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- Versatile: Able to calculate mutual 

information for any distribution that we can 

sample from (joint and marginal)

- Scalable: Boasts a (almost) linear scalability 

with dimensionality and sample size

- Ease of use: Model is a typical neural network

Why use MINE
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Equations: Mutual Information

- Mutual Information quantifies the dependence of two 
random variables

- If the random variables are independent, I is zero

Mutual information:



Equations: Mutual Information

- Reduction in uncertainty given Z
- Rewritten as KL Divergence



Equations: Dual Representations

Donsker-Varadhan Representation:

- Supremum is taken over all functions T such that the two 
expectations are finite

- We are not going to worry about how we get to this form, 
only about how to use it



Equations: Dual Representations

Using a class of functions F with DK:

Original:

Modified:

- T satisfies the integrability constraints of the theorem



Equations: Dual Representations

F-divergence representation:

- Both dual representations are tight under optimal function 
T

- However, the DK representation is a stronger bound 
(greater right hand side)



Equations: Dual Representations

Note, Gibbs density:

- When the bound is tight with optimal function T*, the 
marginal can be expressed as above



Equations: Key points

- We have two representations:

- DK

- F-divergence

- Both have tight bounds when optimal 

function T* can be found

- Next, we will see how using a neural network 

to approximate T has desirable properties



Properties: Statistics Network

Idea (Statistics Network): choose F to be the family of 
functions Tθ : X × Z → R parameterized by a deep 
neural network with parameters θ ∈ Θ.

We then get the following bound:

Where the RHS is called the neural information 
measure (more on this on the next slide)



Properties: Neural Information

The neural information measure is defined as:

Recall the DK representation (and def of mutual info):



Properties: Empirical Neural Information

We then sample to estimate the neural information:

Neural information definition below for comparison:



Properties: Gradient

The following follows from a simple application of 
stochastic gradient estimation:

This is unfortunately a biased gradient
Authors claim: bias can be made arbitrarily low with 
an exponential moving average + small learning rates



Properties: Algorithm



Properties: Checkpoint

- We defined a lower bound, the neural 

information measure, in terms of a new class 

of functions

- We showed that this class can be 

approximated by a parameterized neural 

network

- We showed a way to optimize the neural 

network



Properties: Consistency

An estimator is strongly consistent if for all ϵ > 0, 
there exists a positive integer N and a choice of 
statistics network such that:



Properties: Lemma 1

Lemma 1: Let ϵ > 0. There exists a neural network 
parameterized function with parameters θ in some 
compact domain Θ ⊂ Rk , s.t.:

Lemma 1 is covered by universal approximation 
theorems for neural networks



Properties: Lemma 2

Lemma 2: Let ϵ > 0. Given a family of neural network 
functions with parameters θ in some bounded domain 
Θ ⊂ Rk , there exists an n ∈ N s.t.:

Lemma 2 is covered by the classical consistency 
theorems for extremum estimators



Properties: Consequences of Lemmas

Lemma 1 + Lemma 2 = MINE is strongly consistent
(proof by triangle inequality)

Lemma 1

Lemma 2

Consistency



Properties: PAC

PAC, refinement of lemma 2. Following assumptions: 
the functions Tθ are M-bounded and L-Lipschitz with 
respect to the parameters. Further, the domain Θ ⊂ R 
is bounded, so that ||θ|| ≤ K for some constant K.

The above holds only when n is greater than the SC



Properties: Analyzing the sample complexity

M - The size of the function family
d - the dimensionality of Big-Theta
K - The boundedness of little-theta
L - the Lipschitz constant with respect to little-theta

This is how they get (almost) linear with respect to 
dimensionality and sample complexity

 



Results: Overview

- Empirical results, test the theory and 

accuracy

- GAN (we have seen this with InfoGAN) to 

help combat against mode dropping

- ALI-Improve inference and reconstruction

- Allows for tractable application of 

information bottleneck methods



Results: Empirical



Results: Empirical









Results: ALI

- Basically a GAN that also does inference

- The paper basically just builds on GAN, but 

now we focus on the reconstruction loss:

- Tying this back to the whole model, we want 

to maximize mutual information





Figure 6. Reconstructions and model samples from adversarially learned inference (ALI) and variations intended to increase 
improve reconstructions. Shown left to right are the baseline (ALI), ALICE with the l2 loss to minimize the reconstruction error, 
ALICE with an adversarial loss, and ALI+MINE. Top to bottom are the reconstructions and samples from the priors. ALICE with 
the adversarial loss has the best reconstruction, though at the expense of poor sample quality, where as ALI+MINE captures all 
the modes of the data in sample space. 



Results: Information Bottleneck

- MINE offers versatility in the distributions 

that can be used for models based on 

information bottleneck

- This is due to the intractability of the mutual 

information in the continuous setting, which 

MINE does well




