

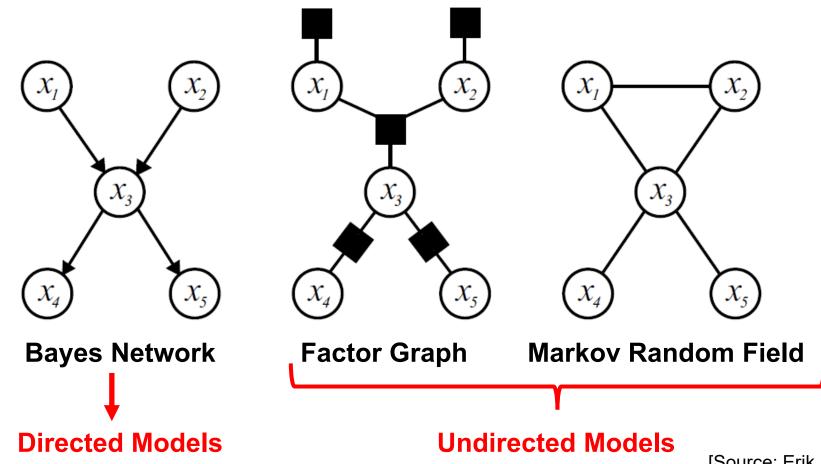
CSC696H: Advanced Topics in Probabilistic Graphical Models

Probabilistic Graphical Models

Prof. Jason Pacheco

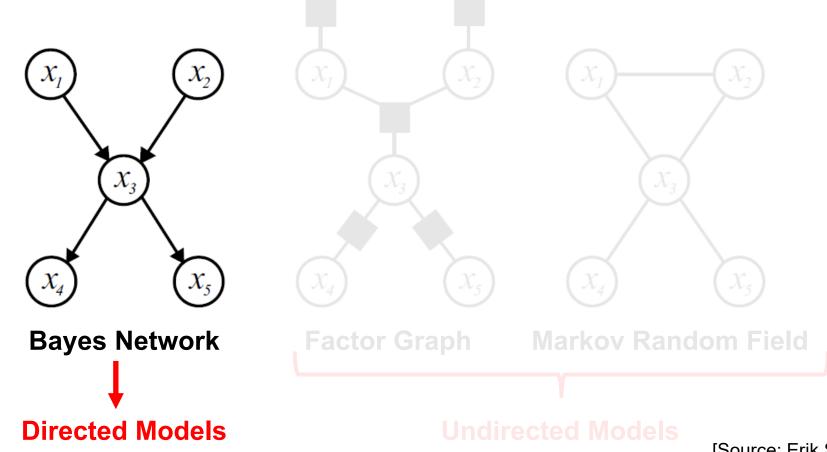
Graphical Models

A variety of graphical models can represent the same probability distribution



Graphical Models

A variety of graphical models can represent the same probability distribution



[Source: Erik Sudderth, PhD Thesis]

From Probabilities to Pictures

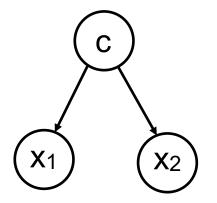
A probabilistic graphical model allows us to pictorially represent a probability distribution

Probability Model: $p(x_1, x_2, x_3) =$ $p(x_1)p(x_2)p(x_3 | x_1, x_2)$ Graphical Model: x_l x_2 x_3

Conditional distribution on each RV is dependent on its parent nodes in the graph

Ancestral Sampling

Directed models describe data generation process...



$$p(C, X_1, X_2) = p(C)p(X_1 \mid C)p(X_2 \mid C)$$

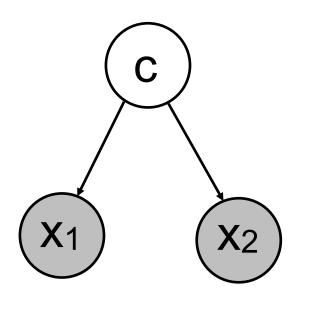
The graph and the formula say exactly the same thing. (The graph has very specific semantics.)

Step 1 Sample root node (prior): $c \sim p(C)$

Step 2 Sample children, given sample of parent (likelihood):

$$x_1 \sim p(X_1 \mid C = c)$$
 $x_2 \sim p(X_2 \mid C = c)$

Inference



Denote observed data with shaded nodes,

$$X_1 = x_1 \qquad \qquad X_2 = x_2$$

Infer *latent* variable C via Bayes' rule:

$$p(c \mid x_1, x_2) = \frac{p(c)p(x_1 \mid c)p(x_2 \mid c)}{p(x_1, x_2)}$$

- This is (obviously) a simple example
- Models and inference task can get really complicated
- But the fundamental concepts and approach are the same

Chain Rule of Probability

Recall the **probability chain rule** says that we can decompose any joint distribution as a product of conditionals....

 $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)$

Valid for any ordering of the random variables...

 $p(x_1, x_2, x_3, x_4) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$

For a collection of N RVs and any permutation ρ :

$$p(x_1, \dots, x_N) = p(x_{\rho(1)}) \prod_{i=2}^N p(x_{\rho(i)} \mid x_{\rho(i-1)}, \dots, x_{\rho(1)})$$

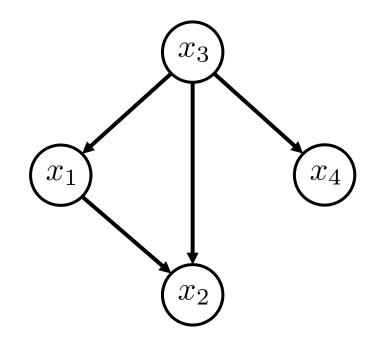
Conditional Independence

Recall two RVs X and Y are conditionally independent given Z (or $X \perp Y \mid Z$) iff:

 $p(X \mid Y, Z) = p(X \mid Z)$

Idea Apply chain rule with ordering that exploits conditional independencies to simplify the terms

Ex. Suppose
$$x_4 \perp x_1 \mid x_3$$
 and $x_2 \perp x_4 \mid x_1$ then:
 $p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$
 $= p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$



Can visualize conditional dependencies using **directed acyclic graph** (DAG)

General Directed Graphs

Def. A <u>directed graph</u> is a graph with edges $(s, t) \in \mathcal{E}$ (arcs) connecting parent vertex $s \in \mathcal{V}$ to a child vertex $t \in \mathcal{V}$

 x_3

 x_2

 x_1

 x_4

Def. Parents of vertex $t \in \mathcal{V}$ are given by the set of nodes with arcs pointing to t,

$$\operatorname{Pa}(t) = \{s : (s,t) \in \mathcal{E}\}$$

<u>Children</u> of $t \in \mathcal{V}$ are given by the set,

$$Ch(t) = \{t : (t,k) \in \mathcal{E}\}\$$

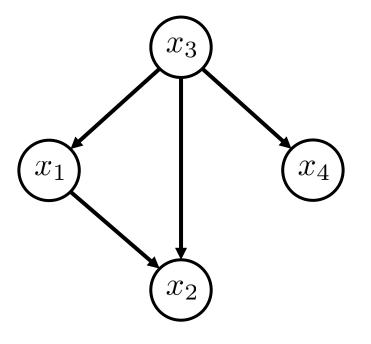
<u>Ancestors</u> are parents-of-parents. <u>Descendants</u> are children-of-children. Model factors are normalized conditional distributions:

$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid x_{\operatorname{Pa}(s)})$$
Parents of node s

Directed acyclic graph (DAG) specifies factorized form of joint probability:

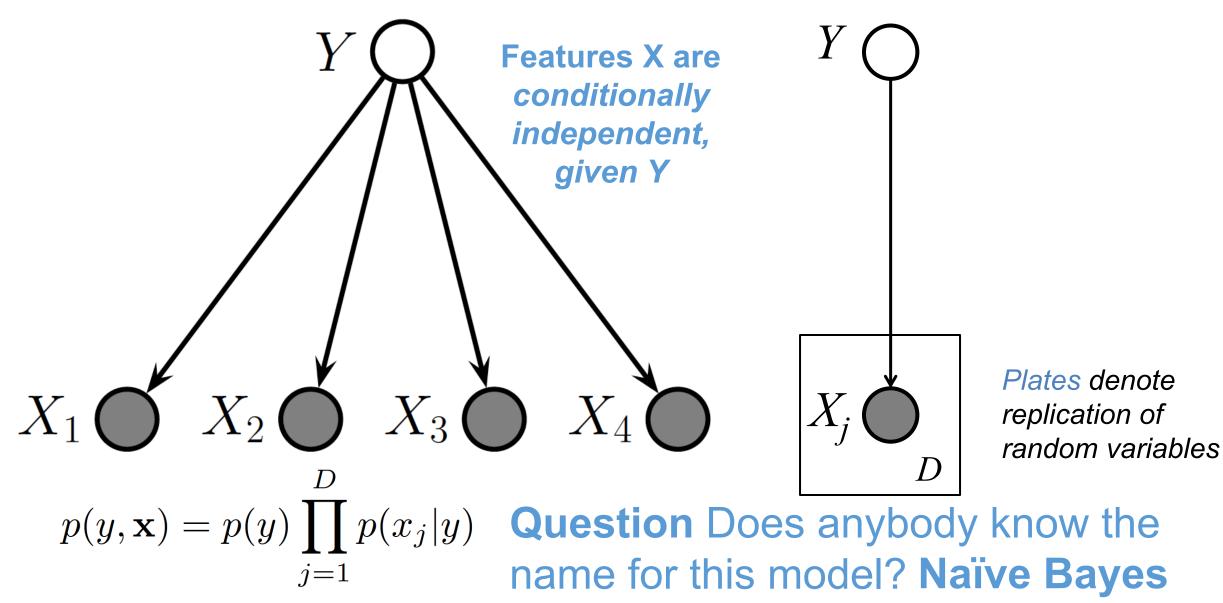
 $p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$

Locally normalized factors yield globally normalized joint probability

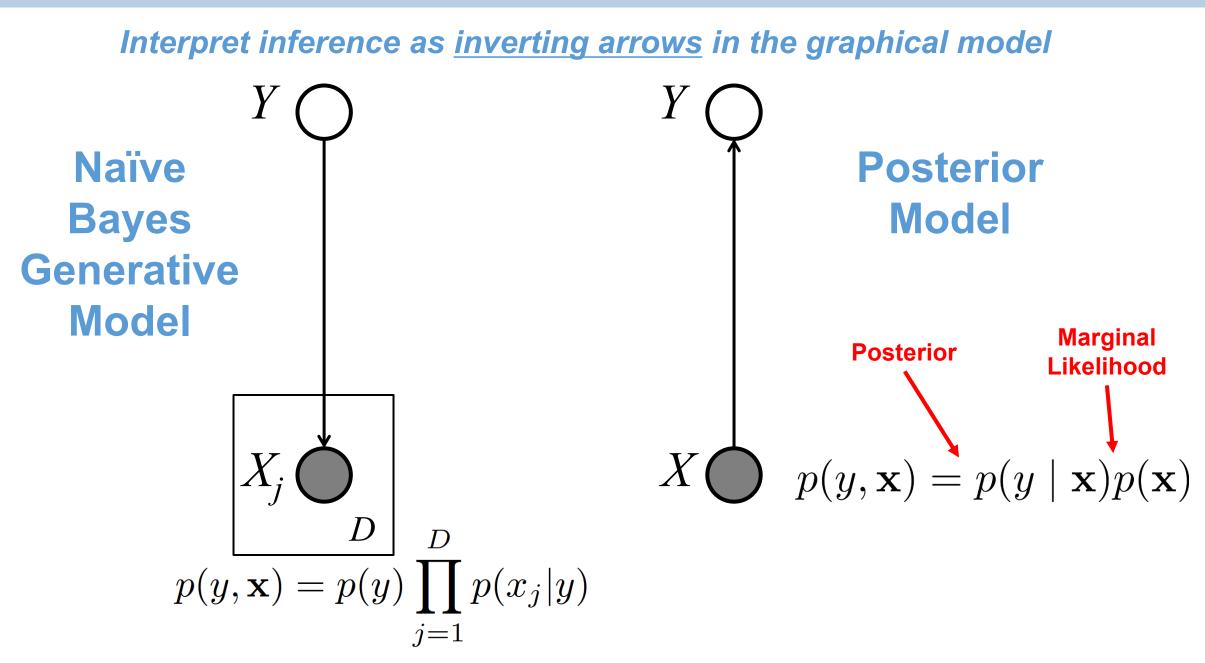


Shading & Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

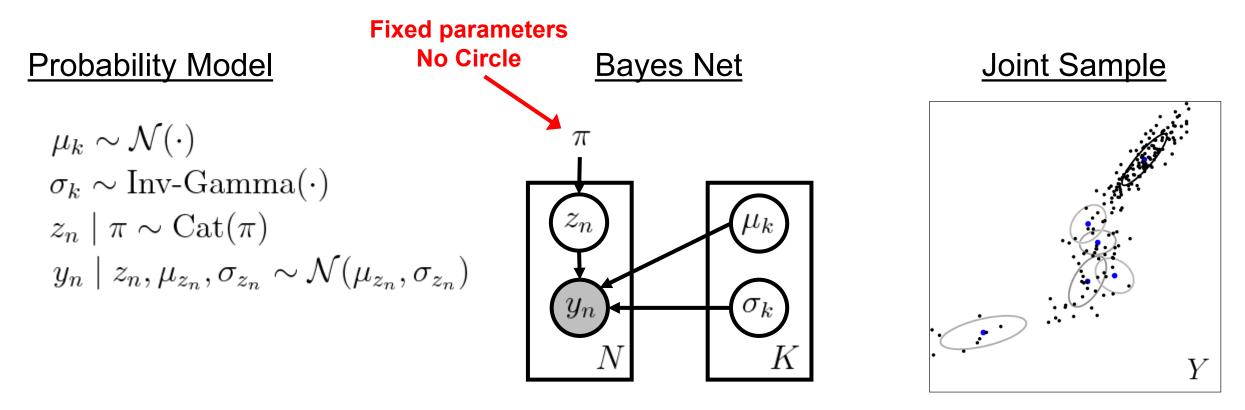


Inference



Example: Gaussian Mixture Model

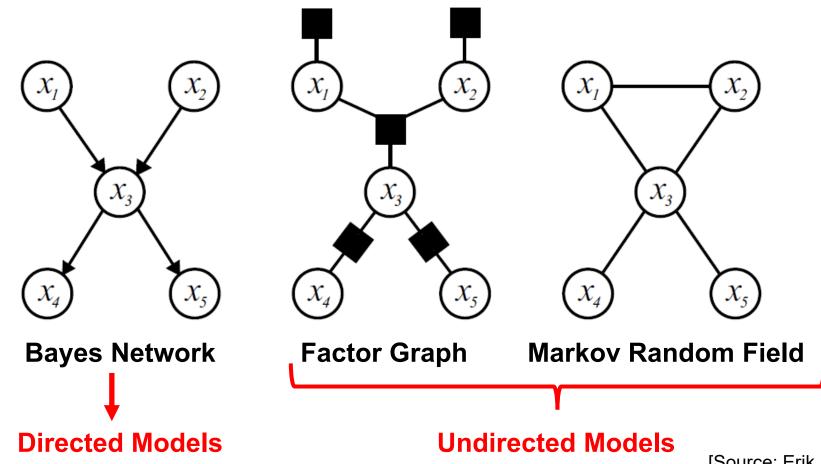
Bayes nets are easily simulated via <u>ancestral sampling</u>...



Sample all nodes with no parents, then children, etc., to terminals. Can sample nodes at same level in parallel.

Graphical Models

A variety of graphical models can represent the same probability distribution

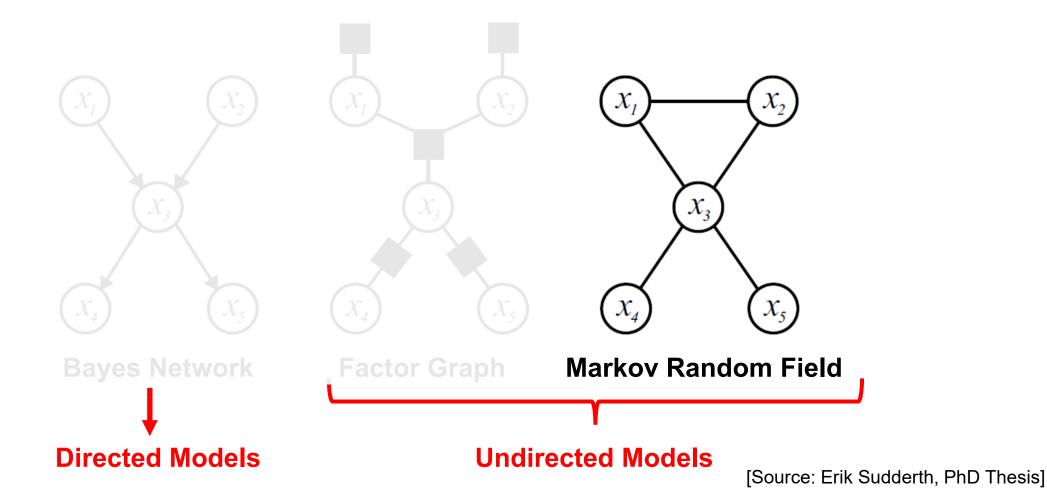


Administrative Items

- Sign up for paper presentation before Wed 9/7
 - Reply to thread on Piazza
 - Don't wait... otherwise you will be assigned by default
- Create Github repository
 - Title "CSC969H Fall 2022 <Name>"
 - Add Markdown document "critical_summary.md"
 - Add me as collaborator "pachecoj"
 - Set repository as Private
 - I will add this to D2L as a grade item

Graphical Models

A variety of graphical models can represent the same probability distribution



Model factors are normalized conditional distributions:

 x_3

 x_2

 \mathcal{X}_1

 x_4)

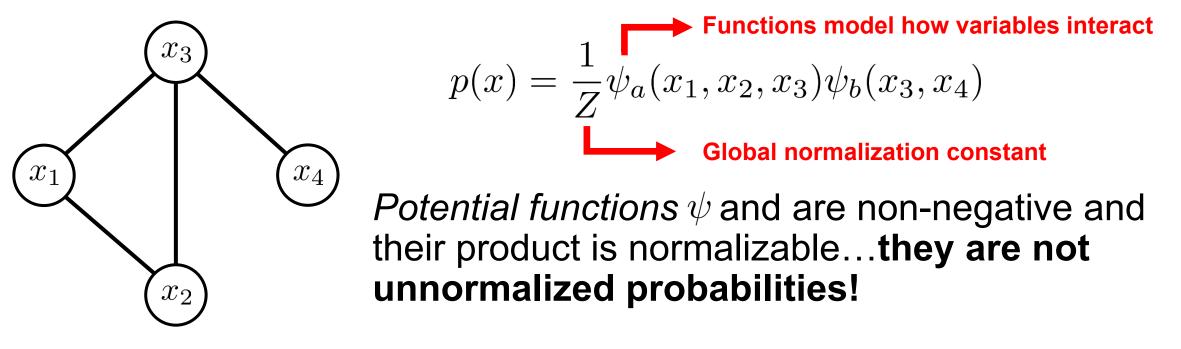
$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid x_{\operatorname{Pa}(s)})$$
Parents of node s

Locally normalized factors yield globally normalized joint probability

Often difficult to specify joint in terms of product of normalized probabilities...

Markov Random Field

Specify joint as product of unnormalized functions...



- More general class of models than Bayes Nets
- Any Bayes Net easily converts to MRF by dropping local normalizers
- MRF→Bayes Net not as straighfortward

Factorized Probability Distributions

A probability distribution over RVs $x = (x_1, \ldots, x_d)$ can be written as a product of factors,

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

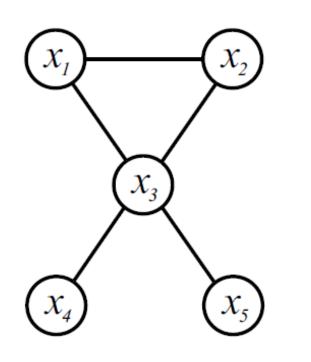
Where:

- C a collection of subsets of indices $\{1, \ldots, d\}$
- $\psi(\cdot)$ are nonnegative *factors* (or *potential functions*)
- *Z* the normalizing constant (or *partition function*)

$$Z = \int \prod_{c \in \mathcal{C}} \psi_c(x_c) \, dx_c$$

Undirected Graphical Models

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a set of vertices \mathcal{V} and edges \mathcal{E} . An edge $(s, t) \in \mathcal{E}$ connects two vertices $s, t \in \mathcal{V}$.



In **undirected models** edges are specified irrespective of node ordering so that,

 $(s,t)\in \mathcal{E} \Leftrightarrow (t,s)\in \mathcal{E}$

Distributions are typically specified with unknown normalization (easier to specify),

$$p(x) \propto \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

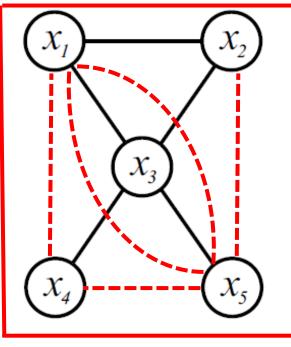
Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in C$ (fully connected subgraph) in the MRF

An MRF does not imply a unique factorization, for example all the following are "*valid*":

 $\psi(x_1, x_2, x_3, x_4, x_5)$

Complete Graph



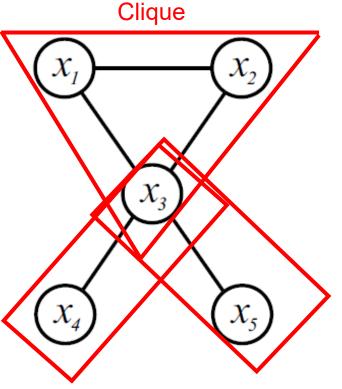
Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in C$ (fully connected subgraph) in the MRF

An MRF does not imply a unique factorization, for example all the following are "*valid*":

 $\psi(x_1, x_2, x_3, x_4, x_5)$

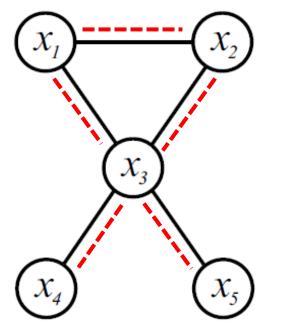
 $\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$



Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in C$ (fully connected subgraph) in the MRF

Pairwise MRF



An MRF does not imply a unique factorization, for example all the following are "*valid*":

 $\psi(x_1, x_2, x_3, x_4, x_5)$ $\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$ $\psi(x_1, x_2)\psi(x_2, x_3)\psi(x_1, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$

A minimal factorization is one where all factors are maximal cliques (not a strict subset of any other clique) in the MRF

Example: Gaussian MRF

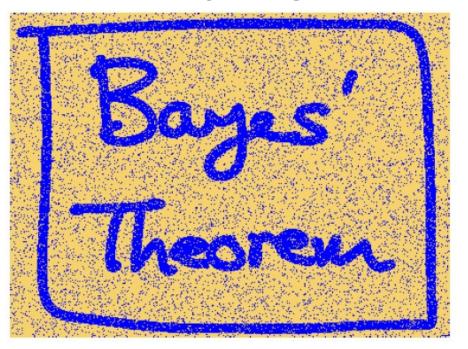
Interaction potential between each pair of nodes $(i, j) \in \mathcal{E}$ is exponentiated quadratic, X_2 $\psi_{ij}(x_i, x_j) = \exp\left(-\frac{1}{2}(x_i - x_j)^2\right)$ χ_{z} Joint probability is proportional to product, $p(x) = \frac{1}{Z}\psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{23}(x_2, x_3)\psi_{34}(x_3, x_4)\psi_{35}(x_3, x_5)$ X_5 $\boldsymbol{\chi}$

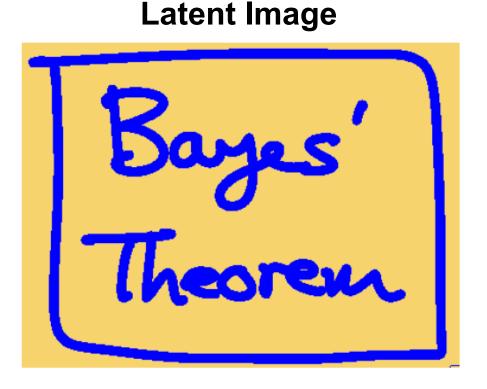
Multivariate Gaussian distribution invers $p(x) = \mathcal{N}(x \mid \mu, \Sigma) \qquad Z = (2\pi)^{5/2} |\Sigma|^{1/2}$

$$\begin{split} & \underset{\text{inverse covariance...}}{\text{Can easily read off}} & \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \end{split}$$

Example: Image Denoising

Noisy Image





Problem Given observed image corrupted by i.i.d. noise, infer "clean" denoised image.

Example: Image Denoising

Model Assume binary image with latent pixels $x_i \in \{-1, +1\}$ and observed $y_i \in \{-1, +1\}$

Observed pixels randomly flipped i.i.d.,

 $\log \phi_i(x_i) = \eta x_i y_i$ Eta parameter controls noise

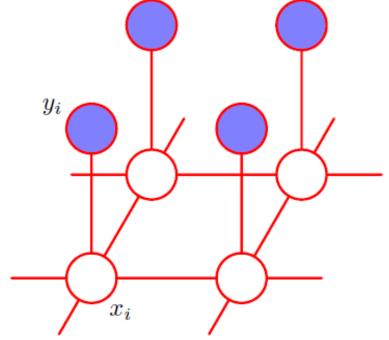
Neighboring pixels should appear similar,

 $\log \phi_{ij}(x_i, x_j) = \beta x_i x_j$ Beta parameter controls *smoothness*

Full MRF (in "energy" form):

$$E(x,y) = -\sum_{i} \log \phi_i(x_i) - \sum_{(i,j)} \log \phi_{ij}(x_i, x_j)$$

Often specify MRF in "energy" or negative log-probability form (minimize energy → maximize probability)



Normalizing MRFs

Joint probability of *image denoising* model,

$$p(x,y) = \frac{1}{Z} \exp\left\{-E(x,y)\right\}$$

Normalization (a.k.a. partition function) for N pixel image:

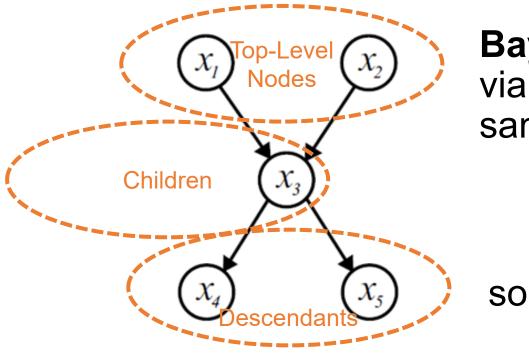
$$Z = \sum_{x_1} \sum_{x_2} \dots \sum_{x_N} \exp\left\{-E(x, y)\right\}$$

O(2^N) terms

Normalization not always possible in closed-form : i.e. need to sum over *all possible N-pixel images*

Often ignore Z and specify MRFs up to proportionality...

Simulation



Bayes Nets Straightforward simulation via <u>ancestral sampling</u> successively samples from conditionals:

$$p(\mathbf{x}) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\operatorname{Pa}(i)})$$

 $x_i \sim p(x_i \mid x_{\operatorname{Pa}(i)})$

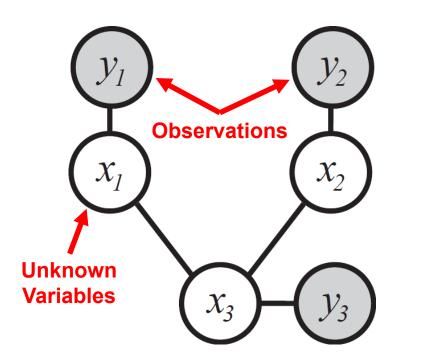
Undirected Graphs Sampling not as straightforward...

- Lack locally normalized conditionals to sample from
- Lack partial ordering of nodes

We will return to this when we discuss Markov chain Monte Carlo

Pairwise Markov Random Field

Often easier to specify and do inference on pairwise model



$$p(x,y) \propto \prod_{s \in \mathcal{V}} \psi_s(x_s,y) \prod_{\substack{(s,t) \in \mathcal{E} \ \downarrow}} \psi_{st}(x_s,x_t)$$

Likelihood Prior

Restricted class of MRFs

- 2-node factor exists for every edge
- Explicit factorization of joint distribution
- High-order factors not always easily decomposed into pairwise terms

Example: Image Segmentation

Pairwise MRF energy: $-\log p(x, y) = \log Z + \sum \psi_i(x_i, y_i) + \sum \psi_{i,j}(x_i, x_j)$

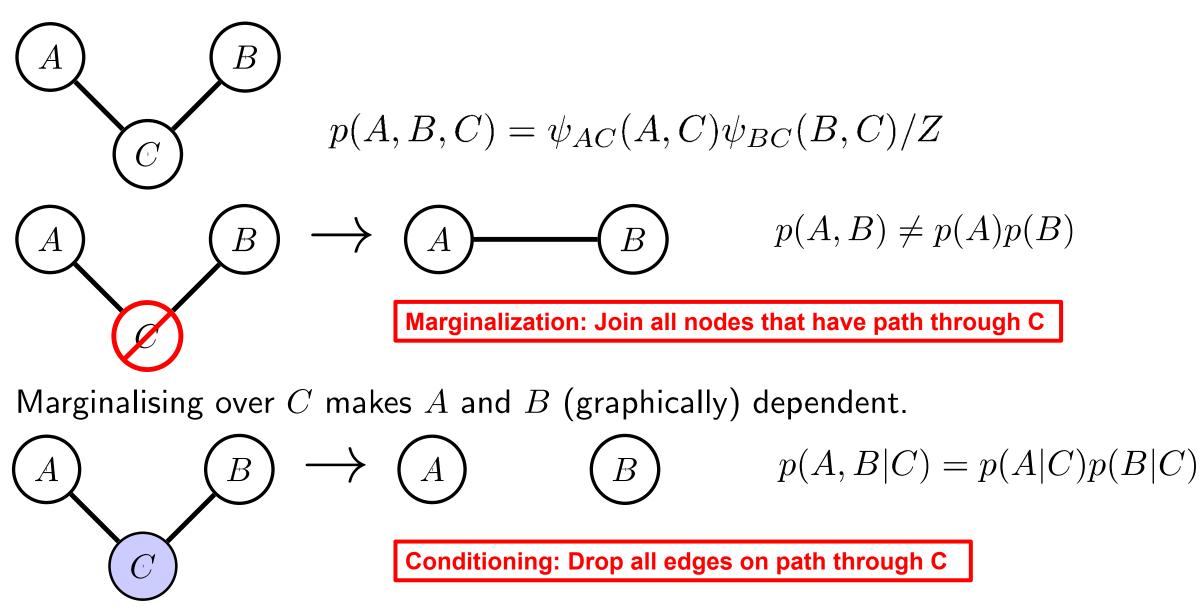
Don't need to specify normalized conditionals as in Bayes Nets

Low energy configurations = $\stackrel{i}{High}$ *probability* $^{(i,j)}$

L2 Likelihood: $\psi_i(x_i, y_i) = ||x_i - y_i||^2$ Potts model: $\psi_{i,j}(x_i, x_j) = \mathbb{I}(x_i = x_j)$

MAP (minimum energy) configuration = Piecewise constant regions

Transformations of Undirected Models

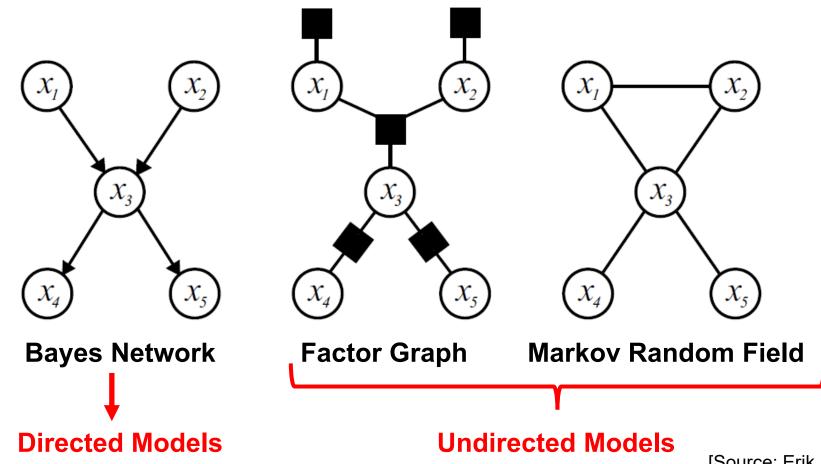


Conditioning on C makes A and B independent:

[Source: Erik Sudderth]

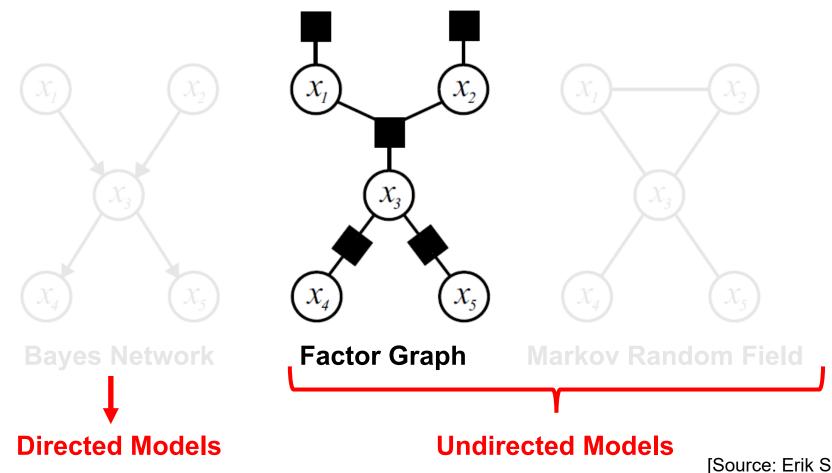
Graphical Models

A variety of graphical models can represent the same probability distribution



Graphical Models

A variety of graphical models can represent the same probability distribution



[Source: Erik Sudderth, PhD Thesis]

Factor Graphs

A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{F})$ where a hyperedge $f \in \mathcal{F}$ is a subset of vertices $f \subset \mathcal{V}$.

Factor node for each product term in the joint factorization:

Graphical model makes factorization explicit $p(x) \propto \prod_{f \in \mathcal{F}} \psi_f(x_f)$

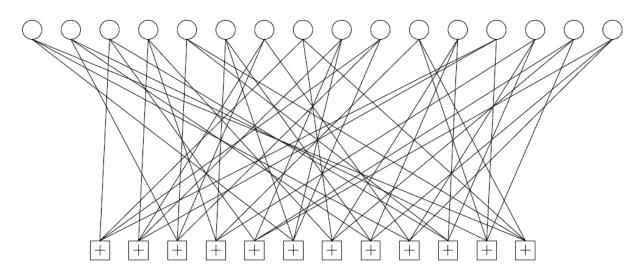
where $x_f = \{x_i : i \in f\}$ the set of variables in factor *f*. For example:

 $\psi(x_1)\psi(x_2)\psi(x_1,x_2,x_3)\psi(x_3,x_4)\psi(x_3,x_5)$

 X_2 X_3 χ_{5}

Example: Low Density Parity Check Codes

Factor Graph Representation

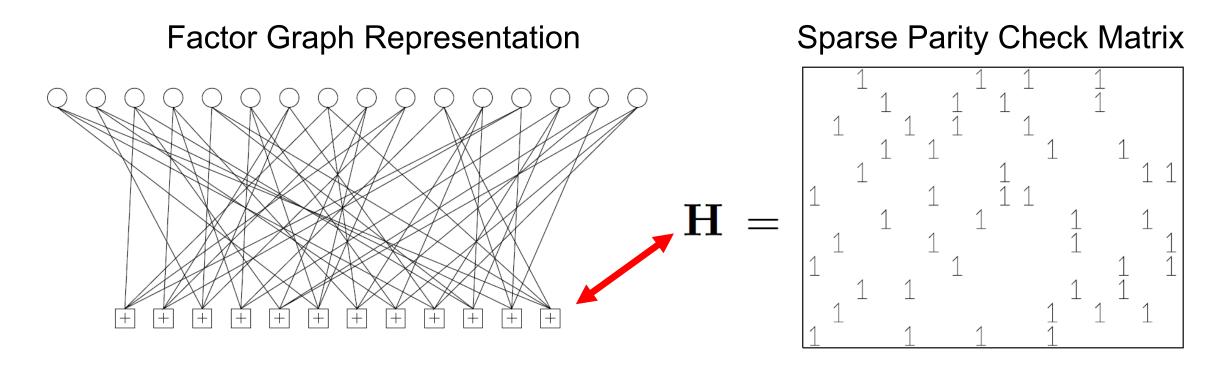


Problem Setup

- A code *t* is transmitted over a noisy
- Received code *r* is corrupted by noise
- Estimate the most probable code that was sent *t** (*maximum a posteriori*)

Transmitted Code Received Code
$$t \sim p(t)$$
Noisy
Channel
Received Code
$$t \sim p(r \mid t)$$
Decoder
$$t^* = \arg \max_t p(t \mid r)$$

Example: Low Density Parity Check Codes



- Valid codes have zero parity: $p(t) \propto \mathbb{I}(Ht = 0 \mod 2)$
- Chanel noise model arbitrary, e.g. flip bits w/ ϵ probability:

$$p(r \mid t) = \prod_{n} p(r_n \mid t_n) = \prod_{n} (1 - \epsilon)^{\mathbb{I}(r_n = t_n)} \epsilon^{\mathbb{I}(r_n \neq t_n)}$$
n-th bit

Recap: Directed Models

• Distribution factorized as product of conditionals via chain rule

 $p(x_1, x_2, x_3, x_4) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$

Choose ordering where terms simplify due to conditional independence

Eg. Suppose $x_4 \perp x_1 \mid x_3$ and $x_2 \perp x_4 \mid x_1$ then:

 $p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$

• Directed graph encodes factorized distribution via conditional independence properties

 x_3

- Straightforward simulation via ancestral sampling
- Factorization is unique for a Bayes net

Recap: Undirected Model

- Joint factorization as nonnegative factors (potentials) over subsets: $p(x) \propto \prod_{f \in \mathcal{F}} \psi_f(x_f)$
- Easier to specify models compared to Bayes nets since:
 - Factors do not need to be normalized conditional probabilities
 - May specify up to unknown normalization constant
- Factorization ambiguous in MRFs, but explicit in factor graphs (factor graphs generally preferred)
- Simulation is not easy in general. Can't do ancestral sampling because no partial ordering.