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Abstract

Bayesian inference is now widely established as one of the principal foundations for machine learn-
ing. In practice, exact inference is rarely possible, and soa variety of approximation techniques
have been developed, one of the most widely used being a deterministic framework called varia-
tional inference. In this paper we introduce Variational Message Passing (VMP), a general purpose
algorithm for applying variational inference to Bayesian Networks. Like belief propagation, VMP
proceeds by sending messages between nodes in the network and updating posterior beliefs us-
ing local operations at each node. Each such update increases a lower bound on the log evidence
(unless already at a local maximum). In contrast to belief propagation, VMP can be applied to a
very general class of conjugate-exponential models because it uses a factorised variational approx-
imation. Furthermore, by introducing additional variational parameters, VMP can be applied to
models containing non-conjugate distributions. The VMP framework also allows the lower bound
to be evaluated, and this can be used both for model comparison and for detection of convergence.
Variational message passing has been implemented in the form of a general purpose inference en-
gine called VIBES (‘Variational Inference for BayEsian networkS’) which allows models to be
specified graphically and then solved variationally without recourse to coding.

Keywords: Bayesian networks, variational inference, message passing

1. Introduction

Variational inference methods (Neal and Hinton, 1998; Jordan et al., 1998) have been used suc-
cessfully for a wide range of models, and new applications are constantly being explored. In each
previous application, the equations for optimising the variational approximationhave been worked
out by hand, a process which is both time consuming and error prone. Forseveral other inference
methods, general purpose algorithms have been developed which can beapplied to large classes of
probabilistic models. For example,belief propagationcan be applied to any acyclic discrete net-
work (Pearl, 1986) or mixed-Gaussian network (Lauritzen, 1992), and the Monte Carlo algorithm
described in Thomas et al. (1992) can perform Gibbs sampling in almost anyBayesian network.
Similarly, expectation propagation(Minka, 2001) has been successfully applied to a wide range of
models. Each of these algorithms relies on being able to decompose the required computation into
calculations that are local to each node in the graph and which require onlymessages passed along
the edges connected to that node.
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However, Monte Carlo methods are computationally very intensive, and alsosuffer from dif-
ficulties in diagnosing convergence, while belief propagation is only guaranteed to converge for
tree-structured graphs. Expectation propagation is limited to certain classesof model for which the
required expectations can be evaluated, is also not guaranteed to converge in general, and is prone
to finding poor solutions in the case of multi-modal distributions. For these reasons the framework
of variational inference has received much attention.

In this paper, the variational message passing algorithm is developed, which optimises a varia-
tional bound using a set of local computations for each node, together witha mechanism for pass-
ing messages between the nodes. VMP allows variational inference to be applied automatically
to a large class of Bayesian networks, without the need to derive application-specific update equa-
tions. In VMP, the messages are exponential family distributions, summarised either by their natural
parameter vector (for child-to-parent messages) or by a vector of moments (for parent-to-child mes-
sages). These messages are defined so that the optimal variational distribution for a node can be
found by summing the messages from its children together with a function of the messages from its
parents, where this function depends on the conditional distribution for thenode.

The VMP framework applies to models described by directed acyclic graphsin which the con-
ditional distributions at each node are members of the exponential family, which therefore includes
discrete, Gaussian, Poisson, gamma, and many other common distributions as special cases. For
example, VMP can handle a general DAG of discrete nodes, or of linear-Gaussian nodes, or an ar-
bitrary combination of the two provided there are no links going from continuous to discrete nodes.
This last restriction can be lifted by introducing further variational bounds, as we shall discuss. Fur-
thermore, the marginal distribution of observed data represented by the graph is not restricted to be
from the exponential family, but can come from a very broad class of distributions built up from
exponential family building blocks. The framework therefore includes manywell known machine
learning algorithms such as hidden Markov models, probabilistic PCA, factoranalysis and Kalman
filters, as well as mixtures and hierarchical mixtures of these.

Note that, since we work in a fully Bayesian framework, latent variables andparameters appear
on an equal footing (they are all unobserved stochastic variables whichare marginalised out to make
predictions). If desired, however, point estimates for parameters can be made simply by maximising
the same bound as used for variational inference.

As an illustration of the power of the message passing viewpoint, we use VMP within a software
tool called VIBES (Variational Inference in BayEsian networkS) which allows a model to be speci-
fied by drawing its graph using a graphical interface, and which then performs variational inference
automatically on this graph.

The paper is organised as follows. Section 2 gives a brief review of variational inference meth-
ods. Section 3 contains the derivation of the variational message passing algorithm, along with an
example of its use. In Section 4 the class of models which can be handled by thealgorithm is de-
fined, while Section 5 describes the VIBES software. Some extensions to thealgorithm are given
in Section 6, and Section 7 concludes with an overall discussion and suggestions for future research
directions.

2. Variational Inference

In this section, variational inference will be reviewed briefly with particularfocus on the case where
the variational distribution has a factorised form. The random variables in the model will be denoted
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by X = (V,H) whereV are the visible (observed) variables andH are the hidden (latent) variables.
We assume that the model has the form of a Bayesian network and so the jointdistributionP(X)
can be expressed in terms of the conditional distributions at each nodei,

P(X) = ∏
i

P(Xi |pai) (1)

where pai denotes the set of variables corresponding to the parents of nodei andXi denotes the
variable or group of variables associated with nodei.

Ideally, we would like to perform exact inference within this model to find posterior marginal
distributions over individual latent variables. Unfortunately, exact inference algorithms, such as the
junction tree algorithm (Cowell et al., 1999), are typically only applied to discrete or linear-Gaussian
models and are computationally intractable for all but the simplest models. Instead, we must turn
to approximate inference methods. Here, we consider the deterministic approximation method of
variational inference.

The goal in variational inference is to find a tractable variational distributionQ(H) that closely
approximates the true posterior distributionP(H |V). To do this we note the following decomposi-
tion of the log marginal probability of the observed data, which holds for anychoice of distribution:
Q(H)

lnP(V) = L(Q)+KL(Q||P). (2)

Here

L(Q) = ∑
H

Q(H) ln
P(H,V)

Q(H)
(3)

KL(Q||P) = −∑
H

Q(H) ln
P(H |V)

Q(H)

and the sums are replaced by integrals in the case of continuous variables.Here KL(Q||P) is the
Kullback-Leibler divergence between the true posteriorP(H |V) and the variational approximation
Q(H). Since this satisfies KL(Q||P) > 0 it follows from (2) that the quantityL(Q) forms a lower
bound on lnP(V).

We now choose some family of distributions to representQ(H) and then seek a member of that
family that maximises the lower boundL(Q) and hence minimises the Kullback-Leibler divergence
KL(Q||P). If we allow Q(H) to have complete flexibility then we see that the maximum of the
lower bound occurs when the Kullback-Leibler divergence is zero. Inthis case, the variational
posterior distribution equals the true posterior andL(Q) = lnP(V). However, working with the
true posterior distribution is computationally intractable (otherwise we wouldn’tbe resorting to
variational methods). We must therefore consider a more restricted family ofQ distributions which
has the property that the lower bound (3) can be evaluated and optimised efficiently and yet which
is still sufficiently flexible as to give a good approximation to the true posterior distribution.

This method leads to minimisation of ‘exclusive’ divergence KL(Q||P) rather than the ‘inclu-
sive’ divergence KL(P||Q). Minimising the exclusive divergence can lead to aQ which ignores
modes ofP. However, minimising the inclusive divergence can lead toQ assigning posterior mass
to regions whereP has vanishing density. If the latter behaviour is preferred, then there are al-
ternative approximation techniques for minimising the inclusive divergence,including expectation
propagation (Minka, 2001).
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2.1 Factorised Variational Distributions

We wish to choose a variational distributionQ(H) with a simpler structure than that of the model,
so as to make calculation of the lower boundL(Q) tractable. One way to simplify the dependency
structure is by choosing a variational distribution where disjoint groups ofvariables are independent.
This is equivalent to choosingQ to have a factorised form

Q(H) = ∏
i

Qi(H i), (4)

where{H i} are the disjoint groups of variables. This approximation has been successfully used
in many applications of variational methods (Attias, 2000; Ghahramani and Beal, 2001; Bishop,
1999). Substituting (4) into (3) gives

L(Q) = ∑
H

∏
i

Qi(H i) lnP(H,V)−∑
i

∑
H i

Qi(H i) lnQi(H i).

We now separate out all terms in one factorQ j ,

L(Q) = ∑
H j

Q j(H j)〈lnP(H,V)〉∼Q j (H j ) +H(Q j)+ ∑
i6= j

H(Qi)

= −KL(Q j ||Q
?
j )+ terms not inQ j (5)

whereH denotes entropy and we have introduced a new distributionQ?
j , defined by

lnQ?
j (H j) = 〈lnP(H,V)〉∼Q(H j ) +const. (6)

and〈·〉∼Q(H j ) denotes an expectation with respect to all factors exceptQ j(H j). The bound is max-
imised with respect toQ j when the KL divergence in (5) is zero, which occurs whenQ j = Q?

j .
Therefore, we can maximise the bound by settingQ j equal toQ?

j . Taking exponentials of both sides
we obtain

Q?
j (H j) =

1
Z

exp〈lnP(H,V)〉∼Q(H j ), (7)

whereZ is the normalisation factor needed to makeQ?
j a valid probability distribution. Note that the

equations for all of the factors are coupled since the solution for eachQ j(H j) depends on expec-
tations with respect to the other factorsQi6= j . The variational optimisation proceeds by initialising
each of theQ j(H j) and then cycling through each factor in turn replacing the current distribution
with a revised estimate given by (7).

3. Variational Message Passing

In this section, the variational message passing algorithm will be derived and shown to optimise
a factorised variational distribution using a message passing procedure on a graphical model. For
the initial derivation, it will be assumed that the variational distribution is factorised with respect to
each hidden variableHi and so can be written

Q(H) = ∏
i

Qi(Hi).

From (6), the optimised form of thejth factor is given by

lnQ?
j (H j) = 〈lnP(H,V)〉∼Q(H j ) +const.
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. . .

. . .

. . . . . .

chj

cp(j)
k ≡ pak\H j
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Figure 1: A key observation is that the variational update equation for a nodeH j depends only on
expectations over variables in the Markov blanket of that node (shown shaded), defined
as the set of parents, children and co-parents of that node.

We now substitute in the form of the joint probability distribution of a Bayesian network, as given
in (1),

lnQ?
j (H j) =

〈
∑i

lnP(Xi |pai)
〉
∼Q(H j )

+const.

Any terms in the sum overi that do not depend onH j will be constant under the expectation and
can be subsumed into the constant term. This leaves only the conditionalP(H j |paj) together with
the conditionals for all the children ofH j , as these haveH j in their parent set,

lnQ?
j (H j) = 〈lnP(H j |paj)〉∼Q(H j ) +∑k∈chj

〈lnP(Xk |pak)〉∼Q(H j ) +const. (8)

where chj are the children of nodej in the graph. Thus, the expectations required to evaluateQ?
j

involve only those variables lying in the Markov blanket ofH j , consisting of its parents, children

and co-parents1 cp(j)
k . This is illustrated in the form of a directed graphical model in Figure 1. Note

that we use the notationXk to denote both a random variable and the corresponding node in the
graph. The optimisation ofQ j can therefore be expressed as a local computation at the nodeH j .
This computation involves the sum of a term involving the parent nodes, alongwith one term from
each of the child nodes. These terms can be thought of as ‘messages’ from the corresponding nodes.
Hence, we can decompose the overall optimisation into a set of local computations that depend only
on messages from neighbouring (i.e. parent and child) nodes in the graph.

3.1 Conjugate-Exponential Models

The exact form of the messages in (8) will depend on the functional formof the conditional distri-
butions in the model. It has been noted (Attias, 2000; Ghahramani and Beal,2001) that important
simplifications to the variational update equations occur when the distributions of variables, condi-

1. The co-parents of a nodeX are all the nodes with at least one child which is also a child ofX (excludingX itself).
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tioned on their parents, are drawn from the exponential family and are conjugate2 with respect to
the distributions over these parent variables. A model where both of theseconstraints hold is known
as aconjugate-exponentialmodel.

A conditional distribution is in the exponential family if it can be written in the form

P(X |Y) = exp[φ(Y)Tu(X)+ f (X)+g(Y)] (9)

whereφ(Y) is called thenatural parametervector andu(X) is called thenatural statisticvector. The
termg(Y) acts as a normalisation function that ensures the distribution integrates to unity for any
given setting of the parametersY. The exponential family contains many common distributions,
including the Gaussian, gamma, Dirichlet, Poisson and discrete distributions. The advantages of
exponential family distributions are that expectations of their logarithms are tractable to compute
and their state can be summarised completely by the natural parameter vector. The use of conjugate
distributions means that the posterior for each factor has the same form as the prior and so learning
changes only the values of the parameters, rather than the functional form of the distribution.

If we know the natural parameter vectorφ(Y) for an exponential family distribution, then we
can find the expectation of the natural statistic vector with respect to the distribution. Rewriting (9)
and defining̃g as a reparameterisation ofg in terms ofφ gives,

P(X |φ) = exp[φTu(X)+ f (X)+ g̃(φ)].

We integrate with respect toX,
Z

X
exp[φTu(X)+ f (X)+ g̃(φ)]dX =

Z

X
P(X |φ)dX = 1

and then differentiate with respect toφ
Z

X

d
dφ

exp[φTu(X)+ f (X)+ g̃(φ)]dX =
d
dφ

(1) = 0

Z

X
P(X |φ)

[
u(X)+

dg̃(φ)

dφ

]
dX = 0.

And so the expectation of the natural statistic vector is given by

〈u(X)〉P(X |φ) = −
dg̃(φ)

dφ
. (10)

We will see later that the factors of ourQ distribution will also be in the exponential family and will
have the same natural statistic vector as the corresponding factor ofP. Hence, the expectation ofu
under theQ distribution can also be found using (10).

3.2 Optimisation of Q in Conjugate-Exponential Models

We will now demonstrate how the optimisation of the variational distribution can be carried out,
given that the model is conjugate-exponential. We consider the general case of optimising a factor

2. A parent distributionP(X |Y) is said to beconjugateto a child distributionP(W |X) if P(X |Y) has the same functional
form, with respect toX, asP(W |X).
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Figure 2: Part of a graphical model showing a nodeY, the parents and children ofY, and the co-
parents ofY with respect to a child nodeX.

Q(Y) corresponding to a nodeY, whose children includeX, as illustrated in Figure 2. From (9), the
log conditional probability of the variableY given its parents can be written

lnP(Y |paY) = φY(paY)TuY(Y)+ fY(Y)+gY(paY). (11)

The subscriptY on each of the functionsφY,uY, fY,gY is required as these functions differ for
different members of the exponential family and so need to be defined separately for each node.

Consider a nodeX ∈ chY which is a child ofY. The conditional probability ofX given its parents
will also be in the exponential family and so can be written in the form

lnP(X |Y,cpY) = φX(Y,cpY)TuX(X)+ fX(X)+gX(Y,cpY) (12)

where cpY are the co-parents ofY with respect toX, in other words, the set of parents ofX excluding
Y itself. The quantityP(Y |paY) in(11) can be thought of as a prior overY, andP(X |Y,cpY) as a
(contribution to) the likelihood ofY.

E
xa

m
pl

e

If X is Gaussian distributed with meanY and precisionβ, it follows that the co-parent set cpY
contains onlyβ, and the log conditional forX is

lnP(X |Y,β) =

[
βY

−β/2

]T [
X
X2

]
+ 1

2(lnβ−βY2− ln2π). (13)

Conjugacy requires that the conditionals of (11) and (12) have the same functional form with
respect toY, and so the latter can be rewritten in terms ofuY(Y) by defining functionsφXY andλ as
follows

lnP(X |Y,cpY) = φXY(X,cpY)TuY(Y)+λ(X,cpY). (14)

It may appear from this expression that the functionφXY depends on the form of the parent con-
ditional P(Y |paY) and so cannot be determined locally atX. This is not the case, because the
conjugacy constraint dictatesuY(Y) for any parentY of X, implying thatφXY can be found directly
from the form of the conditionalP(X |paX).
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E
xa

m
pl

e
Continuing the above example, we can findφXY by rewriting the log conditional in terms ofY to
give

lnP(X |Y,β) =

[
βX

−β/2

]T [
Y
Y2

]
+ 1

2(lnβ−βX2− ln2π),

which lets us defineφXY and dictate whatuY(Y) must be to enforce conjugacy,

φXY(X,β)
def
=

[
βX

−β/2

]
, uY(Y) =

[
Y
Y2

]
. (15)

From (12) and (14), it can be seen that lnP(X |Y,cpY) is linear inuX(X) anduY(Y) respectively.
Conjugacy also dictates that this log conditional will be linear inuZ(Z) for each co-parentZ ∈ cpY.
Hence, lnP(X |Y,cpY) must be a multi-linear3 function of the natural statistic functionsu of X and
its parents. This result is general, for any variableA in a conjugate-exponential model, the log
conditional lnP(A|paA) must be a multi-linear function of the natural statistic functions ofA and its
parents.

E
xa

m
pl

e

The log conditional lnP(X |Y,β) in (13) is multi-linear in each of the vectors,

uX(X) =

[
X
X2

]
, uY(Y) =

[
Y
Y2

]
, uβ(β) =

[
β

lnβ

]
.

Returning to the variational update equation (8) for a nodeY, it follows that all the expectations
on the right hand side can be calculated in terms of the〈u〉 for each node in the Markov blanket of
Y. Substituting for these expectations, we get

lnQ∗
Y(Y) =

〈
φY(paY)TuY(Y)+ fY(Y)+gY(paY)

〉
∼Q(Y)

+ ∑
k∈chY

〈
φXY(Xk,cpk)

TuY(Y)+λ(Xk,cpk)
〉
∼Q(Y)

+const.

which can be rearranged to give

lnQ∗
Y(Y) =

[
〈φY(paY)〉∼Q(Y) + ∑

k∈chY

〈φXY(Xk,cpk)〉∼Q(Y)

]T

uY(Y)

+ fY(Y)+const. (16)

It follows that Q∗
Y is an exponential family distribution of the same form asP(Y |paY) but with a

natural parameter vectorφ∗
Y such that

φ∗
Y = 〈φY(paY)〉+ ∑

k∈chY

〈φXY(Xk,cpk)〉 (17)

where all expectations are with respect toQ. As explained above, the expectations ofφY and each
φXY are multi-linear functions of the expectations of the natural statistic vectors corresponding to
their dependent variables. It is therefore possible to reparameterise these functions in terms of these

3. A function f is a multi-linear function of variablesa,b. . . if it varies linearly with respect to each variable, for
example,f (a,b) = ab+ 3b is multi-linear ina andb. Although, strictly, this function isaffine in a because of the
constant term, we follow common usage and refer to it as linear.
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expectations

φ̃Y

(
{〈ui〉}i∈paY

)
= 〈φY(paY)〉

φ̃XY

(
〈uk〉,{〈u j〉} j∈cpk

)
= 〈φXY(Xk,cpk)〉 .

The final step is to show that we can compute the expectations of the natural statistic vectorsu under
Q. From (16) any variableA has a factorQA with the same exponential family form asP(A|paA).
Hence, the expectations ofuA can be found from the natural parameter vector of that distribution
using (10). In the case whereA is observed, the expectation is irrelevant and we can simply calculate
uA(A) directly.

E
xa

m
pl

e

In (15), we definedφXY(X,β) =

[
βX

−β/2

]
. We now reparameterise it as

φ̃XY

(
〈uX〉,〈uβ〉

) def
=

[
〈uβ〉0〈uX〉0

− 1
2〈uβ〉0

]

where〈uX〉0 and〈uβ〉0 are the first elements of the vectors〈uX〉 and〈uβ〉 respectively (and so are

equal to〈X〉 and〈β〉). As required, we have reparameterisedφXY into a functionφ̃XY which is a
multi-linear function of natural statistic vectors.

3.3 Definition of the Variational Message Passing Algorithm

We have now reached the point where we can specify exactly what formthe messages between
nodes must take and so define the variational message passing algorithm. The message from a
parent nodeY to a child nodeX is just the expectation underQ of the natural statistic vector

mY→X = 〈uY〉. (18)

The message from a child nodeX to a parent nodeY is

mX→Y = φ̃XY

(
〈uX〉,{mi→X}i∈cpY

)
(19)

which relies onX having received messages previously from all the co-parents. If anynodeA is
observed then the messages are as defined above but with〈uA〉 replaced byuA.

E
xa

m
pl

e

If X is Gaussian distributed with conditionalP(X |Y,β), the messages to its parentsY andβ are

mX→Y =

[
〈β〉〈X〉
−〈β〉/2

]
, mX→β =

[
− 1

2

(〈
X2

〉
−2〈X〉〈Y〉+

〈
Y2

〉)
1
2

]

and the message fromX to any child node is

[
〈X〉〈
X2

〉
]
.

When a nodeY has received messages from all parents and children, we can finds its updated
posterior distributionQ∗

Y by finding its updated natural parameter vectorφ∗
Y. This vectorφ∗

Y is
computed from all the messages received at a node using

φ∗
Y = φ̃Y

(
{mi→Y}i∈paY

)
+ ∑

j∈chY

m j→Y, (20)
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which follows from (17). The new expectation of the natural statistic vector〈uY〉Q∗
Y

can then be
found, as it is a deterministic function ofφ∗

Y.
The variational message passing algorithm uses these messages to optimise thevariational dis-

tribution iteratively, as described in Algorithm 1 below. This algorithm requires that the lower
boundL(Q) be evaluated, which will be discussed in Section 3.6.

Algorithm 1 The variational message passing algorithm

1. Initialise each factor distributionQ j by initialising the corresponding moment vector
〈u j(Xj)〉.

2. For each nodeXj in turn,

• Retrieve messages from all parent and child nodes, as defined in (18) and (19). This will
require child nodes to retrieve messages from the co-parents ofXj .

• Compute updated natural parameter vectorφ∗
j using (20).

• Compute updated moment vector〈u j(Xj)〉 given the new setting of the parameter vector.

3. Calculate the new value of the lower boundL(Q) (if required).

4. If the increase in the bound is negligible or a specified number of iterationshas been reached,
stop. Otherwise repeat from step 2.

3.4 Example: the Univariate Gaussian Model

To illustrate how variational message passing works, let us apply it to a modelwhich represents a
set of observed one-dimensional data{xn}

N
n=1 with a univariate Gaussian distribution of meanµ and

precisionγ,

P(x |H ) =
N

∏
n=1

N (xn |µ,γ−1).

We wish to infer the posterior distribution over the parametersµ andγ. In this simple model the
exact solution is tractable, which will allow us to compare the approximate posterior with the true
posterior. Of course, for any practical application of VMP, the exact posterior would not be tractable
otherwise we would not be using approximate inference methods.

In this model, the conditional distribution of each data pointxn is a univariate Gaussian, which
is in the exponential family and so its logarithm can be expressed in standard form as

lnP(xn |µ,γ−1) =

[
γµ

−γ/2

]T [
xn

x2
n

]
+

1
2
(lnγ− γµ2− ln2π)

and soux(xn) = [xn,x2
n]

T. This conditional can also be written so as to separate out the dependencies
onµ andγ

lnP(xn |µ,γ−1) =

[
γxn

−γ/2

]T [
µ
µ2

]
+

1
2
(lnγ− γx2

n− ln2π) (21)
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N N(b) (c) (d)(a) NN

µ γµ γµ

{mxn→µ} {mxn→γ}
mµ→xnmγ→xn

γ µ γ

xn xn xn xn

Figure 3: (a)-(d) Message passing procedure for variational inference in a univariate Gaussian
model. The box around thexi node denotes aplate, which indicates that the contained
node and its connected edges are duplicatedN times. The braces around the messages
leaving the plate indicate that a set ofN distinct messages are being sent.

=

[
−1

2(xn−µ)2

1
2

]T [
γ

lnγ

]
− ln2π (22)

which shows that, for conjugacy,uµ(µ) must be[µ,µ2]T anduγ(γ) must be[γ, lnγ]T or linear trans-
forms of these.4 If we use a separate conjugate prior for each parameter thenµmust have a Gaussian
prior andγ a gamma prior since these are the exponential family distributions with these natural
statistic vectors. Alternatively, we could have chosen a normal-gamma prior over both parameters
which leads to a slightly more complicated message passing procedure. We define the parameter
priors to have hyper-parametersm, β, a andb, so that

lnP(µ|m,β) =

[
βm

−β/2

]T [
µ
µ2

]
+

1
2
(lnβ−βm2− ln2π)

lnP(γ |a,b) =

[
−b

a−1

]T [
γ

lnγ

]
+alnb− lnΓ(a).

3.4.1 VARIATIONAL MESSAGEPASSING IN THE UNIVARIATE GAUSSIAN MODEL

We can now apply variational message passing to infer the distributions overµ andγ variationally.
The variational distribution is fully factorised and takes the form

Q(µ,γ) = Qµ(µ)Qγ(γ).

We start by initialisingQµ(µ) andQγ(γ) and find initial values of〈uµ(µ)〉 and〈uγ(γ)〉. Let us
choose to updateQµ(µ) first, in which case variational message passing will proceed as follows
(illustrated in Figure 3a-d).

(a) As we wish to updateQµ(µ), we must first ensure that messages have been sent to the children
of µ by any co-parents. Thus, messagesmγ→xn are sent fromγ to each of the observed nodes
xn. These messages are the same, and are just equal to〈uγ(γ)〉 = [〈γ〉,〈lnγ〉]T, where the
expectation are with respect to the initial setting ofQγ.

4. To prevent the need for linear transformation of messages, a normalised form of natural statistic vectors will always
be used, for example[µ,µ2]T or [γ, lnγ]T.
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(b) Eachxn node has now received messages from all co-parents ofµ and so can send a message
to µ which is the expectation of the natural parameter vector in (21),

mxn→µ =

[
〈γ〉xn

−〈γ〉/2

]
.

(c) Nodeµhas now received its full complement of incoming messages and can update itsnatural
parameter vector,

φ∗
µ =

[
βm

−β/2

]
+

N

∑
n=1

mxn→µ.

The new expectation〈uµ(µ)〉 can then be computed under the updated distributionQ∗
µ and

sent to eachxn as the messagemµ→xn = [〈µ〉,〈µ2〉]T.

(d) Finally, eachxn node sends a message back toγ which is

mxn→γ =

[
−1

2(x2
n−2xn〈µ〉+ 〈µ2〉)

1
2

]

andγ can update its variational posterior

φ∗
γ =

[
−b

a−1

]
+

N

∑
n=1

mxn→γ.

As the expectation ofuγ(γ) has changed, we can now go back to step (a) and send an updated
message to eachxn node and so on. Hence, in variational message passing, the message passing
procedure is repeated again and again until convergence (unlike in belief propagation on a junction
tree where the exact posterior is available after a message passing is performed once). Each round
of message passing is equivalent to one iteration of the update equations in standard variational
inference.

Figure 4 gives an indication of the accuracy of the variational approximation in this model,
showing plots of both the true and variational posterior distributions for a toyexample. The differ-
ence in shape between the two distributions is due to the requirement thatQ be factorised. Because
KL(Q||P) has been minimised, the optimalQ is the factorised distribution which lies slightlyinside
P.

3.5 Initialisation and Message Passing Schedule

The variational message passing algorithm is guaranteed to converge to a local minimum of the KL
divergence. As with many approximate inference algorithms, including Expectation-Maximisation
and Expectation Propagation, it is important to have a good initialisation to ensure that the local
minimum that is found is sufficiently close to the global minimum. What makes a good initialisation
will depend on the model. In some cases, initialising each factor to a broad distribution will suffice,
whilst in others it may be necessary to use a heuristic, such as using K-means to initialise a mixture
model.

The variational distribution in the example of Section 3.4 contained only two factors and so mes-
sages were passed back-and-forth so as to update these alternately. In fact, unlike belief propagation,
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Figure 4: Contour plots of the variational and true posterior over the meanµ and precisionγ of
a Gaussian distribution, given four samples fromN (x|5,1). The parameter priors are
P(µ) = N (0,1000) andP(γ) = Gamma(0.001,0.001).

messages in VMP can be passed according to a very flexible schedule. Atany point, any factor can
be selected and it can be updated locally using only messages from its neighbours and co-parents.
There is no requirement that factors be updated in any particular order.However, changing the up-
date order can change which stationary point the algorithm converges to,even if the initialisation is
unchanged.

Another constraint on belief propagation is that it is only exact for graphs which are trees and
suffers from double-counting if loops are included. VMP does not have this restriction and can be
applied to graphs of general form.

3.6 Calculation of the Lower BoundL(Q)

The variational message passing algorithm makes use of the lower boundL(Q) as a diagnostic of
convergence. Evaluating the lower bound is also useful for performingmodel selection, or model
averaging, because it provides an estimate of the log evidence for the model.

The lower bound can also play a useful role in helping to check the correctness both of the ana-
lytical derivation of the update equations and of their software implementation,simply by evaluating
the bound after updating each factor in the variational posterior distributionand checking that the
value of the bound does not decrease. This can be taken a stage further (Bishop and Svensén, 2003)
by using numerical differentiation applied to the lower bound. After each update, the gradient of the
bound is evaluated in the subspace corresponding to the parameters of theupdated factor, to check
that it is zero (within numerical tolerances). This requires that the differentiation take account of
any constraints on the parameters (for instance that they be positive or that they sum to one). These
checks, of course, provide necessary but not sufficient conditions for correctness. Also, they add
computational cost so would typically only be employed whilst debugging the implementation.

In previous applications of variational inference, however, the evaluation of the lower bound
has typically been done using separate code from that used to implement the update equations.
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Although the correctness tests discussed above also provide a check onthe mutual consistency of
the two bodies of code, it would clearly be more elegant if their evaluation could be unified.

This is achieved naturally in the variational message passing framework by providing a way to
calculate the bound automatically, as will now be described. To recap, the lower bound on the log
evidence is defined to be

L(Q) = 〈lnP(H,V)〉−〈lnQ(H)〉 ,

where the expectations are with respect toQ. In a Bayesian network, with a factorisedQdistribution,
the bound becomes

L(Q) = ∑
i

〈lnP(Xi |pai)〉− ∑
i∈H

〈lnQi(Hi)〉

def
= ∑

i

Li

where it has been decomposed into contributions from the individual nodes {Li}. For a particular
latent variable nodeH j , the contribution is

L j =
〈
lnP(H j |paj)

〉
−

〈
lnQ j(H j)

〉
.

Given that the model is conjugate-exponential, we can substitute in the standard form for the expo-
nential family

L j = 〈φ j(paj)
T〉〈u j(H j)〉+ 〈 f j(H j)〉+ 〈g j(paj)〉

−
[
φ∗

j
T〈u j(H j)〉+ 〈 f j(H j)〉+ g̃ j(φ∗

j )
]
,

where the functioñg j is a reparameterisation ofg j so as to make it a function of the natural parameter
vector rather than the parent variables. This expression simplifies to

L j = (〈φ j(paj)〉−φ∗
j )

T〈u j(H j)〉+ 〈g j(paj)〉− g̃ j(φ∗
j ). (23)

Three of these terms are already calculated during the variational messagepassing algorithm:〈φ j(paj)〉
andφ∗

j when finding the posterior distribution overH j in (20), and〈u j(H j)〉 when calculating out-
going messages fromH j . Thus, considerable saving in computation are made compared to when
the bound is calculated separately.

Each observed variableVk also makes a contribution to the bound

Lk = 〈lnP(Vk |pak)〉

= 〈φk(pak)〉
Tuk(Vk)+ fk(Vk)+ g̃k (〈φk(pak)〉) .

Again, computation can be saved by computinguk(Vk) during the initialisation of the message
passing algorithm.

Example 1 Calculation of the Bound for the Univariate Gaussian Model
In the univariate Gaussian model, the bound contribution from each observed node xn is

Lxn =

[
〈γ〉〈µ〉
−〈γ〉/2

]T [
xn

x2
n

]
+

1
2

(
〈lnγ〉−〈γ〉〈µ2〉− ln2π

)
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and the contributions from the parameter nodes µ andγ are

Lµ =

[
βm−β′m′

−β/2+β′/2

]T [
〈µ〉
〈µ2〉

]
+

1
2

(
lnβ−βm2− lnβ′ +β′m′2)

Lγ =

[
−b+b′

a−a′

]T [
〈γ〉
〈lnγ〉

]
+alnb− lnΓ(a)−a′ lnb′ + lnΓ(a′).

The bound for this univariate Gaussian model is given by the sum of the contributions from the µ
andγ nodes and all xn nodes.

4. Allowable Models

The variational message passing algorithm can be applied to a wide class of models, which will be
characterised in this section.

4.1 Conjugacy Constraints

The main constraint on the model is that each parent–child edge must satisfy the constraint of
conjugacy. Conjugacy allows a Gaussian variable to have a Gaussian parent for its mean and we
can extend this hierarchy to any number of levels. Each Gaussian node has a gamma parent as the
distribution over its precision. Furthermore, each gamma distributed variable can have a gamma
distributed scale parameterb, and again this hierarchy can be extended to multiple levels.

A discrete variable can have multiple discrete parents with a Dirichlet prior over the entries
in the conditional probability table. This allows for an arbitrary graph of discrete variables. A
variable with an Exponential or Poisson distribution can have a gamma prior over its scale or mean
respectively, although, as these distributions do not lead to hierarchies,they may be of limited
interest.

These constraints are listed in Table 1. This table can be encoded in implementations of the
variational message passing algorithm and used during initialisation to check the conjugacy of the
supplied model.

4.1.1 TRUNCATED DISTRIBUTIONS

The conjugacy constraint does not put any restrictions on thefX(X) term in the exponential family
distribution. If we choosefX to be a step function

fX(X) =

{
0 : X ≥ 0

−∞ : X < 0

then we end up with a rectified distribution, so thatP(X |θ) = 0 for X < 0. The choice of such a
truncated distribution will change the form of messages to parent nodes (as thegX normalisation
function will also be different) but will not change the form of messages that are passed to child
nodes. However, truncation will affect how the moments of the distribution are calculated from
the updated parameters, which will lead to different values of child messages. For example, the
moments of a rectified Gaussian distribution are expressed in terms of the standard ‘erf’ function.
Similarly, we can consider doubly truncated distributions which are non-zero only over some finite
interval, as long as the calculation of the moments and parent messages remainstractable. One
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Distribution 1st parent Conjugate dist. 2nd parent Conjugate dist.

Gaussian meanµ Gaussian precisionγ gamma
gamma shapea None scaleb gamma
discrete probabilitiesp Dirichlet parents{xi} discrete
Dirichlet pseudo-countsa None

Exponential scalea gamma
Poisson meanλ gamma

Table 1: Distributions for each parameter of a number of exponential family distributions if the
model is to satisfy conjugacy constraints. Conjugacy also holds if the distributions are
replaced by their multivariate counterparts e.g. the distribution conjugate to theprecision
matrix of a multivariate Gaussian is a Wishart distribution. Where “None” is specified, no
standard distribution satisfies conjugacy.

potential problem with the use of a truncated distribution is that no standard distributions may exist
which are conjugate for each distribution parameter.

4.2 Deterministic Functions

We can considerably enlarge the class of tractable models if variables are allowed to be defined as
deterministic functions of the states of their parent variables. This is achieved by adding determin-
istic nodes into the graph, as have been used to similar effect in the BUGS software (see Section 5).

Consider a deterministic nodeX which has stochastic parentsY = {Y1, . . . ,YM} and which has
a stochastic child nodeZ. The state ofX is given by a deterministic functionf of the state of its
parents, so thatX = f (Y). If X were stochastic, the conjugacy constraint withZ would require that
P(X |Y) must have the same functional form, with respect toX, asP(Z |X). This in turn would
dictate the form of the natural statistic vectoruX of X, whose expectation〈uX(X)〉Q would be the
message fromX to Z.

Returning to the case whereX is deterministic, it is still necessary to provide a message toZ
of the form〈uX(X)〉Q where the functionuX is dictated by the conjugacy constraint. This message
can be evaluated only if it can be expressed as a function of the messagesfrom the parent variables,
which are the expectations of their natural statistics functions{〈uYi (Yi)〉Q}. In other words, there
must exist a vector functionψX such that

〈uX( f (Y))〉Q = ψX(〈uY1(Y1)〉Q, . . . ,〈uYM(YM)〉Q).

As was discussed in Section 3.2, this constrainsuX( f (Y)) to be a multi-linear function of the set of
functions{uYi (Yi)}.

A deterministic node can be viewed as a having a conditional distribution which isa delta func-
tion, so thatP(X |Y) = δ(X− f (Y)). If X is discrete, this is the distribution that assigns probability
one to the stateX = f (Y) and zero to all other states. IfX is continuous, this is the distribution with
the property that

R

g(X) δ(X − f (Y))dX = g( f (Y)). The contribution to the lower bound from a
deterministic node is zero.
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Example 2 Using a Deterministic Function as the Mean of a Gaussian
Consider a model where a deterministic node X is to be used as the mean of achild Gaussian distri-
butionN (Z |X,β−1) and where X equals a function f of Gaussian-distributed variables Y1, . . . ,YM.
The natural statistic vectors of X (as dictated by conjugacy with Z) and thoseof Y1, . . . ,YM are

uX(X) =

[
X
X2

]
, uYi (Yi) =

[
Yi

Y2
i

]
for i = 1. . .M

The constraint on f is thatuX( f ) must be multi-linear in{uYi (Yi)} and so both f and f2 must be
multi-linear in {Yi} and {Y2

i }. Hence, f can be any multi-linear function of Y1, . . . ,YM. In other
words, the mean of a Gaussian can be the sum of products of other Gaussian-distributed variables.

Example 3 Using a Deterministic Function as the Precision of a Gaussian
As another example, consider a model where X is to be used as the precision of a child Gaussian
distributionN (Z |µ,X−1) and where X is a function f of gamma-distributed variables Y1, . . . ,YM.
The natural statistic vectors of X and Y1, . . . ,YM are

uX(X) =

[
X

lnX

]
, uYi (Yi) =

[
Yi

lnYi

]
for i = 1. . .M.

and so both f andln f must be multi-linear in{Yi} and{lnYi}. This restricts f to be proportional
to a product of the variables Y1, . . . ,YM as the logarithm of a product can be found in terms of the
logarithms of terms in that product. Hence f= c∏i Yi where c is a constant. A function containing
a summation, such as f= ∑i Yi , would not be valid as the logarithm of the sum cannot be expressed
as a multi-linear function of Yi and lnYi .

4.2.1 VALIDATING CHAINS OF DETERMINISTIC FUNCTIONS

The validity of a deterministic function for a nodeX is dependent on the form of the stochastic nodes
it is connected to, as these dictate the functionsuX and{uYi (Yi)}. For example, if the function was a
summationf = ∑i Yi , it would be valid for the first of the above examples but not for the second. In
addition, it is possible for deterministic functions to be chained together to formmore complicated
expressions. For example, the expressionX = Y1 +Y2Y3 can be achieved by having a deterministic
product nodeA with parentsY2 andY3 and a deterministic sum nodeX with parentsY1 andA. In
this case, the form of the functionuA is not determined directly by its immediate neighbours, but
instead is constrained by the requirement of consistency for the connected deterministic subgraph.

In a software implementation of variational message passing, the validity of a particular deter-
ministic structure can most easily be checked by requiring that the functionuXi be specified explic-
itly for each deterministic nodeXi , thereby allowing the existing mechanism for checking conjugacy
to be applied uniformly across both stochastic and deterministic nodes.

4.2.2 DETERMINISTIC NODE MESSAGES

To examine message passing for deterministic nodes, we must consider the general case where the
deterministic nodeX has multiple children{Z j}. The message from the nodeX to any childZ j is
simply

mX→Z j = 〈uX( f (Y))〉Q

= ψX(mY1→X, . . . ,mYM→X).

677



WINN AND BISHOP

For a particular parentYk, the functionuX( f (Y)) is linear with respect touYk(Yk) and so it can be
written as

uX( f (Y)) = ΨX,Yk({uYi (Yi)}i6=k) .uYk(Yk)+λ({uYi (Yi)}i 6=k)

whereΨX,Yk is a matrix function of the natural statistics vectors of the co-parents ofYk. The message
from a deterministic node to a parentYk is then

mX→Yk =

[

∑
j

mZ j→X

]
ΨX,Yk({mYi→X}i6=k)

which relies on having received messages from all the child nodes and from all the co-parents. The
sum of child messages can be computed and stored locally at the node and used to evaluate all child-
to-parent messages. In this sense, it can be viewed as the natural parameter vector of a distribution
which acts as a kind of pseudo-posterior over the value ofX.

4.3 Mixture Distributions

So far, only distributions from the exponential family have been considered. Often it is desirable
to use richer distributions that better capture the structure of the system thatgenerated the data.
Mixture distributions, such as mixtures of Gaussians, provide one common way of creating richer
probability densities. A mixture distribution over a variableX is a weighted sum of a number of
component distributions

P(X |{πk},{θk}) =
K

∑
k=1

πkPk(X |θk)

where eachPk is a component distribution with parametersθk and a corresponding mixing coeffi-
cient πk indicating the weight of the distribution in the weighted sum. TheK mixing coefficients
must be non-negative and sum to one.

A mixture distribution is not in the exponential family and therefore cannot be used directly
as a conditional distribution within a conjugate-exponential model. Instead, we can introduce an
additional discrete latent variableλ which indicates from which component distribution each data
point was drawn, and write the distribution as

P(X |λ,{θk}) =
K

∏
k=1

Pk(X |θk)
δλk.

Conditioned on this new variable, the distribution is now in the exponential family provided that all
of the component distributions are also in the exponential family. In this case,the log conditional
probability ofX given all the parents (includingλ) can be written as

lnP(X |λ,{θk}) = ∑
k

δ(λ,k)
[
φk(θk)

Tuk(X)+ fk(X)+gk(θk)
]
.

If X has a childZ, then conjugacy will require that all the component distributions have the same

natural statistic vector, which we can then calluX so: u1(X) = u2(X) = . . . = uK(X)
def
= uX(X). In

addition, we may choose to specify, as part of the model, that all these distributions have exactly
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the same form (that is,f1 = f2 = . . . = fK
def
= fX), although this is not required by conjugacy. In this

case, where all the distributions are the same, the log conditional becomes

lnP(X |λ,{θk}) =

[

∑
k

δ(λ,k)φk(θk)

]T

uX(X)+ fX(X)

+∑
k

δ(λ,k)gk(θk)

= φX(λ,{θk})
TuX(X)+ fX(X)+ g̃X(φX(λ,{θk}))

where we have definedφX = ∑k δ(λ,k)φk(θk) to be the natural parameter vector of this mixture
distribution and the functioñgX is a reparameterisation ofgX to make it a function ofφX (as in
Section 3.6). The conditional is therefore in the same exponential family formas each of the com-
ponents.

We can now apply variational message passing. The message from the node X to any child is
〈uX(X)〉 as calculated from the mixture parameter vectorφX(λ,{θk}). Similarly, the message from
X to a parentθk is the message that would be sent by the corresponding component if it were not
in a mixture, scaled by the variational posterior over the indicator variableQ(λ = k). Finally, the
message fromX to λ is the vector of sizeK whosekth element is〈lnPk(X |θk)〉.

4.4 Multivariate Distributions

Until now, only scalar variables have been considered. It is also possible to handle vector variables
in this framework (or to handle scalar variables which have been groupedinto a vector to capture
posterior dependencies between the variables). In each case, a multivariate conditional distribution
is defined in the overall joint distributionP and the corresponding factor in the variational posterior
Q will also be multivariate, rather than factorised with respect to the elements of the vector. To
understand how multivariate distributions are handled, consider thed-dimensional Gaussian distri-
bution with meanµ and precision matrix5 Λ:

P(x |µ,Λ−1) =

√
|Λ|

(2π)d exp
(
− 1

2(x−µ)TΛ (x−µ)
)
.

This distribution can be written in exponential family form

lnN (x |µ,Λ−1) =

[
Λµ

− 1
2vec(Λ)

]T [
x

vec(xxT)

]
+ 1

2(ln |Λ|−µTΛµ−d ln2π)

where vec(·) is a function that re-arranges the elements of a matrix into a column vector in some
consistent fashion, such as by concatenating the columns of the matrix. Thenatural statistic function
for a multivariate distribution therefore depends on both the type of the distribution and its dimen-
sionalityd. As a result, the conjugacy constraint between a parent node and a childnode will also
constrain the dimensionality of the corresponding vector-valued variablesto be the same. Multi-
variate conditional distributions can therefore be handled by VMP like any other exponential family
distribution, which extends the class of allowed distributions to include multivariate Gaussian and
Wishart distributions.

5. The precision matrix of a multivariate Gaussian is the inverse of its covariance matrix.
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A group of scalar variables can act as a single parent of a vector-valued node. This is achieved
using a deterministicconcatenationfunction which simply concatenates a number of scalar values
into a vector. In order for this to be a valid function, the scalar distributions must still be conjugate
to the multivariate distribution. For example, a set ofd univariate Gaussian distributed variables can
be concatenated to act as the mean of ad-dimensional multivariate Gaussian distribution.

4.4.1 NORMAL-GAMMA DISTRIBUTION

The meanµ and precisionγ parameters of a Gaussian distribution can be grouped together into a
single bivariate variablec= {µ,γ}. The conjugate distribution for this variable is the normal-gamma
distribution, which is written

lnP(c|m,λ,a,b) =




mλ
− 1

2λ
−b− 1

2λm2

a− 1
2







µγ
µ2γ
γ

lnγ


+ 1

2(lnλ− ln2π)+alnb− lnΓ(a).

This distribution therefore lies in the exponential family and can be used within VMP instead of
separate Gaussian and gamma distributions. In general, grouping these variables together will im-
prove the approximation and so increase the lower bound. The multivariate form of this distribution,
the normal-Wishart distribution, is handled as described above.

4.5 Summary of Allowable Models

In summary, the variational message passing algorithm can handle probabilistic models with the
following very general architecture: arbitrary directed acyclic subgraphs of multinomial discrete
variables (each having Dirichlet priors) together with arbitrary subgraphs of univariate and mul-
tivariate linear Gaussian nodes (having gamma and Wishart priors), with arbitrary mixture nodes
providing connections from the discrete to the continuous subgraphs. Inaddition, deterministic
nodes can be included to allow parameters of child distributions to be deterministicfunctions of
parent variables. Finally, any of the continuous distributions can be singlyor doubly truncated to
restrict the range of allowable values, provided that the appropriate moments under the truncated
distribution can be calculated along with any necessary parent messages.

This architecture includes as special cases models such as hidden Markov models, Kalman
filters, factor analysers, principal component analysers and independent component analysers, as
well as mixtures and hierarchical mixtures of these.

5. VIBES: An Implementation of Variational Message Passing

The variational message passing algorithm has been implemented in a softwarepackage called
VIBES (Variational Inference in BayEsian networkS), first described by Bishop et al. (2002). In-
spired by WinBUGS (a graphical user interface for BUGS by Lunn et al.,2000), VIBES allows
for models to be specified graphically, simply by constructing the Bayesian network for the model.
This involves drawing the graph for the network (using operations similar to those in a drawing
package) and then assigning properties to each node such as its name, thefunctional form of the
conditional distribution, its dimensionality and its parents. As an example, Figure5 shows the
Bayesian network for the univariate Gaussian model along with a screenshot of the same model in
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(a) N

µ γ

xi

(b)

Figure 5: (a) Bayesian network for the univariate Gaussian model. (b) Screenshot of VIBES show-
ing how the same model appears as it is being edited. The nodex is selected and the
panel to the left shows that it has a Gaussian conditional distribution with meanµ and
precisionγ. The plate surroundingx shows that it is duplicatedN times and the heavy
border indicates that it is observed (according to the currently attached data file).

VIBES. Models can also be specified in a text file, which contains XML according to a pre-defined
model definition schema. VIBES is written in Java and so can be used on Windows, Linux or any
operating system with a Java 1.3 virtual machine.

As in WinBUGS, the convention of making deterministic nodes explicit in the graphical rep-
resentation has been adopted, as this greatly simplifies the specification and interpretation of the
model. VIBES also uses the plate notation of a box surrounding one or more nodes to denote that
those nodes are replicated some number of times, specified by the parameter inthe bottom right
hand corner of the box.

Once the model is specified, data can be attached from a separate data file which contains
observed values for some of the nodes, along with sizes for some or all ofthe plates. The model can
then beinitialised which involves: (i) checking that the model is valid by ensuring that conjugacy
and dimensionality constraints are satisfied and that all parameters are specified; (ii) checking that
the observed data is of the correct dimensionality; (iii) allocating memory for allmoments and
messages; (iv) initialisation of the individual distributionsQi .

Following a successful initialisation, inference can begin immediately. As inference proceeds,
the current state of the distributionQi for any node can be inspected using a range of diagnostics
including tables of values and Hinton diagrams. If desired, the lower boundL(Q) can be monitored
(at the expense of slightly increased computation), in which case the optimisation can be set to
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terminate automatically when the change in the bound during one iteration drops below a small
value. Alternatively, the optimisation can be stopped after a fixed number of iterations.

The VIBES software can be downloaded fromhttp://vibes.sourceforge.net. This soft-
ware was written by one of the authors (John Winn) whilst a Ph.D. student at the University of
Cambridge and is free and open source. Appendix A contains a tutorial for applying VIBES to an
example problem involving a Gaussian Mixture model. The VIBES web site also contains an online
version of this tutorial.

6. Extensions to Variational Message Passing

In this section, three extensions to the variational message passing algorithmwill be described.
These extensions are intended to illustrate how the algorithm can be modified to perform alternative
inference calculations and to show how the conjugate-exponential constraint can be overcome in
certain circumstances.

6.1 Further Variational Approximations: The Logistic Sigmoid Function

As it stands, the VMP algorithm requires that the model be conjugate-exponential. However, it
is possible to sidestep the conjugacy requirement by introducing additional variational parameters
and approximating non-conjugate conditional distributions by valid conjugateones. We will now
illustrate how this can be achieved using the example of a conditional distributionover a binary
variablex∈ 0,1 of the form

P(x|a) = σ(a)x[1−σ(a)]1−x

= eaxσ(−a)

where

σ(a) =
1

1+exp(−a)

is the logistic sigmoid function.
We take the approach of Jaakkola and Jordan (1996) and use a variational bound for the logistic

sigmoid function defined as

σ(a) > F(a,ξ)
def
= σ(ξ)exp[(a−ξ)/2+λ(ξ)(a2−ξ2)]

whereλ(ξ) = [1/2−g(ξ)]/2ξ andξ is a variational parameter. For any given value ofa we can
make this bound exact by settingξ2 = a2. The bound is illustrated in Figure 6 in which the solid
curve shows the logistic sigmoid functionσ(a) and the dashed curve shows the lower boundF(a,ξ)
for ξ = 2.

We use this result to define a new lower boundL̃ 6 L by replacing each expectation of the
form 〈ln[eaxσ(−a)]〉 with its lower bound〈ln[eaxF(−a,ξ)]〉. The effect of this transformation is
to replace the logistic sigmoid function with an exponential, therefore restoringconjugacy to the
model. Optimisation of eachξ parameter is achieved by maximising this new boundL̃ , leading to
the re-estimation equation

ξ2 =
〈
a2〉

Q .

It is important to note that, as the quantitỹL involves expectations of lnF(−a,ξ), it is no longer
guaranteed to be exact for any value ofξ.
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Figure 6: The logistic sigmoid functionσ(a) and variational boundF(a,ξ).

It follows from (8) that the factor inQ corresponding toP(x|a) is updated using

lnQ?
x(x) = 〈ln(eaxF(−a,ξ))〉∼Qx(x) + ∑

k∈chx

〈lnP(Xk|pak)〉∼Qx(x) +const.

= 〈ax〉∼Qx(x) + ∑
k∈chx

〈bkx〉∼Qx(x) +const.

= a?x+const.

wherea? = 〈a〉+∑k 〈bk〉 and the{bk} arise from the child terms which must be in the form(bkx+
const.) due to conjugacy. Therefore, the variational posteriorQx(x) takes the form

Qx(x) = σ(a?)x[1−σ(a?)]1−x.

6.1.1 USING THE LOGISTIC APPROXIMATION WITHIN VMP

We will now explain how this additional variational approximation can be used within the VMP
framework. The lower bound̃L contains terms like〈ln(eaxF(−a,ξ))〉 which need to be evaluated
and so we must be able to evaluate[〈a〉

〈
a2

〉
]T. The conjugacy constraint ona is therefore that

its distribution must have a natural statistic vectorua(a) = [a a2]. Hence it could, for example, be
Gaussian.

For consistency with general discrete distributions, we write the bound on the log conditional
lnP(x|a) as

lnP(x|a) >

[
0
a

]T [
δ(x−0)
δ(x−1)

]
+(−a−ξ)/2+λ(ξ)(a2−ξ2)+ lnσ(ξ)

=

[
δ(x−1)− 1

2

λ(ξ)

]T [
a
a2

]
−ξ/2−λ(ξ)ξ2 + lnσ(ξ).

The message from nodex to nodea is therefore

mx→a =

[
〈δ(x−1)〉− 1

2

λ(ξ)

]

and all other messages are as in standard VMP. The update of variationalfactors can then be carried
out as normal except that eachξ parameter must also be re-estimated during optimisation. This
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can be carried out, for example, just before sending a message fromx to a. The only remaining
modification is to the calculation of the lower bound in (23), where the term

〈
g j(paj)

〉
is replaced

by the expectation of its bound,
〈
g j(paj)

〉
> (−〈a〉−ξ)/2+λ(ξ)(

〈
a2〉−ξ2)+ lnσ(ξ).

This extension to VMP enables discrete nodes to have continuous parents,further enlarging the
class of allowable models. In general, the introduction of additional variational parameters enor-
mously extends the class of models to which VMP can be applied, as the constraint that the model
distributions must be conjugate no longer applies.

6.2 Finding a Maximum A Posteriori Solution

The advantage of using a variational distribution is that it provides a posterior distribution over
latent variables. It is, however, also possible to use VMP to find a Maximum APosteriori (MAP)
solution, in which values of each latent variable are found that maximise the posterior probability.
Consider choosing a variational distribution which is a delta function

QMAP(H) = δ(H−H?)

whereH? is the MAP solution. From (3), the lower bound is

L(Q ) = 〈lnP(H,V)〉−〈lnQ(H)〉

= lnP(H?,V)+hδ

wherehδ is the differential entropy of the delta function. By considering the differential entropy of
a Gaussian in the limit as the variance goes to 0, we can see thathδ = loga,a→ 0. Thushδ does
not depend onH? and so maximisingL(Q ) is equivalent to finding the MAP solution. However,
since the entropyhδ tends to−∞, so doesL(Q ) and so, whilst it is still trivially a lower bound on
the log evidence, it is not an informative one. In other words, knowing theprobability density of the
posterior at a point is uninformative about the posterior mass.

The variational distribution can be written in factorised form as

QMAP(H) = ∏
j

Q j(H j).

with Q j(H j) = δ(H j −H?
j ). The KL divergence between the approximating distribution and the true

posterior is minimised if KL(Q j ||Q?
j ) is minimised, whereQ?

j is the standard variational solution
given by (6). Normally,Q j is unconstrained so we can simply set it toQ?

j . However, in this case,
Q j is a delta function and so we have to find the value ofH?

j that minimises KL(δ(H j −H?
j ) ||Q

?
j ).

Unsurprisingly, this is simply the value ofH?
j that maximisesQ?

j (H
?
j ).

In the message passing framework, a MAP solution can be obtained for a particular latent vari-
ableH j directly from the updated natural statistic vectorφ?

j using

(φ?
j )

T du j(H j)

dHj
= 0.

For example, ifQ?
j is Gaussian with meanµ thenH?

j = µ or if Q?
j is gamma with parametersa,b,

thenH?
j = (a−1)/b.
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Given that the variational posterior is now a delta function, the expectation of any function
〈 f (H j)〉 under the variational posterior is justf (H?

j ). Therefore, in any outgoing messages,〈u j(H j)〉
is replaced byu j(H?

j ). Since all surrounding nodes can process these messages as normal, aMAP
solution may be obtained for any chosen subset of variables (such as particular hyper-parameters),
whilst a full posterior distribution is retained for all other variables.

6.3 Learning Non-conjugate Priors by Sampling

For some exponential family distribution parameters, there is no standard probability distribution
which can act as a conjugate prior. For example, there is no standard distribution which can act as
a conjugate prior for the shape parametera of the gamma distribution. This implies that we cannot
learn a posterior distribution over a gamma shape parameter within the basic VMPframework.
As discussed above, we can sometimes introduce conjugate approximations by adding variational
parameters, but this may not always be possible.

The purpose of the conjugacy constraint is two-fold. First, it means that the posterior distri-
bution of each variable, conditioned on its neighbours, has the same form as the prior distribution.
Hence, the updated variational distribution factor for that variable has thesame form and inference
involves just updating the parameters of that distribution. Second, conjugacy results in variational
distributions being in standard exponential family form allowing their moments to becalculated
analytically.

If we ignore the conjugacy constraint, we get non-standard posterior distributions and we must
resort to using sampling or other methods to determine the moments of these distributions. The
disadvantages of using sampling include computational expense, inability to calculate an analytical
lower bound and the fact that inference is no longer deterministic for a given initialisation and
ordering. The use of sampling methods will now be illustrated by an example showing how to
sample from the posterior over the shape parameter of a gamma distribution.

Example 4 Learning a Gamma Shape Parameter
Let us assume that there is a latent variable a which is to be used as the shape parameter of K

gamma distributed variables{x1 . . .xK}. We choose a to have anon-conjugateprior of an inverse-
gamma distribution:

P(a|α,β) ∝ a−α−1exp

(
−β
a

)
.

The form of the gamma distribution means that messages sent to the node a are with respect to a
natural statistic vector

ua =

[
a

lnΓ(a)

]

which means that the updated factor distribution Q?
a has the form

lnQ?
a(a) =

[
K

∑
i=1

mxi→a

]T [
a

lnΓ(a)

]
+(−α−1) lna−

β
a

+const.

This density is not of standard form, but it can be shown that Q?(lna) is log-concave, so we can
generate independent samples from the distribution forlna using Adaptive Rejection Sampling from
Gilks and Wild (1992). These samples are then transformed to get samplesof a from Q?

a(a), which
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is used to estimate the expectation〈ua(a)〉. This expectation is then sent as the outgoing message to
each of the child nodes.

Each factor distribution is normally updated during every iteration and so, in this case, a number
of independent samples fromQ?

a would have to be drawn during every iteration. If this proved too
computationally expensive, then the distribution need only be updated intermittently.

It is worth noting that, as in this example, BUGS also uses Adaptive Rejection Sampling for
sampling when the posterior distribution is log-concave but non-conjugate,whilst also providing
techniques for sampling when the posterior is not log-concave. This suggests that non-conjugate
parts of a general graphical model could be handled within a BUGS-style framework whilst varia-
tional message passing is used for the rest of the model. The resulting hybrid variational/sampling
framework would, to a certain extent, capture the advantages of both techniques.

7. Discussion

The variational message passing algorithm allows approximate inference using a factorised vari-
ational distribution in any conjugate-exponential model, and in a range of non-conjugate models.
As a demonstration of its utility, this algorithm has already been used to solve problems in the do-
main of machine vision and bioinformatics (see Winn, 2003; Bishop and Winn, 2000). In general,
variational message passing dramatically simplifies the construction and testing of new variational
models and readily allows a range of alternative models to be tested on a givenproblem.

The general form of VMP also allows the inclusion of arbitrary nodes in thegraphical model
provided that each node is able to receive and generate appropriate messages in the required form,
whether or not the model remains conjugate-exponential. The extensions to VMP concerning the
logistic function and sampling illustrate this flexibility.

One limitation of the current algorithm is that it uses a variational distribution which is factorised
across nodes, giving an approximate posterior which is separable with respect to individual (scalar
or vector) variables. In general, an improved approximation will be achieved if a posterior distri-
bution is used which retains some dependency structure. Whilst Wiegerinck (2000) has presented a
general framework for such structured variational inference, he does not provide a general-purpose
algorithm for applying this framework. Winn (2003) and Bishop and Winn (2003) have therefore
proposed an extended version of variational message passing which allows for structured variational
distributions. VIBES has been extended to implement a limited version of this algorithm that can
only be applied to a constrained set of models. However, a complete implementation and evaluation
of this extended algorithm has yet to be undertaken.

The VIBES software is free and open source and can be downloaded from the VIBES web
site athttp://vibes.sourceforge.net. The web site also contains a tutorial that provides an
introduction to using VIBES.
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Appendix A. VIBES Tutorial

In this appendix, we demonstrate the application of VIBES to an example problem involving a
Gaussian Mixture model. We then demonstrate the flexibility of VIBES by changing the model to
fit the data better, using the lower bound as an estimate of the log evidence foreach model. An
online version of this tutorial is available athttp://vibes.sourceforge.net/tutorial.

The data used in this tutorial is two-dimensional and consists of nine clusters ina three-by-three
grid, as illustrated in Figure 7.

−3 −2 −1 0 1 2 3
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1

2

3

x
1

x 2

Figure 7: The two-dimensional data set used in the tutorial, which consists ofnine clusters in a
three-by-three grid.

A.1 Loading Matlab Data into VIBES

The first step is to load the data set into VIBES. This is achieved by creating anode with the name
x which corresponds to a matrixx in a Matlab.mat file. As the data matrix is two dimensional, the
node is placed inside two platesN andd and the data filename (in this caseMixGaussianData2D.mat)
is entered. SelectingFile→Load data loads the data into the node and also sets the size of theN
andd plates to 500 and 2 respectively. The node is marked as observed (shown with a bold edge)
and the observed data can be inspected by double-clicking the node with themouse. At this point,
the display is as shown in Figure 8.

A.2 Creating and Learning a Gaussian Model

The nodex has been marked as Gaussian by default and so the model is invalid as neither the mean
nor the precision of the Gaussian have been set (attempting to initialise the modelby pressing the
Init. button will give an error message to this effect). We can specify latent variables for these
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Figure 8: A VIBES model with a single observed nodex which has attached data.

parameters by creating a nodeµ for the mean parameter and a nodeγ for the precision parame-
ter. These nodes are created within thed plate to give a model which is separable over each data
dimension. These are then set as theMean andPrecision properties ofx, as shown in Figure 9.

Figure 9: A two-dimensional Gaussian model, showing that the variablesµ andγ are being used as
the mean and precision parameters of the conditional distribution overx.

The model is still invalid as the parameters ofµ andγ are unspecified. In this case, rather than
create further latent variables, these parameters will be set to fixed values to give appropriate priors
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(for example settingµ to have mean= 0 and precision= 0.3 andγ to havea = 10 andb = 1). The
network now corresponds to a two-dimensional Gaussian model and variational inference can be
performed automatically by pressing theStart button (which also performs initialisation). For this
data set, inference converges after four iterations and gives a boundof −1984 nats. At this point,
the expected values of each latent variable under the fully-factorisedQ distribution can be displayed
or graphed by double-clicking on the corresponding node.

A.3 Extending the Gaussian model to a Gaussian Mixture Model

Our aim is to create a Gaussian mixture model and so we must extend our simple Gaussian model
to be a mixture withK Gaussian components. As there will now beK sets of the latent variablesµ
andγ, these are placed in a new plate, calledK, whose size is set to 20. We modify the conditional
distribution for thex node to be a mixture of dimensionK, with each component being Gaussian.
The display is then as shown in Figure 10.

Figure 10: An incomplete model which shows thatx is now a mixture ofK Gaussians. There are
now K sets of parameters and soµ andγ have been placed in a plateK. The model is
incomplete as theIndex parent ofx has not been specified.

The model is currently incomplete as makingx a mixture requires a new discreteIndex parent
to indicate which component distribution each data point was drawn from. We must therefore create
a new nodeλ, sitting in theN plate, to represent this new discrete latent variable. We also create a
nodeπ with a Dirichlet distribution which provides a prior overλ. The completed mixture model is
shown in Figure 11.
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Figure 11: The completed Gaussian mixture model showing the discrete indicator nodeλ.

A.4 Inference Using the Gaussian Mixture Model

With the model complete, inference can once again proceed automatically by pressing theStart
button. A Hinton diagram of the expected value ofπ can be displayed by double-clicking on theπ
node, giving the result shown in Figure 12. As can be seen, nine of the twenty components have
been retained.

Figure 12: A Hinton diagram showing the expected value ofπ for each mixture component. The
learned mixture consists of only nine components.

The means of the retained components can be inspected by double-clicking on theµnode, giving
the Hinton diagram of Figure 13. These learned means correspond to the centres of each of the data
clusters.

Figure 13: A Hinton diagram whose columns give the expected two-dimensional value of the mean
µ for each mixture component. The mean of each of the eleven unused components
is just the expected value under the prior which is(0,0). Column 4 corresponds to a
retained component whose mean is roughly(0,0).
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A graph of the evolution of the bound can be displayed by clicking on the bound value and
is shown in Figure 14. The converged lower bound of this new model is−1019 nats, which is
significantly higher than that of the single Gaussian model, showing that thereis much greater
evidence for this model. This is unsurprising since a mixture of 20 Gaussianshas significantly more
parameters than a single Gaussian and hence can give a much closer fit to the data. Note, however,
that the model automatically chooses only to exploit 9 of these components, with the remainder
being suppressed (by virtue of their mixing coefficients going to zero). This provides an elegant
example of automatic model complexity selection within a Bayesian setting.

Figure 14: A graph of the evolution of the lower bound during inference.

A.5 Modifying the Mixture Model

The rapidity with which models can be constructed using VIBES allows new models to be quickly
developed and compared. For example, we can take our existing mixture of Gaussians model and
modify it to try and find a more probable model.

First, we may hypothesise that each of the clusters has similar size and so theymay be modelled
by a mixture of Gaussian components having a common variance in each dimension. Graphically,
this corresponds to shrinking theK plate so that it no longer contains theγ node, as shown in
Figure 15a. The converged lower bound for this new model is−937 nats showing that this modified
model is better at explaining this data set than the standard mixture of Gaussians model. Note that
the increase in model probability does not arise from an improved fit to the data, since this model
and the previous one both contain 20 Gaussian components and in both cases 9 of these components
contribute to the data fit. Rather, the constrained model having a single variance parameter can
achieve almost as good a data fit as the unconstrained model yet with far fewer parameters. Since
a Bayesian approach automatically penalises complexity, the simpler (constrained) model has the
higher probability as indicated by the higher value for the variational lower bound.

We may further hypothesise that the data set is separable with respect to its two dimensions
(i.e. the two dimensions are independent). Graphically this consists of moving all nodes inside
the d plate (so we effectively have two copies of a one-dimensional mixture of Gaussians model
with common variance). A VIBES screenshot of this further modification is shown in Figure 15b.
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(a) (b)

Figure 15: (a) Mixture of Gaussians model with shared precision parameter γ (the γ node is no
longer inside theK plate). (b) Model with independent data dimensions, each a univari-
ate Gaussian mixture with common variance.

Performing variational inference on this separable model leads to each one-dimensional mixture
having three retained mixture components and gives an improved bound of -876 nats.

We will consider one final model. In this model both theπ and theγ nodes are common to
both data dimensions, as shown in Figure 16. This change corresponds tothe assumption that the
mixture coefficients are the same for each of the two mixtures and that the component variances
are the same for all components in both mixtures. Inference leads to a final improved bound of
−856 nats. Whilst this tutorial has been on a toy data set, the principles of modelconstruction,
modification and comparison can be applied just as readily to real data sets.

Figure 16: Further modified mixture model where theπ andγ nodes are now common to all data
dimensions.
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