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Administrative Items

• I will be on travel the rest of this week

• No office hours this week

• There is class on Wednesday

• Caleb Dahlke will be helping out with discussion Wednesday

• Moyeen presenting ABC paper (Sunnaker et al. 2013)



Motivation for Monte Carlo Methods

• Now consider computing the expectation of a function           
over       . 

• Recall that this looks like 

• How can we approximate or estimate E[f]?  

A bad plan…

Scales poorly with dimension of Z

A better plan…



Motivation for Monte Carlo Methods

 Real problems are typically complex and high dimensional.

 Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

 Typically we want posterior samples,

Don’t know marginal 
likelihood / normalizer

Unnormalized
posterior

 Typically,        is easier to evaluate (though not always)



Recall: Rejection Sampling

Assume
• Access to easy-to-sample distribution
• Constant k such that  

Proposal Distribution
Where we can use one of

methods on previous slides
to sample efficiently

Algorithm

Example Use Gaussian 
proposal q to draw samples 
from multimodal distribution p



A Basic Monte Carlo Rejection Sampler

Goal: Given data     sample latent    from posterior, 

Recall, Bayes’ Rule:
Prior Likelihood

Marginal Likelihood

A trivial Monte Carlo rejection sampler:
A1: Generate               from prior  
A2: Accept     with probability                       
A3: Return to A1



A Basic Monte Carlo Rejection Sampler

• It’s trivial to show that this has the correct target distribution,

A1: Generate               from prior  
A2: Accept     with probability                       
A3: Return to A1

• Special case of a Rejection Sampler with proposal

• In general, find an upper bound                     and accept with prob. 

What are some issues with this sampler?



Problems with the Basic Rejection Sampler

Problem 1: The prior is not a good proposal in general, since it 
is often very different from the posterior:

Problem 2: To compute the acceptance we need to be able to 
evaluate the likelihood:

Main Point: Many likelihood models are easily defined via 
simulation but cannot be explicitly evaluated.  

• Easy to simulate new data:
• Can’t evaluate likelihood at specific data / parameter:  



Implicit vs. Explicit Models

Typically we know, both, the prior and likelihood of the joint,

• We call this an explicit model
• An implicit model lacks a closed-form joint
• Models are usually implicit because we don’t know the likelihood

Two common reasons for implicit likelihood:

1) Need to integrate nuisance variables,

2) Likelihood is based on simulation

Can address this with
standard inference

Topic of this paper



Example: Mass-Spring Simulation

Represents mass and elasticity of a soft body using:A

B

YT: Gonkee: https://youtu.be/kyQP4t_wOGI

A, B : Two mass points
: Spring stiffness
: Rest length
: Damping factor

Simulate by using Hooke’s Law:

Force on Spring Deviation from rest length

Subset of these
represent parameters   

https://youtu.be/kyQP4t_wOGI


Example: Mass-Spring Simulation

Need to add damping force to avoid never-ending simulation,
A

B

YT: Gonkee: https://youtu.be/kyQP4t_wOGI

Total force is sum of spring and damping forces,

Unit vector of
Position A-to-B

Motion Vectors Damping Factor

Can easily simulate this in CPU using numerical integration, 
e.g. Euler’s method,

https://youtu.be/kyQP4t_wOGI


Example: Lattice-Spring Model

Extend mass-spring to multiple masses / springs

• Simulating data     from parameters    is easy
• Can simulate complicated physics like

Soft-body Tetris
• Simple setting is deterministic
• Simulation is much easier than writing down a 

function tying inputs to outputs,

• Can easily add noise to make random, but can’t write 
down likelihood,

https://www.youtube.com/watch?v=TydNQB-a2qM


Likelihood-Free Monte Carlo

• Unlike rejection sampler, never need to evaluate likelihood
• Probability of acceptance is proportional to      
• Prohibitively low acceptance for high-dimensional data
• Idea Make acceptance criteria weaker… accept within some distance:

B1: Generate               from prior  
B2: Simulate     from model with input
B3: Accept     if              ; Return to B1



Likelihood-Free Monte Carlo

• Will have higher acceptance than Algorithm B
• Target distribution is approximation of true posterior, 

• This still won’t work in high-dimensional data…too many rejections
• Idea Test a statistic S instead…

C4: Accept     if                     ; Return to C1 
C3: Calculate distance   

C1: Generate               from prior  
C2: Simulate     from model with input



Likelihood-Free Monte Carlo

• Typically higher acceptance rate than Algorithm C
• Target distribution is an even rougher approximation of true posterior, 

• Finding statistics that make this a good approximation is hard
• Standard statistics: mean, median, min, max, etc.

D5: Accept    if                    ; Return to D1 
D4: Calculate distance
D3: Compute statistic     of 

D1: Generate               from prior  
D2: Simulate     from model with input



Likelihood-Free Inference So Far

• Basic rejection sampling, requires likelihood (Alg. A)
• Accept sample only if simulated data matches real (Alg. B)
• Accept sample if data are close enough (Alg. C)
• Accept sample if statistics are close enough (Alg. D)

 Prior distribution is bad proposal in general
 Posterior is typically very different from prior
 Need a better proposal…

Draw sample from prior               :



Metropolis-Hastings MCMC

• MCMC gradually adjusts proposal towards posterior
• Stationary distribution of Markov chain is the true posterior
• But, M-H acceptance ratio requires evaluation of likelihood ratio

E3: Move to    with probability h, else stay 
at   ; Return to E1

E1: Propose move
E2: Calculate,



Approximating the Likelihood Ratio

M-H acceptance requires computing the likelihood ratio:

• Approximate each term by simulating B datasets,
• Then compute the empirical mean:

• Where I(.) is the Kroenecker delta
• A trivial case is when B=1



MCMC Without Likelihoods

Theorem in paper proves stationary distribution is still true posterior

F2: Generate      using inputs 

F5: Move to    with probability h, else stay 
at   ; Return to F1

F1: Propose move

F4: Calculate,
F3: If              goto F4 otherwise stay at



MCMC Without Likelihoods

To improve acceptance rate, continue if data is close enough:

F3’: If                       goto F4 otherwise stay at     

Or close enough with respect to a statistic:

F3’’: If                     goto F4 otherwise stay at     

• Just as in Algorithm B almost all samples will be rejected
• Especially if data are high-dimensional…

These are same changes made to rejection sampling, but for 
Metropolis-Hastings



Basics of DNA and Mutations
• Double-helix of nucleotide strands
• 4 nucleotides (A, C, G, T)
• Pairings A-T, G-C form double helix
• Replication of DNA can cause mutations
• Usually, mutations caught and discarded

[ genome.gov ]

[ KidsHealth ]



Population Genetics

[ Getty Images ]

• Sometimes mutations persist and are inherited by later generations
• This leads to divergence of populations
• Then to different species, etc.
• Question Given some DNA samples, what is the most recent ancestor?



Example: Population Genetics

Goal Given DNA samples determine mutation 
rates, times of mutation events, and most 
recent common ancestor (MRCA)

Coalescent Model (Simple Version)
• Assumes random mating of population size N
• Sample n < N sequences at present day
• Run time backward in units of           generations 

where      is variance of num. of offspring in 1 
generation

• At time      sample has j ancestors
•
• Stop when a single line of ancestry remains

[Markovtsova et al. (2000)]



Example: Population Genetics

Implementing Algorithm F
1) Propose mutation rate
2) Generate new tree topology    and set of mutations
3) Compare to samples do M-H acceptance

Naïve implementation leads to low acceptance…
• Augment state-space with tree topology     and 

times of coalescence on the topology
• Intuition Including more information in state 

space allows more local moves in that space and 
improves acceptance rate

• I.e. when we find a good state we make small 
changes that are even better

• Tradeoff Larger state space, smaller moves
[Markovtsova et al. (2000)]



Example: Population Genetics

• Characterize mutations by:
• Time they occur (i.e. branch they happen on)
• Their location on the genome

• Include number of mutations between two coalescent events
• Location of mutations chosen uniformly among tree branches during 

simulation

Additional algorithm details…

Marjoram et al. (2003) claim this is the least information needed to see 
reasonable acceptance



Example: Population Genetics

Update Process (proposal step in M-H)

• Update topology of tree (details in Markovstova et al. [2000])
• Update times between coalescent events by adding Gaussian noise
• Update mutation rate by adding uniform random noise
• New mutation rate and times define Poisson RV of number of 

mutations between pairs of coalescence events
• For new mutation choose location in genome and tree uniformly
• If number of mutations decreases randomly select some mutations and 

erase them



Results: Marjoram et al. 2003

Dataset / Methodology
• Sample n=63 sequences
• From Nuu-chah-nulth (Nootka) indigenous people of Pacific NW
• Sequences are 360 base pairs (bp) long
• Observed base frequencies
• H=28 distinct sequences (haplotypes)
• V=26 base positions showing variation
• Inference on (rescaled) mutation param    and height of tree T
• Using Algorithm F, with previously discussed modifications



Results: Marjoram et al. 2003

• Compare rejection, estimated 
likelihood, and likelihood-free 
MCMC

• Use summary stats S=V
• Data accepted if 
• First compare with 
Observations

• Methods produce comparable T
• Comparable mutation rate
• Very different acceptance rates



Results: Marjoram et al. 2003

Look at varying    for MCMC 
• “Under coalescent prior, mean 

heigh of tree is 1.97; posterior 
means do not differ from this”

• Surprisingly,            still has non-
negligible acceptance

• Acceptance rate pretty low overall



Results: Marjoram et al. 2003

Use stats S=(V,H) and           
accept if:

• Using more complicated MCMC of 
Markovstova et al. (2000) mean height 
estimated at 0.68

• Using S=(V,H) yields results much 
closer to this estimate

• Rejection sampler essentially useless
• Likelihood estimation still higher 

acceptance, and closer estimate to 
“true” result

Authors state “Estimated likelihood method is
at the edge of feasibility…”



Results: Marjoram et al. 2003

Varying MCMC threshold…
• Overall low acceptance
• Higher threshold yields more 

accurate estimates (compared to 
“truth”)

• Not feasible below 2.0
• So, it works… with some 

caveats… and tuning… definitely 
not an out-of-the-box solution
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