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Motivation for the paper

It is useful to regularize the training of neural networks in order to prevent 
overfitting the training data. Dropout is a popular method that is empirically shown 
to be effective.

A previous work shows that Gaussian dropout optimizes a lower bound on the 
marginal likelihood of the data. This paper extends this relationship between dropout 
and Gaussian inference to improve variational Bayesian inference on model 
parameters.



Motivation for the paper

Local reparameterization trick:

● Improves efficiency of stochastic gradient-based variational inference (SGVB) 
with minibatches of data such that the optimization speed matches dropout

Variational dropout:

● Equivalence between Gaussian dropout and SVGB with the local 
reparameterization trick applied

● By casting dropout as a variational inference problem, we can also learn the 
dropout rates



Variational Inference (Review)

● Computing the true posterior distribution is intractable.
● Instead, cast inference as an optimization problem where we wish to optimize 

the parameters ɸ of some distribution qɸ such that qɸ is an approximation of the 
true posterior, as measured by the Kullback-Leibler divergence.

● To do this, we maximize the variational lower bound of the marginal likelihood 
of the data.



Variational Lower Bound (Review)

variational lower bound on 
the marginal likelihood of 
the data

expected log-likelihood



Stochastic Gradient 
Variational Bayes



Stochastic Gradient Variational Bayes (SGVB)

SGVB is a method for gradient-based optimization of the variational bound that uses 
minibatches and requires differentiable p and q distributions.

Parameterize the random parameters (for example, the weights of a neural network) 
by a differentiable function f:

And ε is a random noise variable:



Stochastic Gradient Variational Bayes (SGVB)

This allows us to write an unbiased differentiable minibatch based Monte Carlo 
estimator of the expected log-likelihood

M: size of the minibatch

𝜖: noise vector



Stochastic Gradient Variational Bayes (SGVB)

Here, we assume that the KL divergence can be computed deterministically. If KL 
cannot be computed deterministically, we approximate it similarly.

This results in an estimator of the variational lower bound which is differentiable 
with respect to ɸ. Thus, we can optimize by stochastic gradient ascent.

minibatch based 
estimator of this term
(previous slide)



Variance of the SGVB Estimator

The performance of stochastic gradient ascent depends on the variance of the 
gradients. Large gradients can delay or prevent convergence.

We prefer estimators with smaller variance.



Variance of the SGVB Estimator

Increasing the minibatch size 
only impacts the contribution of 
variance.

The contribution of the covariance 
between data points is not reduced by 
increasing the minibatch size.



Local Reparameterization 
Trick



Local Reparameterization Trick

There are two motivating factors behind this trick: reducing the variance and 
making the estimator computationally efficient.

Kigma et al. propose an estimator such that the covariance between the 
log-likelihood of data points i and j is zero, ensuring that the variance can be scaled 
using minibatch size.

Rather than sample the noise ε directly, only sample f(ε) that influence the SGVB 
estimator. This uncertainty is independent across examples, translates global 
uncertainty into local uncertainty, and is easier to sample.



Local Reparameterization Example

Consider one layer of a fully connected neural network with 1000 neurons.

Input feature matrix A: M x 1000

Weight matrix W: 1000 x 1000

Activations B = AW: M x 1000

Let’s say the posterior approximation on weights is a Gaussian:



Local Reparameterization Example

Drawing the weights for just this fully connected layer requires 1000^2 samples.

Notice that if we use only one weight vector for the entire minibatch: 

We could draw new weights for every single example in the batch and meet this 
requirement, but this requires M * 1000^2 draws, sacrificing the computational 
efficiency.



Local Reparameterization Example
The approximate posterior distribution on the weights can be turned into a posterior on the 
activations, conditioned on the input A. Thus with this reparameterization we can sample the 
activations B directly.

This method only requires M x 1000 draws to obtain all of the activations - computationally 
efficient!



Local Reparameterization Example
What about the variance?

Consider the gradient estimate with respect to posterior variance, given M = 1. The stochastic 
terms are shown in red. Left: random weights, right: local reparameterization trick.

Estimating the covariance between the gradient and the noise is easier for the second term. In the 
first, 1000 noise variables influence the gradient and thus the relationship between the two is lost in 
noise.



Variational Dropout



Dropout

Dropout as multiplicative noise on the input, using the same notation as the example.

θ: weight matrix

ξ: independent noise vector, drawn from for example a Bernoulli or Gaussian 
distribution



Gaussian dropout: If ξ is independently drawn from N(1,𝛼), the marginal 
distribution of the activation is also Gaussian:

This ignores dependencies between elements of B.

Variational Dropout: Independent Weight Noise



Variational Dropout: Correlated Weight Noise

Rather than ignoring dependencies between elements of B, set up the activations 
such that we draw a stochastic scale variable s that will scale all weights associated 
with one neuron.



Dropout Prior and Posterior

A dropout posterior must have a multiplicative noise term determined by 𝛼.

The only prior that can be used is the scale invariant log-uniform prior, as this 
ensures the KL divergence does not depend on the parameters θ that we are 
attempting to maximize.

The authors also claim that using this prior regularizes the number of significant 
digits stores for the weights, which would help prevent the network from overfitting 
to noise in the data.



Dropout’s Variational Objective

Thus the dropout variational objective maximizes the following bound with respect 
to θ:

And the authors prove in an appendix that with a factorized Gaussian approximate 
posterior, while the KL divergence cannot be analytically evaluated, it can be 
approximated by



Adaptive Regularization by Optimizing Dropout Rate

Dropout rate is typically treated as a tunable hyperparameter.

Now, given that we have a variational objective, the model can learn 𝛼 by optimizing 
the objective with respect to 𝛼.



Experiments



Variance

Results shown for variational dropout with noise on the weights. The local 
reparameterization trick shows the lowest variance in the estimator among all 
methods that use dropout.



Speed

Regular SGVB estimator: 1635 seconds/epoch

Local reparameterization estimator: 7.4 seconds/epoch



Experiments

A: correlated weight noise

B: independent weight noise

A2: type A with the 
KL-divergence downscaled


