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Administrative ltems

| will be on travel the rest of this week

No office hours this week

There is class on Wednesday

Caleb Dahlke will be helping out with discussion Wednesday

Moyeen presenting ABC paper (Sunnaker et al. 2013)



Motivation for Monte Carlo Methods

* Now consider computing the expectation of a function
f(z) over p(z) .

» Recall that this looks like ,.[f]= [ f(z)p(2)d:

 How can we approximate or estimate EJ[f]?

A bad plan...
Discretize the space where z lives into L blocks Given independant samples 2" from p( z)
L1s . 1o
Then compute Ep(z)[f] ~ Z;p(z)f(z) Estimate Ep(z)[f] ~ Z{z;f(z)

Scales poorly with dimension of Z



Motivation for Monte Carlo Methods

= Real problems are typically complex and high dimensional.

= Suppose that we could generate samples from a distribution
that is proportional to one we are interested in.

= Typically we want posterior samples,

p(z)p(D ’ Z) ~ nnormaliz
p(z ’ D) — p(D) X p(Z) N ’ p<;)stele'lilorecI
t

Don’t know marginal
likelihood / normalizer

= Typically, p(z)is easier to evaluate (though not always)



Recall: Rejection Sampling

Assume Proposal Distribution

. - : Where we can use one of
* Access 1o easy-to-sample distribution q(2) *— methods on previous slides
» Constant k such that p(z) < k- q(2) to sample efficiently
Algorithm

1) Sample ¢ ( z)

p(z)

keq(2)

2) Keep samples in proportion to and reject the rest.

Example Use Gaussian
proposal ¢ to draw samples
from multimodal distributionp  ---




A Basic Monte Carlo Rejection Sampler

Goal: Given data D sample latent § from posterior,
0 ~ p(0| D)

Recall, Bayes’ Rule: . Likelihood
rior ikelihoo
N »~

p(0 | D) = p(0)p(D|0)

p(D) €= Marginal Likelihood

A trivial Monte Carlo rejection sampler:
A1: Generate 6 ~ p(#) from prior
A2: Accept 6 with probability / = p(D | 9)
A3: Return to A1



A Basic Monte Carlo Rejection Sampler

A1: Generate 0 ~ p(6) from prior
A2: Accept 6 with probability 7, = p(D | 0)
A3: Return to A1

* |[t's trivial to show that this has the correct target distribution,
0 ~ p(0 | D)

» Special case of a Rejection Sampler with proposal 6 ~ p(9)

* In general, find an upper bound ¢ > p(D | #) and accept with prob. i/c

What are some issues with this sampler?



Problems with the Basic Rejection Sampler

Problem 1: The prior is not a good proposal in general, since it
is often very different from the posterior:

p(0) # p(0 | D)

Problem 2: To compute the acceptance we need to be able to
evaluate the likelihood.

h=p(D | 0)

Main Point: Many likelihood models are easily defined via
simulation but cannot be explicitly evaluated.

 Easy to simulate new data: D’ ~ p(- | 9)
« Can'’t evaluate likelihood at specific data / parameter:m



Implicit vs. Explicit Models

Typically we know, both, the prior and likelihood of the joint,
p(0,D) = p(0)p(D | 6)
* We call this an explicit model

* An implicit model lacks a closed-form joint
* Models are usually implicit because we don’t know the likelihood

Two common reasons for implicit likelihood:
1) Need to integrate nuisance variables,
“atandard mieronce P(D [ 0) = [p(8,n)p(D | ,0) dn

2) Likelihood is based on simulation  Topic of this paper



Example: Mass-Spring Simulation

Represents mass and elasticity of a soft body using:

A, B : Two mass points

K : :
. Spring stiffness Subset of these
LO: Rest Iength represent parameters ¢

"d. Damping factor

Simulate by using Hooke’s Law:
Fs = ks (|B— A| — Ly)

/ \

Force on Spring

[

Deviation from rest length

YT: Gonkee: https://youtu.be/kyQP4t wOGI



https://youtu.be/kyQP4t_wOGI

Example: Mass-Spring Simulation

Need to add damping force to avoid never-ending simulation,

Fy= (%) - (vB —vA)RKq

/ AN

Unit vector of Motion Vectors Damping Factor
Position A-to-B

Total force is sum of spring and damping forces,
F, = F,+ Fy

Can easily simulate this in CPU using numerical integration,
e.g. Euler's method,

v(t) = vt — 1) + L2t z(t) = z(t — 1) +v(t)At

YT: Gonkee: https://youtu.be/kyQP4t wOGI



https://youtu.be/kyQP4t_wOGI

Example: Lattice-Spring Model

Extend mass-spring to multiple masses / springs

« Simulating data D from parameters 4 is easy

.xf;;'f" « Can simulate complicated physics like

" .‘ S Soft-body Tetris

o‘.to » Simple setting is deterministic

®..q.. .' « Simulation is much easier than writing down a

function tying inputs to outputs,

D = f(0)
« Can easily add noise to make random, but can’t write
down likelihood,

p(D | 0)


https://www.youtube.com/watch?v=TydNQB-a2qM

Likelihood-Free Monte Carlo

B1: Generate 0 ~ p(6) from prior
B2: Simulate D’ from model with input 4
B3: Accept 0 if D' = D ; Return to B1

* Unlike rejection sampler, never need to evaluate likelihood

* Probability of acceptance is proportional to p(D)

* Prohibitively low acceptance for high-dimensional data

* |dea Make acceptance criteria weaker... accept within some distance:

p(D,D') <e



Likelihood-Free Monte Carlo

C1: Generate § ~ p(6) from prior
C2: Simulate D’ from model with input 4

C3: Calculate distance p(D’, D)
C4: Accept 6 if p(D’,D) < ¢; Return to C1

* Will have higher acceptance than Algorithm B
 Target distribution is approximation of true posterior,

p(8 | p(D,D") <€) = p(0 | D)

* This still won’t work in high-dimensional data...too many rejections
* ldea Test a statistic S instead...



Likelihood-Free Monte Carlo

D1: Generate 9 ~ p(6) from prior
D2: Simulate D’ from model with input 4
D3: Compute statistic S’ of D’

D4: Calculate distance p(S’,S)
D5: Accept 9 if p(S,S) < €; Return to D1

* Typically higher acceptance rate than Algorithm C
 Target distribution is an even rougher approximation of true posterior,

p(0 | p(S,5") <€) = p(0 | D)

* Finding statistics that make this a good approximation is hard
e Standard statistics: mean, median, min, max, etc.



Likelihood-Free Inference So Far

Draw sample from prior 6 ~ p(0):

 Basic rejection sampling, requires likelihood (Alg. A)

» Accept sample only if simulated data matches real (Alg. B)
* Accept sample if data are close enough (Alg. C)

» Accept sample if statistics are close enough (Alg. D)

» Prior distribution is bad proposal in general
» Posterior is typically very different from prior
» Need a better proposal...



Metropolis-Hastings MCMC

E1: Propose move 0’ ~ ¢(6' | 6)
E2: Calculate,

o p(D]0")p(0")q(6]6")
h = min (1> P(DI0)p(0)4(07]0) )

E3: Move to 6’ with probability h, else stay
at 6; Return to E1

« MCMC gradually adjusts proposal towards posterior
« Stationary distribution of Markov chain is the true posterior
« But, M-H acceptance ratio requires evaluation of likelihood ratio



Approximating the Likelihood Ratio

M-H acceptance requires computing the likelihood ratio:

p(D | §)
p(D | 0)
* Approximate each term by simulating B datasets, D:,...,Dp
* Then compute the empirical mean:
B
. 1
p(D | 0) = EZI(DJ = D)
j=1

* Where [(.) is the Kroenecker delta
* Atrivial case is when B=1



MCMC Without Likelihoods

F1: Propose move 6" ~ (6’ | 0)

F2: Generate D’ using inputs 6’

F3: If D =D goto F4 otherwise stay at 6
F4: Calculate,

b — min (1’ p(9'>q(9|9’>)

p(0)q(6'16)

F5: Move to ¢’ with probability h, else stay
at 0; Return to F1

Theorem in paper proves stationary distribution is still true posterior



MCMC Without Likelihoods

 Just as in Algorithm B almost all samples will be rejected
» Especially if data are high-dimensional...

To improve acceptance rate, continue if data is close enough:
F3: If p(D,D’) <e goto F4 otherwise stay at 6
Or close enough with respect to a stafistic:

F3”: If p(.5,S5") < e goto F4 otherwise stay at ¢

These are same changes made to rejection sampling, but for
Metropolis-Hastings



Basics of DNA and Mutations

Inside the Cell

» Double-helix of nucleotide strands

* 4 nucleotides (A, C, G, T)

 Pairings A-T, G-C form double helix
 Replication of DNA can cause mutations
» Usually, mutations caught and discarded

(segment
of DNA)

[ KidsHealth |
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4 [ genome.gov ]



Population Genetics
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« Sometimes mutations persist and are inherited by later generations
 This leads to divergence of populations

* Then to different species, etc.

* Question Given some DNA samples, what is the most recent ancestor?



Example: Population Genetics

AT A Goal Given DNA samples determine mutation
_____ < MRCA ! rates, times of mutation events, and most
sample recent common ancestor (MRCA)

wineme | COaAlescent Model (Simple Version)
xocomontiisbanch o Agsymes random mating of population size N
« Sample n < N sequences at present day

RN e

¢ MRCA! * Run t|me backward in units of N/o* generations
rutation where o* is variance of num. of offspring in 1
generation

* At time 1’; sample has j ancestors
« T; ~ Exponential(j(j —1)/2)
c cc ¢cC C C « Stop when a single line of ancestry remains




RN e

Example: Population Genetics

Mutation C must

‘/ occur on this branch

‘*_MRCA of

mutation

Implementing Algorithm F

1) Propose mutation rate
2) Generate new tree topology A and set of mutations
3) Compare to samples do M-H acceptance

Naive implementation leads to low acceptance...

* Augment state-space with tree topology A and
times of coalescence on the topology

* Intuition Including more information in state
space allows more local moves in that space and
Improves acceptance rate

* |.e. when we find a good state we make small
changes that are even better

* Tradeoff Larger state space, smaller moves



Example: Population Genetics

Additional algorithm details...

« Characterize mutations by:
« Time they occur (i.e. branch they happen on)
* Their location on the genome

* Include number of mutations between two coalescent events

 Location of mutations chosen uniformly among tree branches during
simulation

Marjoram et al. (2003) claim this is the least information needed to see
reasonable acceptance



Example: Population Genetics

Update Process (proposal step in M-H)

« Update topology of tree (details in Markovstova et al. [2000])
« Update times between coalescent events by adding Gaussian noise
« Update mutation rate by adding uniform random noise

 New mutation rate and times define Poisson RV of number of
mutations between pairs of coalescence events

* For new mutation choose location in genome and tree uniformly

* [f number of mutations decreases randomly select some mutations and
erase them



Results: Marjoram et al. 2003

Dataset / Methodology

« Sample n=63 sequences

* From Nuu-chah-nulth (Nootka) indigenous people of Pacific NW

« Sequences are 360 base pairs (bp) long

» Observed base frequencies (74, 7¢, 7c, 7r) = (0.330,0.112,0.337,0.221)
« H=28 distinct sequences (haplotypes)

* V=26 base positions showing variation

* Inference on (rescaled) mutation param ¢ and height of tree T

» Using Algorithm F, with previously discussed modifications



Results: Marjoram et al. 2003

Table 1. Comparison of the three approaches using s =V, £ =2

Estimated No « Compare rejection, estimated

Rejection* likelihood” likelihood? . . . .

F——— e - - likelihood, and likelihood-free

TMRCA T M CMC
1st quartile 1.07 1.11 1.08
Mean 1.74 1.82 1.75 ° —_

Median 1.48 1.55 1.53 Use Summary Stats S V
3rd quartile 2.14 2.23 2.19 .

Mutation rate 0 « Data accepted if |5 — V| < ¢
1st quartile 0.015 0.014 0.015 T
Mean 0.019 0.019 0.019 F :

. * First compare with ¢ = 2
Median 0.018 0.018 0.018
3rd quartile 0.023 0.022 0.022 .

*Algorithm D; based on 2,000 observations. Estimated SEM of T = 0.02. Observatlons

TBased on likelihoods estimated from B = 1,000 simulations; 1,000 observa-

tions after sampling every 200 steps. Estimated SEM of T = 0.03. ¢ MethOdS pI’OdUCe com parable T

*Algorithm F; based on 1,000 observations after sampling every 10,000 steps. .

Estimated SEM of T = 0.03. ° Comparable mutation rate

 Very different acceptance rates



Results: Marjoram et al. 2003

Table 2. Comparison of effects of £ using algorithm Fand S =V

£ = 2* g = 11 & = EIT

Acceptance rate 15.1% 11.1% 4.8%
TMRCA T

1st quartile 1.08 1.12 1.14

Mean 1.75 1.77 1.82

Median 1.52 1.52 1.55

3rd quartile 2.19 2.15 2.26
Mutation rate @

1st quartile 0.015 0.015 0.015

Mean 0.019 0.019 0.019

Median 0.018 0.018 0.018

3rd quartile 0.022 0.022 0.022

*Based on 1,000 observations after sampling every 10,000 steps.
TBased on 1,000 observations after sampling every 50,000 steps.

Look at varying ¢ for MCMC

» “Under coalescent prior, mean
heigh of tree is 1.97; posterior
means do not differ from this”

 Surprisingly, ¢ = O still has non-
negligible acceptance

» Acceptance rate pretty low overall



Results: Marjoram et al. 2003

Table 3. Comparison of the three approaches using § = (V, H), ¢

=2
Estimated No
Rejection* likelihood? likelihood?*
Acceptance rate 0.0008% 16.9% 0.2%
TMRCAT
1st quartile 0.51 0.50 0.54
Mean 0.69 0.67 0.70
Median 0.64 0.63 0.66
3rd quartile 0.81 0.80 0.81
Mutation rate #
1st quartile 0.024 0.025 0.024
Mean 0.029 0.031 0.029
Median 0.028 0.030 0.028
3rd quartile 0.033 0.035 0.033

*Algorithm D; based on 1,000 observations. Estimated SEM of T = 0.01.

"Based on likelihoods estimated from B = 200simulations; 1,000 observations
after sampling every 100 steps. Estimated SEM of T = 0.01.
*algorithm F; based on 1,000 observations after sampling every 50,000 steps.

Estimated SEM of T = 0.01.

Authors state “Estimated likelihood method is

at the edge of feasibility...”

Use stats S=(V,H) and ¢ = 2
accept If:

H—28/<e |V —26<e

Using more complicated MCMC of
Markovstova et al. (2000) mean height
estimated at 0.68

Using S=(V,H) yields results much
closer to this estimate

Rejection sampler essentially useless

Likelihood estimation still higher
acceptance, and closer estimate to
“true” result



Results: Marjoram et al. 2003

Varying MCMC threshold...

Table 4. Comparison of effects of £ using algorithm F and § =

(V. H) . L . Overall low acceptance
Acceptance rate 0.2% 0.04% 0.005%  Higher threshold yields more
TMRCA T accurate estimates (compared to
1st quartile 0.54 0.49 0.46 “ ”
Mean 0.70 0.64 0.59 truth )
Median 0.66 0.60 0.55 _
3rd quartile 0.81 0.74 0.69  Not feaS|b|e below 2.0
Mutation rate 6
1t quartile 0.024 0.025 0.026 . ' '
1st quart 0.024 0025 0.026 So, it works... with some
Median 0.028 0.030 0.031 caveats... and tuning... definitely
3rd quartile 0.033 0.035 0.034

not an out-of-the-box solution

*Based on 1,000 observations after sampling every 50,000 steps.
TBased on 1,000 observations after sampling every 200,000 steps.
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