Weight Uncertainty in Neural
Networks

Slides by Cameron Loewen (with a review slide from 696h)

Introduction

Introduction: Typical Neural Network

- Deterministic weights
- Overly Confident
- Weights determined

using MLE

Introduction: Bayesian Network

/Q\ - Sampled weights
P elna N Sed\
@(@ \Q> - Can model uncertainty

A = \L//‘\-L\ - Weights determined by
N
learned distribution

(more parameters)

Use cases for Bayesian Neural Networks

- A bayesian neural network can be used:
- Wherever a normal neural network
would be used
- To better quantify uncertainty in
classification or regression estimates
- To have a better model for
exploration/reward trade off in bandits

Using Probability Models
with a Neural Network

Classifying with a Neural Network

- Assign probability to an output (given x)
- P(y|x, w), where x is our feature vector

- Theoretical way with Posterior Distribution

- P(y

~

X) — *:1)(W|'D)[P(S")A(.W)]

Determining Weights
This is an optimization problem solved with backpropagation

MLE MAP

w'E = arg maxlog P(D|w) w'A = arg HLELx log P(w|D)

= arg maleog P(yi|xi, w) — Slg T log P(D|w) + log P(w)

Being Bayesian By
Backpropagation

Recall: Variational Inference

p(z|Y),

Minimize KL between ¢(x) and posterior p(x | V).

Variational Lower Bound (Step 1)

g~ =arg n}gin KL[q(w|0)||P(w|D)]

. q(w|0)
= arg min / q(w|0) log dw
0 P(w)P(D|w)
= arg mm KL [g(w|0) || P(W)] — Ey(w|o) [log P(D|w)]

Reparameterization (Intro)

- Say we want to represent X ~ N(u, 02)
- Introduce noise € ~ N(0, 1)

- Use deterministic function f(g):
fle)=p+o0*e

Proposition (Step ¢)

Definitions

Let q(€) be the probability density of €

Let w = t(0, €), where tis a deterministic function

Given that q(g)de = g(w|6)d0

Proposition (Step ¢)

For a function f:

0 df(w,0) 8W+8f(w,9)

29 a(w|o) [f(W,0)] = Eg o w00 50

This shows that optimizing some expectation of a function can
be done as an expectation.

Thus, we can use Monte Carlo Methods

Proposition (Step ¢)

0
20 Eqwlo)Lf (W, 8)] 89/fw 0)q(w|0)dw

=%/fw,0qe)de

- of(w,0) 8w+8f(w,9)
1| ow 90 a0

[

Combining Steps 1 and 2

q(w|0)
w)P(D|w)

Of(w,0) Ow i of(w,0)

dw

(1) 0™ = a1*g1n9in/q(w|0) log B

2 2

2 Eqwio)[f (W, 0)] = Eg(q) [

00 ow 00 00

If we change out the integral for expectation, and set f(w,

0) to be the inside of the expectation, (1) becomes the left
hand side of (2)

Combining Steps 1 and 2

q(w|0)
w)P(D|w)

Of(w,0) Ow i of(w,0)

dw

(1) 0™ = a1*g1n9in/q(w|0) log B

2 2

2 Eqwio)[f (W, 0)] = Eg(q) [

00 ow 00 00

If we change out the integral for expectation, and set f(w,

0) to be the inside of the expectation, (1) becomes the left
hand side of (2)

Our Cost Function
f(w.0) = logq(w|0) — log P(w)P(D|w)

Algorithm uses unbiased estimates of this cost
function to learn a distribution over the weights

F(D,0) = Zlog qg(w |9) log P(w(i))

— log P(D|w'?)

Variational Posterior:
Diagonal Gaussian

Algorithm using Diagonal Gaussian

Reparameterization step

1. Sample € ~ N (0, I).
2. Letw = pu+ log(1 + exp(p)) o €.
3. Lesd'= {ji,p)

4. Let f(w,0) =log q(w|@) — log P(w)P(D|w).

Algorithm using Diagonal Gaussian
Backpropagation Step

5. Calculate the gradient with respect to the mean

_ Of(w,0) 9f(w,0)

A,
f ow o

3)

6. Calculate the gradient with respect to the standard de-
viation parameter p

_ Of(w.0) € | Of(w,0)

A, = 4
P ow 1+exp(—p) op “)

7. Update the variational parameters:
P p—al, (5)

p— p—al,. (6)

Prior:
Scale Mixture

Prior Probability Function

- Resembles a spike and slab
- One Gaussian has high variance
- Other has low variance

P(w) = Hmv(wjm, 02) 4+ (1 —)N (w;]0,03)

Do we Optimize the Prior

- Experimentation had worse results when
optimizing the prior
- This practice is known as empirical bayes
- Thereasons for the results could be:
- There are far fewer prior parameters to
optimize (relative to posterior)
- Poor initial parameters are difficult to move
away from (weird local extremas)

Tangent:
Contextual Bandits

Using our Network for RL

Changes: Intuition:
- Xis now our context - Uncertainty captured
- New parameter a, for better
action - Allows intuitive basis
- P(r| x, a, w) instead of for exploration/

P(y | x, w) exploitation balance

=

Sampling Differences

Thompson:

Sample new parameters

Pick action with highest expected
reward

Update model, repeat

w N

Adapted:

Sample weights from variational
posterior

Receive context x

Pick action a that maximizes? the
expected reward

Receive rewardr

Update variational parameters)
and repeat

The paper says minimizes, which seems to be a typo,

thoughts?

Results: Finally

First Results: MNIST with Bayesian Neural Network

The results are on the following slide
They show:
- Stochastic Gradient Descent and variations
- Two bayes networks (different priors)

- Varying Layers and weights/hyperparameters

Table 1. Classification Error Rates on MNIST. % indicates result 1
used an ensemble of 5 networks. 20\ FOR RN PO RIS SRS
s g | | Algorithm
) 516 Bayes by Backprop
S & 5 Dropout
S5 = ? Vanilla SGD
-E § &
- Test
Method o = Error = 0 100 200 e 3(')0h 400 500 600
SGD, no regularisation (Simardetal, 2003)| 800 | 1.3m 1.6% =
SGD, dropout (Hinton et al., 2012) ~ 1.3% _ o
SGD, dropconnect (Wan et al., 2013) 800 1.3m 1'2%* Figure 2. Test error on MNIST as training progresses.
SGD 400 | 500k| 1.83%
800 | 1.3m| 1.84%
1200 2.4m| 1.88% L
SGD, dropout 400 | 500k| 1.51% _
800 | 1.3m| 1.33% 2"
1200| 2.4m| 1.36% 5 %mm
Bayes by Backprop, Gaussian 400 | 500k| 1.82% A s
800 | 1.3m/| 1.99%
1200 2.4m| 2.04% 0 0 n ; n
Bayes by Backprop, Scale mixture 400 | 500k| 1.36% T g
800 | 1.3m| 1.34%
1200| 2.4m| 1.32% Figure 3. Histogram of the trained weights of the neural network,

for Dropout, plain SGD, and samples from Bayes by Backprop.

MNIST:
Compression
Results

Table 2. Classification Errors after Weight pruning

Proportion removed | # Weights | Test Error
0% 2.4m 1.24%
50% 1.2m 1.24%
75% 600k 1.24%
95% 120k 1.29%
98% 48k 1.39%

08T

0.6

Density

-5.0 -25 0.0
Signal-to-Noise Ratio (dB)

0.75
s |

0.50 4
(&)

025+

—7I.5 —5;,0 -2|.5 010
Signal-to-Noise Ratio (dB)

Figure 4. Density and CDF of the Signal-to-Noise ratio over all
weights in the network. The red line denotes the 75% cut-off.

Second Results: Regression

Theresultsareont

They show:

ne following slide

- Stochastic Gradient Descent and variations

- Two bayes networks (different priors)

- Varying Layers and weights/hyperparameters

- Datagenerated from sin

combination with noise

1.2+ 12=

0.8 -

04-

0.0-

0.0 0.4 0.8 1.2 0.0 04 0.8 1.2

Figure 5. Regression of noisy data with interquatile ranges. Black
crosses are training samples. Red lines are median predictions.
Blue/purple region is interquartile range. Left: Bayes by Back-
prop neural network, Right: standard neural network.

Third Results: Mushroom Eating

The results are on the following slide

They show:
- Simple bandit problem with poisonous and

nonpoisonous mushrooms
- Bayesian Neural Network with sample size = 2

- Epsilon-Greedy approach to bandit problem

Regret is defined as:
Difference between
MAX and Model rewards

That is, someone who
always chooses the right
action versus someone
who is trying to learn the
best action

o

$10000 -

R . .

()

=

ko 5% Greedy

=

g 1% Greedy

O 1000 - Greedy

Bayes by Backprop

1

1 I 1 1 I
0 10000 20000 30000 40000 50000
Step

Figure 6. Comparison of cumulative regret of various agents on
the mushroom bandit task, averaged over five runs. Lower is bet-

ter.

