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Mutual Information

I (X ,Y ) = Ep(x ,y)

[
p(x , y)

p(x)p(y)

]
= KL(p(x , y)||p(x)p(y)) (1)
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Variational Upper Bound

When p(y |x) is known, we can introduce a variational distribution
q(y) for p(y):

I (X ,Y ) = Ep(x ,y)

[
p(y |x)
p(y)

]
(2)

= Ep(x ,y)

[
q(y)p(y |x)
q(y)p(y)

]
(3)

= Ep(x ,y)

[
p(y |x)
q(y)

]
− KL(p(y)||q(y)) (4)

≤ Ep(x) [KL(p(y |x)||q(y))] (5)
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Variational Lower Bound

For the lower bound, we replace the intractable p(x |y) for q(x |y):

I (X ,Y ) = Ep(x ,y)

[
p(x |y)
p(x)

]
(6)

= Ep(x ,y)

[
q(x |y)p(x |y)
q(x |y)p(x)

]
(7)

= Ep(x ,y)

[
q(x |y)
p(x)

]
+ KL(p(x |y)||q(x |y)) (8)

≥ Ep(x ,y) [log q(x |y)] + h(X ) (9)
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Unnormalized Lower Bounds

We choose an energy-based variational family that uses a critic
f (x , y) and is scaled by p(x):

q(x |y) = p(x)

Z (y)
ef (x ,y).

Hence, we obtain the lower bound (Unnormalized version of the
Barber and Agakov bound):

I (X ,Y ) ≥ Ep(x ,y) [f (x , y)]− Ep(y)[logZ (y)] = IUBA,

which is tight when f (x , y) = log p(y |x) + c(y).
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Applying Jensen’s inequality, we recover Donsker & Varadhan
bound:

I (X ,Y ) ≥ Ep(x ,y) [f (x , y)]− logEp(y)[Z (y)] = IDV .

We can also apply it in the other direction:

logZ (y) = logEp(x)[e
f (x ,y)] ≥ Ep(x)[f (x , y)]

But then we have,

Ep(x ,y) [f (x , y)]−Ep(x ,y)[f (x , y)] ≥ Ep(x ,y) [f (x , y)]−Ep(y)[logZ (y)].
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Using the inequality log(x) ≤ x
a + log(a)− 1, we obtain the

Tractable version of Barber and Agakov bound:

≥ Ep(x ,y) [f (x , y)]−Ep(y)

[
Ep(x)[e

f (x ,y)]

a(y)
+ log(a(y))− 1

]
= ITUBA.

If a(y) = e, then we recover the Nguyen, Wainwright and Jordan
bound:

I (X ,Y ) ≥ Ep(x ,y) [f (x , y)]− e−1Ep(y)[Z (y)] = INWJ .

with optimal critic f ∗(x , y) = 1 + log p(x |y)
p(x) .
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Multi-sample unnormalized lower bounds

Assumption: We want to estimate I (X1,Y ) and we have samples
from p(x1)p(y |x1) and K − 1 additional samples
x2:K ∼ rK−1(x2:K ) (independent from X1 and Y ). Then,

I (X1;Y ) = I (X1,X2:K ;Y .)

The critic can now depend on the additional samples. Hence, we
consider the critic 1 + log f (x1,y)

a(y ;x1:K )
. So we obtain the bound:

I (X1;Y ) ≥ 1+Ep(x1:K )p(y |x1)

[
log

ef (x1,y)

a(y ; x1:K )

]
−Ep(x1:K )p(y)

[
ef (x1,y)

a(y ; x1:K )

]
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Now let’s choose the form

a(y ; x1:K ) = m(y ; x1:K ) =
1

K

K∑
i=1

ef (xi ,y).

Then:

Ep(x1:K )p(y)

[
ef (x1,y)

m(y ; x1:K )

]
=

1

K

K∑
i=1

E

[
ef (xi ,y)

m(y ; x1:K )

]
= 1

when x1:K ∼
∏K

i=1 p(xi ).
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Hence, we recover the lower bound proposed by van der Oord:

I (X ,Y ) ≥ E

[
1

K

K∑
i=1

log
ef (xi ,yi )

1
K

∑K
i=1 e

f (xi ,yi )

]
= INCE

In particular, INCE ≤ logK , meaning that this bound is loose when
I (X ,Y ) > logK .
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Nonlinearly interpolated lower bounds

Now let’s set the critic to 1 + log ef (x1,y)

αm(y ;x1:K )+(1−α)q(y) where

α ∈ [0, 1]:

Iα = 1 + Ep(x1:K )p(y |x1)

[
log

ef (x1,y)

αm(y ; x1:K ) + (1− α)q(y)

]
(10)

−Ep(x1:K )p(y)

[
ef (x1,y)

αm(y ; x1:K ) + (1− α)q(y)

]
(11)

Conjecture: Optimal critic is f (x , y) = log p(y |x) and
q(y) = p(y).
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Special cases:

When p(y |x) is known, we can use it as our critic for INCE :

I (X ;Y ) ≥ E

[
1

K

K∑
i=1

log
p(yi |xi )

1
K

∑K
i=1 p(yi |xi )

]
We can approximate p(y) ≈ 1

K

∑
i p(y |xi ):

I (X ;Y ) ≤ E

[
1

K

K∑
i=1

log
p(yi |xi )

1
K−1

∑
i ̸=j p(yi |xi )

]
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For INWJ , the optimal critic is given by 1 + log p(y |x)
p(y) . Hence, we

can replace p(y) with q(y) and optimize w.r.t. q:

I ≥ Ep(x ,y)

[
log

p(y |x)
q(y)

]
− Ep(y)

[Ep(x)p(y |x)
q(y)

]
+ 1
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Experiments
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