# Weight Uncertainty in Neural Networks

Slides by Cameron Loewen (with a review slide from 696h)

#### Introduction



## Introduction: Typical Neural Network

- Deterministic weights
- Overly Confident
- Weights determined

using MLE



#### Introduction: Bayesian Network



- Sampled weights
- Can model uncertainty
- Weights determined by

learned distribution

(more parameters)

#### Use cases for Bayesian Neural Networks

- A bayesian neural network can be used:
  - Wherever a normal neural network would be used
  - To better quantify uncertainty in classification or regression estimates
  - To have a better model for exploration/reward trade off in bandits

# Using Probability Models with a Neural Network

## Classifying with a Neural Network

- Assign probability to an output (given x)
  - P(y|x, w), where x is our feature vector

- Theoretical way with Posterior Distribution
  - $P(\hat{\mathbf{y}}|\hat{\mathbf{x}}) = \mathbb{E}_{P(\mathbf{w}|\mathcal{D})}[P(\hat{\mathbf{y}}|\hat{\mathbf{x}},\mathbf{w})]$

## Determining Weights

This is an optimization problem solved with backpropagation

MLE MAP

$$\mathbf{w}^{\text{MLE}} = \arg \max_{\mathbf{w}} \log P(\mathcal{D}|\mathbf{w}) \qquad \mathbf{w}^{\text{MAP}} = \arg \max_{\mathbf{w}} \log P(\mathbf{w}|\mathcal{D})$$
$$= \arg \max_{\mathbf{w}} \sum_{i} \log P(\mathbf{y}_{i}|\mathbf{x}_{i}, \mathbf{w}) \qquad = \arg \max_{\mathbf{w}} \log P(\mathcal{D}|\mathbf{w}) + \log P(\mathbf{w})$$

# Being Bayesian By Backpropagation

#### **Recall: Variational Inference**



Minimize KL between q(x) and posterior  $p(x \mid \mathcal{Y})$ .

#### Variational Lower Bound (Step 1)

$$\begin{aligned} \theta^{\star} &= \arg\min_{\theta} \mathrm{KL}[q(\mathbf{w}|\theta)||P(\mathbf{w}|\mathcal{D})] \\ &= \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} d\mathbf{w} \\ &= \arg\min_{\theta} \mathrm{KL}\left[q(\mathbf{w}|\theta) \mid \mid P(\mathbf{w})\right] - \mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right] \end{aligned}$$

(1) Define F(D,  $\theta$ ) = KL  $[q(\mathbf{w}|\theta) || P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}|\theta)} [\log P(\mathcal{D}|\mathbf{w})]$ 

#### Reparameterization (Intro)

- Say we want to represent X ~ N( $\mu$ ,  $\sigma^2$ )
- Introduce noise  $\epsilon \sim N(0, 1)$
- Use deterministic function **f(ε)**:

 $f(\varepsilon) = \mu + \sigma^* \varepsilon$ 

#### Proposition (Step 2)

Definitions

Let  $q(\varepsilon)$  be the probability density of  $\varepsilon$ 

Let  $w = t(\theta, \epsilon)$ , where t is a deterministic function

Given that  $q(\boldsymbol{\varepsilon})d\boldsymbol{\varepsilon} = q(w|\theta)d\theta$ 

#### Proposition (Step 2)

For a function f:

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[ \frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right]$$

This shows that optimizing some expectation of a function can be done as an expectation.

Thus, we can use Monte Carlo Methods

## Proposition (Step 2)

$$\begin{split} \frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] &= \frac{\partial}{\partial \theta} \int f(\mathbf{w},\theta) q(\mathbf{w}|\theta) d\mathbf{w} \\ &= \frac{\partial}{\partial \theta} \int f(\mathbf{w},\theta) q(\epsilon) d\epsilon \\ &= \mathbb{E}_{q(\epsilon)} \left[ \frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right] \end{split}$$

Combining Steps 1 and 2  
(1) 
$$\theta^{\star} = \arg \min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} d\mathbf{w}$$
  
(2)  $\frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[ \frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right]$ 

If we change out the integral for expectation, and set  $f(w, \theta)$  to be the inside of the expectation, (1) becomes the left hand side of (2)

Combining Steps 1 and 2  
(1) 
$$\theta^{\star} = \arg \min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} d\mathbf{w}$$
  
(2)  $\frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[ \frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right]$ 

If we change out the integral for expectation, and set  $f(w, \theta)$  to be the inside of the expectation, (1) becomes the left hand side of (2)

#### Our Cost Function

$$f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) - \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})$$

Algorithm uses unbiased estimates of this cost function to learn a distribution over the weights

$$\mathcal{F}(\mathcal{D}, \theta) \approx \sum_{i=1}^{n} \log q(\mathbf{w}^{(i)}|\theta) - \log P(\mathbf{w}^{(i)}) - \log P(\mathbf{w}^{(i)})$$

# Variational Posterior: Diagonal Gaussian

# Algorithm using Diagonal Gaussian

#### Reparameterization step

- 1. Sample  $\epsilon \sim \mathcal{N}(0, I)$ .
- 2. Let  $\mathbf{w} = \mu + \log(1 + \exp(\rho)) \circ \epsilon$ .
- 3. Let  $\theta = (\mu, \rho)$ .
- 4. Let  $f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w}).$

# Algorithm using Diagonal Gaussian Backpropagation Step

5. Calculate the gradient with respect to the mean

$$\Delta_{\mu} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \mu}.$$
 (3)

6. Calculate the gradient with respect to the standard deviation parameter  $\rho$ 

$$\Delta_{\rho} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} \frac{\epsilon}{1 + \exp(-\rho)} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \rho}.$$
 (4)

7. Update the variational parameters:

$$\mu \leftarrow \mu - \alpha \Delta_{\mu} \tag{5}$$

$$\rho \leftarrow \rho - \alpha \Delta_{\rho}. \tag{6}$$

# Prior: Scale Mixture

## Prior Probability Function

- Resembles a spike and slab
- One Gaussian has high variance
- Other has low variance

# $P(\mathbf{w}) = \prod_{j} \pi \mathcal{N}(\mathbf{w}_{j}|0, \sigma_{1}^{2}) + (1 - \pi)\mathcal{N}(\mathbf{w}_{j}|0, \sigma_{2}^{2})$

## Do we Optimize the Prior

- Experimentation had worse results when optimizing the prior
- This practice is known as empirical bayes
- The reasons for the results could be:
  - There are far fewer prior parameters to optimize (relative to posterior)
  - Poor initial parameters are difficult to move away from (weird local extremas)

# Tangent: Contextual Bandits

## Using our Network for RL

#### Changes:

- X is now our context
- New parameter a, for action
- P(r | x, a, w) instead of
   P(y | x, w)

#### Intuition:

- Uncertainty captured better
- Allows intuitive basis for exploration/ exploitation balance

# Sampling Differences

#### Thompson:

- 1. Sample new parameters
- 2. Pick action with highest expected reward
- 3. Update model, repeat

#### Adapted:

- 1. Sample weights from variational posterior
- 2. Receive context x
- 3. Pick action a that maximizes? the expected reward
- 4. Receive reward r
- 5. Update variational parameters  $\theta$  and repeat

# **Results: Finally**

### First Results: MNIST with Bayesian Neural Network

#### The results are on the following slide

They show:

- Stochastic Gradient Descent and variations
- Two bayes networks (different priors)
- Varying Layers and weights/hyperparameters

Table 1. Classification Error Rates on MNIST.  $\star$  indicates resultused an ensemble of 5 networks.

| Method                                                                       | # Units/Laye | # Weights | Test<br>Error     |
|------------------------------------------------------------------------------|--------------|-----------|-------------------|
| SGD, no regularisation (Simard et al., 2003)                                 | 800          | 1.3m      | 1.6%              |
| SGD, dropout (Hinton et al., 2012)                                           |              |           | $\approx 1.3\%$   |
| SGD, dropconnect (Wan et al., 2013)                                          | 800          | 1.3m      | $1.2\%^{\star}$   |
| SGD                                                                          | 400          | 500k      | 1.83%             |
|                                                                              | 800          | 1.3m      | 1.84%             |
|                                                                              | 1200         | 2.4m      | 1.88%             |
| SGD, dropout                                                                 | 400          | 500k      | 1.51%             |
|                                                                              | 800          | 1.3m      | 1.33%             |
|                                                                              | 1200         | 2.4m      | 1.36%             |
| Bayes by Backprop, Gaussian                                                  | 400          | 500k      | 1.82%             |
|                                                                              | 800          | 1.3m      | 1.99%             |
|                                                                              | 1200         | 2.4m      | 2.04%             |
| Bayes by Backprop, Scale mixture                                             | 400          | 500k      | 1.36%             |
| <ul> <li>ANN STREET STREET AND AND AND AND AND AND AND AND AND AND</li></ul> | 800          | 1.3m      | 1.34%             |
|                                                                              | 1200         | 2.4m      | $\mathbf{1.32\%}$ |







*Figure 3.* Histogram of the trained weights of the neural network, for Dropout, plain SGD, and samples from Bayes by Backprop.

#### MNIST: Compression Results

| 0.8              |     |            |             | Λ      |     |   |
|------------------|-----|------------|-------------|--------|-----|---|
| 0.6 -            |     |            |             |        |     |   |
| 0.4 -            |     |            |             |        | 1   |   |
| 0.2 -            |     |            | $\int$      | V      |     |   |
| 0.0              | -5. |            | -2.5        |        | 0.0 | _ |
|                  |     | Signal-to- | Noise Ratio | (dB)   |     |   |
| 1.00 -           |     | Signal-to- | Noise Ratio | o (aB) |     |   |
|                  |     | Signal-to- | Noise Ratio |        | _   |   |
| 1.00 -<br>0.75 - |     | Signal-to- | Noise Ratio |        |     |   |
| 0.75             |     | Signal-to- | Noise Ratio |        | _   |   |

*Figure 4.* Density and CDF of the Signal-to-Noise ratio over all weights in the network. The red line denotes the 75% cut-off.

| Table 2. Classification Errors after Weight pruning |           |            |  |  |  |
|-----------------------------------------------------|-----------|------------|--|--|--|
| <b>Proportion removed</b>                           | # Weights | Test Error |  |  |  |
| 0%                                                  | 2.4m      | 1.24%      |  |  |  |
| 50%                                                 | 1.2m      | 1.24%      |  |  |  |
| 75%                                                 | 600k      | 1.24%      |  |  |  |
| 95%                                                 | 120k      | 1.29%      |  |  |  |
| 98%                                                 | 48k       | 1.39%      |  |  |  |

#### Second Results: Regression

#### The results are on the following slide

They show:

- Stochastic Gradient Descent and variations
- Two bayes networks (different priors)
- Varying Layers and weights/hyperparameters
- Data generated from sin combination with noise



*Figure 5.* Regression of noisy data with interquatile ranges. Black crosses are training samples. Red lines are median predictions. Blue/purple region is interquartile range. Left: Bayes by Back-prop neural network, Right: standard neural network.

# Third Results: Mushroom Eating

#### The results are on the following slide

They show:

- Simple bandit problem with poisonous and nonpoisonous mushrooms
- Bayesian Neural Network with sample size = 2
- Epsilon-Greedy approach to bandit problem

Regret is defined as: Difference between MAX and Model rewards

That is, someone who always chooses the right action versus someone who is trying to learn the best action



Figure 6. Comparison of cumulative regret of various agents on the mushroom bandit task, averaged over five runs. Lower is better.