- The paper basically just builds on GAN, but
now we focus on the reconstruction loss:

R < Dkr(q(®,; 2) || p(x, 2)) — I4(x, 2) + Hy(2)

- Tying this back to the whole model, we want
to maximize mutual information



Recons.

Recons.

Model Biios Acc.(%) MS-SSIM
MNIST

ALI 14.24 45.95 0.97

ALICE(l») 3.20 99.03 0.97

ALICE(Adv.) 5.20 98.17 0.98

MINE 9.73 96.10 0.99
CelebA

ALI 5375 57.49 0.81

ALICE(l2) 8.01 32.22 0.93

ALICE(Adv.) 92.56 48.95 0.51

MINE 36.11 76.08 0.99

Table 2. Comparison of MINE with other bi-directional adversar-
1al models in terms of euclidean reconstruction error, reconstruc-
tion accuracy, and MS-SSIM on the MNIST and CelebA datasets.
MINE does a good job compared to ALI in terms of reconstruc-
tions. Though the explicit reconstruction based baselines (ALICE)
can sometimes do better than MINE in terms of reconstructions
related tasks, they consistently lag behind in MS-SSIM scores and

reconstruction accuracy on CelebA.



(a) ALI (b) ALICE (l2) (c) ALICE (A) (d) ALI+MINE
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Figure 6. Reconstructions and model samples from adversarially learned inference (ALI) and variations intended to increase
improve reconstructions. Shown left to right are the baseline (ALI), ALICE with the 12 loss to minimize the reconstruction error,
ALICE with an adversarial loss, and ALI+MINE. Top to bottom are the reconstructions and samples from the priors. ALICE with
the adversarial loss has the best reconstruction, though at the expense of poor sample quality, where as ALI+MINE captures all
the modes of the data in sample space.



Results: Information Bottleneck

- MINE offers versatility in the distributions
that can be used for models based on
information bottleneck

- Thisis due to the intractability of the mutual
information in the continuous setting, which
MINE does well

Liq(Z1X)| = H(Y|Z) + BI(X; Z)



Model Misclass. rate(%)
Baseline 1.38%
Dropout 1.34%
Confidence penalty 1.36%
Label Smoothing 1.40%
DVB 1.13%
DVB + Additive noise 1.06%
MINE(Gaussian) (ours) 1.11%
MINE(Propagated) (ours) 1.10%
MINE(Additive) (ours) 1.01%

Table 3. Permutation Invariant MNIST misclassification rate using
Alemi et al. (2016) experimental setup for regularization by con-
fidence penalty (Pereyra et al., 2017), label smoothing (Pereyra
et al., 2017), Deep Variational Bottleneck(DVB) (Alemi et al.,
2016) and MINE. The misclassification rate is averaged over ten
runs. In order to control for the regularizing impact of the additive
Gaussian noise in the additive conditional, we also report the re-
sults for DVB with additional additive Gaussian noise at the input.
All non-MINE results are taken from Alemi et al. (2016).



