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Abstract. This paper presents a tutorial introduction to the use of variational methods for inference and learning
in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical
models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants
of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational
methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical
model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest
in the original model. We describe a general framework for generating variational transformations based on convex
duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each
case.
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1. Introduction

The problem of probabilistic inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of the nodes (the “hidden” or
“unobserved” nodes), given the values of other nodes (the “evidence” or “observed” nodes).
Thus, lettingH represent the set of hidden nodes and lettingE represent the set of evidence
nodes, we wish to calculateP(H | E):

P(H | E) = P(H, E)

P(E)
. (1)



184 JORDAN ET AL.

General exact inference algorithms have been developed to perform this calculation (Jensen,
1996; Shachter, Andersen, & Szolovits, 1994; Shenoy, 1992); these algorithms take system-
atic advantage of the conditional independencies present in the joint distribution as inferred
from the pattern of missing edges in the graph.

We often also wish to calculate marginal probabilities in graphical models, in particular
the probability of the observed evidence,P(E). Viewed as a function of the parameters of
the graphical model, for fixedE, P(E) is an important quantity known as thelikelihood. As
is suggested by Eq. (1), the evaluation of the likelihood is closely related to the calculation
of P(H | E). Indeed, although inference algorithms do not simply compute the numerator
and denominator of Eq. (1) and divide, they in fact generally produce the likelihood as a
by-product of the calculation ofP(H | E). Moreover, algorithms that maximize likelihood
(and related quantities) generally make use of the calculation ofP(H | E) as a subroutine.

Although there are many cases in which the exact algorithms provide a satisfactory
solution to inference and learning problems, there are other cases, several of which we
discuss in this paper, in which the time or space complexity of the exact calculation is
unacceptable and it is necessary to have recourse to approximation procedures. Within the
context of the junction tree construction, for example, the time complexity is exponential
in the size of the maximal clique in the junction tree. As we will see, there are natural
architectural assumptions that necessarily lead to large cliques.

Even in cases in which the complexity of the exact algorithms is manageable, there can be
reason to consider approximation procedures. Note in particular that the exact algorithms
make no use of the numerical representation of the joint probability distribution associ-
ated with a graphical model; put another way, the algorithms have the same complexity
regardless of the particular probability distribution under consideration within the family
of distributions that is consistent with the conditional independencies implied by the graph.
There may be situations in which nodes or clusters of nodes are “nearly” conditionally
independent, situations in which node probabilities are well determined by a subset of the
neighbors of the node, or situations in which small subsets of configurations of variables
contain most of the probability mass. In such cases the exactitude achieved by an exact
algorithm may not be worth the computational cost. A variety of approximation proce-
dures have been developed that attempt to identify and exploit such situations. Examples
include the pruning algorithms of Kjærulff (1994), the “bounded conditioning” method of
Horvitz, Suermondt, and Cooper (1989), search-based methods (e.g., Henrion, 1991), and
the “localized partial evaluation” method of Draper and Hanks (1994). A virtue of all of
these methods is that they are closely tied to the exact methods and thus are able to take full
advantage of conditional independencies. This virtue can also be a vice, however, given the
exponential growth in complexity of the exact algorithms.

A related approach to approximate inference has arisen in applications of graphical model
inference to error-control decoding (McEliece, MacKay, & Cheng, 1998). In particular,
Kim and Pearl’s algorithm for singly-connected graphical models (Pearl, 1988) has been
used successfully as an iterative approximate method for inference in non-singly-connected
graphs.

Another approach to the design of approximation algorithms involves making use of
Monte Carlo methods. A variety of Monte Carlo algorithms have been developed (see Neal,
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1993) and applied to the inference problem in graphical models (Dagum & Luby, 1993; Fung
& Favero, 1994; Gilks, Thomas, & Spiegelhalter, 1994; Jensen, Kong, & Kjærulff, 1995;
Pearl, 1988). Advantages of these algorithms include their simplicity of implementation and
theoretical guarantees of convergence. The disadvantages of the Monte Carlo approach are
that the algorithms can be slow to converge and it can be hard to diagnose their convergence.

In this paper we discuss variational methods, which provide yet another approach to the
design of approximate inference algorithms. Variational methodology yields deterministic
approximation procedures that generally provide bounds on probabilities of interest. The
basic intuition underlying variational methods is that complex graphs can be probabilisti-
cally simple; in particular, in graphs with dense connectivity there are averaging phenomena
that can come into play, rendering nodes relatively insensitive to particular settings of val-
ues of their neighbors. Taking advantage of these averaging phenomena can lead to simple,
accurate approximation procedures.

It is important to emphasize that the various approaches to inference that we have outlined
are by no means mutually exclusive; indeed they exploit complementary features of the
graphical model formalism. The best solution to any given problem may well involve
an algorithm that combines aspects of the different methods. In this vein, we will present
variational methods in a way that emphasizes their links to exact methods. Indeed, as we will
see, exact methods often appear as subroutines within an overall variational approximation
(cf. Jaakkola & Jordan, 1996; Saul & Jordan, 1996).

It should be acknowledged at the outset that there is as much “art” as there is “science”
in our current understanding of how variational methods can be applied to probabilistic
inference. Variational transformations form a large, open-ended class of approximations,
and although there is a general mathematical picture of how these transformations can
be exploited to yield bounds on probabilities in graphical models, there is not as yet a
systematic algebra that allows particular variational transformations to be matched optimally
to particular graphical models. We will provide illustrative examples of general families
of graphical models to which variational methods have been applied successfully, and we
will provide a general mathematical framework which encompasses all of these particular
examples, but we are not as yet able to provide assurance that the framework will transfer
easily to other examples.

We begin in Section 2 with a brief overview of exact inference in graphical models,
basing the discussion on the junction tree algorithm. Section 3 presents several examples
of graphical models, both to provide motivation for variational methodology and to provide
examples that we return to and develop in detail as we proceed through the paper. The core
material on variational approximation is presented in Section 4. Sections 5 and 6 fill in some
of the details, focusing on sequential methods and block methods, respectively. In these latter
two sections, we also return to the examples and work out variational approximations in
each case. Finally, Section 7 presents conclusions and directions for future research.

2. Exact inference

In this section we provide a brief overview of exact inference for graphical models, as repre-
sented by the junction tree algorithm (for relationships between the junction tree algorithm
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Figure 1. A directed graph is parameterized by associating a local conditional probability with each node. The
joint probability is the product of the local probabilities.

and other exact inference algorithms, see Shachter, Andersen, and Szolovits (1994); see
also Dechter (1999), and Shenoy (1992), for recent developments in exact inference). Our
intention here is not to provide a complete description of the junction tree algorithm, but
rather to introduce the “moralization” and “triangulation” steps of the algorithm. An un-
derstanding of these steps, which create data structures that determine the run time of the
inference algorithm, will suffice for our purposes.1 For a comprehensive introduction to the
junction tree algorithm see Jensen (1996).

Graphical models come in two basic flavors—directedgraphical models andundirected
graphical models. A directed graphical model (also known as a “Bayesian network”) is
specified numerically by associating local conditional probabilities with each of the nodes
in an acyclic directed graph. These conditional probabilities specify the probability of node
Si given the values of its parents, i.e.,P(Si | Sπ(i )), whereπ(i ) represents the set of indices
of the parents of nodeSi and Sπ(i ) represents the corresponding set of parent nodes (see
figure 1).2 To obtain the joint probability distribution for all of theN nodes in the graph,
i.e., P(S) = P(S1, S2, . . . , SN), we take the product over the local node probabilities:

P(S) =
N∏

i=1

P
(
Si | Sπ(i )

)
(2)

Inference involves the calculation of conditional probabilities under this joint distribution.
An undirected graphical model (also known as a “Markov random field”) is specified

numerically by associating “potentials” with the cliques of the graph.3 A potential is a
function on the set of configurations of a clique (that is, a setting of values for all of the
nodes in the clique) that associates a positive real number with each configuration. Thus,
for every subset of nodesCi that forms a clique, we have an associated potentialφi (Ci )

(see figure 2). The joint probability distribution for all of the nodes in the graph is obtained
by taking the product over the clique potentials:

P(S) =
∏M

i=1 φi (Ci )

Z
, (3)
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Figure 2. An undirected graph is parameterized by associating a potential with each clique in the graph. The
cliques in this example areC1 = {S1, S2, S3}, C2 = {S3, S4, S5}, andC3 = {S4, S5, S6}. A potential assigns a
positive real number to each configuration of the corresponding clique. The joint probability is the normalized
product of the clique potentials.

whereM is the total number of cliques and where the normalization factorZ is obtained
by summing the numerator over all configurations:

Z =
∑
{S}

{
M∏

i=1

φi (Ci )

}
. (4)

In keeping with statistical mechanical terminology we will refer to this sum as a “partition
function.”

The junction tree algorithm compiles directed graphical models into undirected graphical
models; subsequent inferential calculation is carried out in the undirected formalism. The
step that converts the directed graph into an undirected graph is called “moralization.” (If the
initial graph is already undirected, then we simply skip the moralization step). To understand
moralization, we note that in both the directed and the undirected cases, the joint probability
distribution is obtained as a product of local functions. In the directed case, these functions
are the node conditional probabilitiesP(Si | Sπ(i )). In fact, this probability nearly qualifies
as a potential function; it is certainly a real-valued function on the configurations of the set
of variables{Si , Sπ(i )}. The problem is that these variables do not always appear together
within a clique. That is, the parents of a common child are not necessarily linked. To be
able to utilize node conditional probabilities as potential functions, we “marry” the parents
of all of the nodes with undirected edges. Moreover we drop the arrows on the other edges
in the graph. The result is a “moral graph,” which can be used to represent the probability
distribution on the original directed graph within the undirected formalism.4

The second phase of the junction tree algorithm is somewhat more complex. This phase,
known as “triangulation,” takes a moral graph as input and produces as output an undirected
graph in which additional edges have (possibly) been added. This latter graph has a special
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Figure 3. (a) The simplest non-triangulated graph. The graph has a 4-cycle without a chord. (b) Adding a chord
between nodesB andD renders the graph triangulated.

property that allows recursive calculation of probabilities to take place. In particular, in a
triangulated graph, it is possible to build up a joint distribution by proceeding sequentially
through the graph, conditioning blocks of interconnected nodes only on predecessor blocks
in the sequence. The simplest graph in which this isnotpossible is the “4-cycle,” the cycle
of four nodes shown in figure 3(a). If we try to write the joint probability sequentially as, for
example,P(A)P(B | A)P(C | B)P(D |C), we see that we have a problem. In particular,A
depends onD, and we are unable to write the joint probability as a sequence of conditionals.

A graph isnot triangulatedif there are 4-cycles which do not have achord, where a chord
is an edge between non-neighboring nodes. Thus the graph in figure 3(a) is not triangulated;
it can be triangulated by adding a chord as in figure 3(b). In the latter graph we can write
the joint probability sequentially asP(A, B,C, D) = P(A)P(B, D | A)P(C | B, D).

More generally, once a graph has been triangulated it is possible to arrange the cliques
of the graph into a data structure known as ajunction tree. A junction tree has therunning
intersection property: If a node appears in any two cliques in the tree, it appears in all cliques
that lie on the path between the two cliques. This property has the important consequence that
a general algorithm for probabilistic inference can be based on achieving local consistency
between cliques. (That is, the cliques assign the same marginal probability to the nodes that
they have in common). In a junction tree, because of the running intersection property, local
consistency implies global consistency.

The probabilistic calculations that are performed on the junction tree involve marginal-
izing and rescaling the clique potentials so as to achieve local consistency between neigh-
boring cliques. The time complexity of performing this calculation depends on the size of
the cliques; in particular for discrete data the number of values required to represent the
potential is exponential in the number of nodes in the clique. For efficient inference, it is
therefore critical to obtain small cliques.

In the remainder of this paper, we will investigate specific graphical models and consider
the computational costs of exact inference for these models. In all of these cases we will
either be able to display the “obvious” triangulation, or we will be able to lower bound
the size of cliques in a triangulated graph by considering the cliques in the moral graph.
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Thus we will not need to consider specific algorithms for triangulation (for discussion of
triangulation algorithms, see, e.g., Kjærulff, 1990).

3. Examples

In this section we present examples of graphical models in which exact inference is generally
infeasible. Our first example involves a diagnostic system in which a fixed graphical model
is used to answer queries. The remaining examples involve estimation problems in which a
graphical model is fit to data and subsequently used for prediction or diagnosis.

3.1. The QMR-DT database

The QMR-DT database is a large-scale probabilistic database that is intended to be used as
a diagnostic aid in the domain of internal medicine.5 We provide a brief overview of the
QMR-DT database here; for further details see Shwe et al. (1991).

The QMR-DT database is a bipartite graphical model in which the upper layer of nodes
represent diseases and the lower layer of nodes represent symptoms (see figure 4). There
are approximately 600 disease nodes and 4000 symptom nodes in the database.

The evidence is a set of observed symptoms; henceforth we refer to observed symptoms
as “findings” and represent the vector of findings with the symbolf . The symbold denotes
the vector of diseases. All nodes are binary, thus the componentsfi anddi are binary random
variables. Making use of the conditional independencies implied by the bipartite form of
the graph,6 and marginalizing over the unobserved symptom nodes, we obtain the following
joint probability over diseases and findings:

P( f, d) = P( f | d)P(d) (5)

=
[∏

i

P( fi | d)
][∏

j

P(dj )

]
. (6)

Figure 4. The structure of the QMR-DT graphical model. The shaded nodes represent evidence nodes and are
referred to as “findings.”
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The prior probabilities of the diseases,P(dj ), were obtained by Shwe et al. from archival
data. The conditional probabilities of the findings given the diseases,P( fi | d), were ob-
tained from expert assessments under a “noisy-OR” model. That is, the conditional proba-
bility that thei th symptom is absent,P( fi = 0 | d), is expressed as follows:

P( fi = 0 | d) = (1− qi 0)
∏

j∈π(i )
(1− qi j )

dj (7)

where theqi j are parameters obtained from the expert assessments. Considering the case
in which all diseases are absent, we see that theqi 0 parameter can be interpreted as the
probability that thei th finding is present even though no disease is present. The effect of
each additional disease, if present, is to contribute an additional factor of(1− qi j ) to the
probability that thei th finding is absent.

We will find it useful to rewrite the noisy-OR model in an exponential form:

P( fi = 0 | d) = exp

{
−
∑

j∈π(i )
θi j dj − θi 0

}
(8)

whereθi j ≡ −ln(1− qi j ) are the transformed parameters. Note also that the probability of
a positive finding is given as follows:

P( fi = 1 | d) = 1− exp

{
−
∑

j∈π(i )
θi j dj − θi 0

}
(9)

These forms express the noisy-OR model as a generalized linear model.
If we now form the joint probability distribution by taking products of the local proba-

bilities P( fi | d) as in Eq. (6), we see that negative findings are benign with respect to
the inference problem. In particular, a product of exponential factors that are linear in the
diseases (cf. Eq. (8)) yields a joint probability that is also the exponential of an expression
linear in the diseases. That is, each negative finding can be incorporated into the joint
probability in a linear number of operations.

Products of the probabilities of positive findings, on the other hand, yield cross products
terms that are problematic for exact inference. These cross product terms couple the diseases
(they are responsible for the “explaining away” phenomena that arise for the noisy-OR
model; see Pearl, 1988). Unfortunately, these coupling terms can lead to an exponential
growth in inferential complexity. Considering a set of standard diagnostic cases (the “CPC
cases”; see Shwe et al., 1991), Jaakkola and Jordan (1999b) found that the median size of
the maximal clique of the moralized QMR-DT graph is 151.5 nodes. Thus even without
considering the triangulation step, we see that diagnostic calculation under the QMR-DT
model is generally infeasible.7
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Figure 5. The layered graphical structure of a neural network. The input nodes and output nodes comprise the
set of evidence nodes.

3.2. Neural networks as graphical models

Neural networks are layered graphs endowed with a nonlinear “activation” function at each
node (see figure 5). Let us consider activation functions that are bounded between zero and
one, such as those obtained from the logistic functionf (z) = 1/(1+ e−z). We can treat
such a neural network as a graphical model by associating a binary variableSi with each
node and interpreting the activation of the node as the probability that the associated binary
variable takes one of its two values. For example, using the logistic function, we write:

P
(
Si = 1

∣∣ Sπ(i )
) = 1

1+ exp
{−∑ j∈π(i ) θi j Sj − θi 0

} (10)

whereθi j are the parameters associated with edges between parent nodesj and nodei , and
θi 0 is the “bias” parameter associated with nodei . This is the “sigmoid belief network”
introduced by Neal (1992). The advantages of treating a neural network in this manner
include the ability to perform diagnostic calculations, to handle missing data, and to treat
unsupervised learning on the same footing as supervised learning. Realizing these benefits,
however, requires that the inference problem be solved in an efficient way.

In fact, it is easy to see that exact inference is infeasible in general layered neural network
models. A node in a neural network generally has as parents all of the nodes in the preceding
layer. Thus the moralized neural network graph has links between all of the nodes in this
layer (see figure 6). That these links are necessary for exact inference in general is clear—in
particular, during training of a neural network the output nodes are evidence nodes, thus
the hidden units in the penultimate layer become probabilistically dependent, as do their
ancestors in the preceding hidden layers.

Thus if there areN hidden units in a particular hidden layer, the time complexity of
inference is at leastO(2N), ignoring the additional growth in clique size due to triangulation.
Given that neural networks with dozens or even hundreds of hidden units are commonplace,
we see that training a neural network using exact inference is not generally feasible.



192 JORDAN ET AL.

Figure 6. Moralization of a neural network. The output nodes are evidence nodes during training. This creates
probabilistic dependencies between the hidden nodes which are captured by the edges added by the moralization.

Figure 7. A Boltzmann machine. An edge between nodesSi andSj is associated with a factor exp(θi j Si Sj ) that
contributes multiplicatively to the potential of one of the cliques containing the edge. Each node also contributes
a factor exp(θi 0Si ) to one and only one potential.

3.3. Boltzmann machines

A Boltzmann machine is an undirected graphical model with binary-valued nodes and a
restricted set of potential functions (see figure 7). In particular, the clique potentials are
formed by taking products of “Boltzmann factors”—exponentials of terms that are at most
quadratic in theSi (Hinton & Sejnowski, 1986). Thus each clique potential is a product of
factors exp{θi j Si Sj } and factors exp{θi 0Si }, whereSi ∈ {0, 1}.8

A given pair of nodesSi andSj can appear in multiple, overlapping cliques. For each
such pair we assume that the expression exp{θi j Si Sj } appears as a factor in one and only
one clique potential. Similarly, the factors exp{θi 0Si } are assumed to appear in one and only
one clique potential. Taking the product over all such clique potentials (cf. Eq. (3)), we
have:

P(S) = exp
{∑

i< j θi j Si Sj +
∑

i θi 0Si
}

Z
, (11)
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where we have setθi j = 0 for nodesSi andSj that are not neighbors in the graph—this
convention allows us to sum indiscriminately over all pairsSi and Sj and still respect
the clique boundaries. We refer to the negative of the exponent in Eq. (11) as theenergy.
With this definition the joint probability in Eq. (11) has the general form of aBoltzmann
distribution.

Saul and Jordan (1994) pointed out that exact inference for certain special cases of
Boltzmann machine—such as trees, chains, and pairs of coupled chains—is tractable
and they proposed adecimationalgorithm for this purpose. For more general Boltzmann
machines, however, decimation is not immune to the exponential time complexity that
plagues other exact methods. Indeed, despite the fact that the Boltzmann machine is a
special class of undirected graphical model, it is a special class only by virtue of its param-
eterization, not by virtue of its conditional independence structure. Thus, exact algorithms
such as decimation and the junction tree algorithm, which are based solely on the graphical
structure of the Boltzmann machine, are no more efficient for Boltzmann machines than
they are for general graphical models. In particular, when we triangulate generic Boltzmann
machines, including the layered Boltzmann machines and grid-like Boltzmann machines,
we obtain intractably large cliques.

Sampling algorithms have traditionally been used to attempt to cope with the intractabil-
ity of the Boltzmann machine (Hinton & Sejnowski, 1986). The sampling algorithms are
overly slow, however, and more recent work has considered the faster “mean field” ap-
proximation (Peterson & Anderson, 1987). We will describe the mean field approximation
for Boltzmann machines later in the paper—it is a special form of the variational ap-
proximation approach that provides lower bounds on marginal probabilities. We will also
discuss a more general variational algorithm that provides upper and lower bounds on
probabilities (marginals and conditionals) for Boltzmann machines (Jaakkola & Jordan,
1997a).

3.4. Hidden Markov models

In this section, we briefly review hidden Markov models. The hidden Markov model (HMM)
is an example of a graphical model in which exact inference is tractable; our purpose in
discussing HMMs here is to lay the groundwork for the discussion of intractable variations
on HMMs in the following sections. See Smyth, Heckerman, and Jordan (1997) for a fuller
discussion of the HMM as a graphical model.

An HMM is a graphical model in the form of a chain (see figure 8). Consider a sequence
of multinomial “state” nodesXi and assume that the conditional probability of nodeXi ,
given its immediate predecessorXi−1, is independent of all other preceding variables. (The
indexi can be thought of as a time index). The chain is assumed to be homogeneous; that is,
the matrix of transition probabilities,A = P(Xi | Xi−1), is invariant across time. We also
require a probability distributionπ = P(X1) for the initial stateX1.

The HMM model also involves a set of “output” nodesYi and an emission probability
law B = P(Yi | Xi ), again assumed time-invariant.
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Figure 8. A HMM represented as a graphical model. The left-to-right spatial dimension represents time. The
output nodesYi are evidence nodes during the training process and the state nodesXi are hidden.

An HMM is trained by treating the output nodes as evidence nodes and the state nodes as
hidden nodes. An expectation-maximization (EM) algorithm (Baum et al., 1970; Dempster,
Laird, & Rubin, 1977) is generally used to update the parametersA, B, π ; this algorithm
involves a simple iterative procedure having two alternating steps: (1) run an inference
algorithm to calculate the conditional probabilitiesP(Xi | {Yi }) andP(Xi , Xi−1 | {Yi }); (2)
update the parameters via weighted maximum likelihood where the weights are given by
the conditional probabilities calculated in step (1).

It is easy to see that exact inference is tractable for HMMs. The moralization and trian-
gulation steps are vacuous for the HMM; thus the time complexity can be read off from
figure 8 directly. We see that the maximal clique is of sizeN2, whereN is the dimensionality
of a state node. Inference therefore scales asO(N2T), whereT is the length of the time
series.

3.5. Factorial hidden Markov models

In many problem domains it is natural to make additional structural assumptions about the
state space and the transition probabilities that are not available within the simple HMM
framework. A number of structured variations on HMMs have been considered in recent
years (see Smyth et al., 1997); generically these variations can be viewed as “dynamic
belief networks” (Dean & Kanazawa, 1989; Kanazawa, Koller, & Russell, 1995). Here we
consider a particularly simple variation on the HMM theme known as the “factorial hidden
Markov model” (Ghahramani & Jordan, 1997; Williams & Hinton, 1991).

The graphical model for a factorial HMM (FHMM) is shown in figure 9. The system
is composed of a set ofM chains indexed bym. Let the state node for themth chain
at time i be represented byX(m)

i and let the transition matrix for themth chain be rep-
resented byA(m). We can view the effective state space for the FHMM as the Cartesian
product of the state spaces associated with the individual chains. The overall transition
probability for the system is obtained by taking the product across the intra-chain transition
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Figure 9. A factorial HMM with three chains. The transition matrices areA(1), A(2), andA(3) associated with
the horizontal edges, and the output probabilities are determined by matricesB(1), B(2), andB(3) associated with
the vertical edges.

probabilities:

P(Xi | Xi−1) =
M∏

m=1

A(m)
(
X(m)

i

∣∣ X(m)
i−1

)
, (12)

where the symbolXi stands for theM-tuple(X(1)
i , X(2)

i , . . . , X(M)
i ).

Ghahramani and Jordan utilized a linear-Gaussian distribution for the emission proba-
bilities of the FHMM. In particular, they assumed:

P(Yi | Xi ) = N
(∑

m

B(m)X(m)
i , 6

)
, (13)

where theB(m) and6 are matrices of parameters.
The FHMM is a natural model for systems in which the hidden state is realized via

the joint configuration of an uncoupled set of dynamical systems. Moreover, an FHMM is
able to represent a large effective state space with a much smaller number of parameters
than a single unstructured Cartesian product HMM. For example, if we have 5 chains and
in each chain the nodes have 10 states, the effective state space is of size 100,000, while
the transition probabilities are represented compactly with only 500 parameters. A single
unstructured HMM would require 1010 parameters for the transition matrix in this case.

The fact that the output is a function of the states of all of the chains implies that the
states become stochastically coupled when the outputs are observed. Let us investigate the
implications of this fact for the time complexity of exact inference in the FHMM. Figure 10
shows a triangulation for the case of two chains (in fact this is an optimal triangulation).
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Figure 10. A triangulation of an FHMM with two component chains. The moralization step links states at a
single time step. The triangulation step links states diagonally between neighboring time steps.

Figure 11. A triangulation of the state nodes of a three-chain FHMM with three component chains. (The obser-
vation nodes have been omitted in the interest of simplicity.)

Figure 12. This graph is not a triangulation of a three-chain FHMM.

The cliques for the hidden states are of sizeN3; thus the time complexity of exact inference
is O(N3T), whereN is the number of states in each chain (we assume that each chain
has the same number of states for simplicity). Figure 11 shows the case of a triangulation
of three chains; here the triangulation (again optimal) creates cliques of sizeN4. (Note in
particular that the graph in figure 12, with cliques of size three, isnot a triangulation; there



INTRODUCTION TO VARIATIONAL METHODS 197

are 4-cycles without a chord). In the general case, it is not difficult to see that cliques of
size NM+1 are created, whereM is the number of chains; thus the complexity of exact
inference for the FHMM scales asO(NM+1T). For a single unstructured Cartesian product
HMM having the same number of states as the FHMM—i.e.,NM states—the complexity
scales asO(N2M T), thus exact inference for the FHMM is somewhat less costly, but the
exponential growth in complexity in either case shows that exact inference is infeasible for
general FHMMs.

3.6. Higher-order hidden Markov models

A related variation on HMMs considers a higher-order Markov model in which each state
depends on the previousK states instead of the single previous state. In this case it is again
readily shown that the time complexity is exponential inK . We will not discuss the higher-
order HMM further in this paper; for a variational algorithm for the higher-order HMM see
Saul and Jordan (1996).

3.7. Hidden Markov decision trees

Finally, we consider a model in which a decision tree is endowed with Markovian dynamics
(Jordan, Ghahramani, & Saul, 1997). A decision tree can be viewed as a graphical model
by modeling the decisions in the tree as multinomial random variables, one for each level of
the decision tree. Referring to figure 13, and focusing on a particular time slice, the shaded
node at the top of the diagram represents the input vector. The unshaded nodes below the
input nodes are the decision nodes. Each of the decision nodes are conditioned on the input

Figure 13. A hidden Markov decision tree. The shaded nodes{Ui } and{Yi } represent a time series in which
each element is an (input, output) pair. Linking the inputs and outputs are a sequence of decision nodes which
correspond to branches in a decision tree. These decisions are linked horizontally to represent Markovian temporal
dependence.
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and on the entire sequence of preceding decisions (the vertical arrows in the diagram). In
terms of a traditional decision tree diagram, this dependence provides an indication of the
path followed by the data point as it drops through the decision tree. The node at the bottom
of the diagram is the output variable.

If we now make the decisions in the decision tree conditional not only on the current data
point, but also on the decisions at the previous moment in time, we obtain a hidden Markov
decision tree (HMDT). In figure 13, the horizontal edges represent this Markovian temporal
dependence. Note in particular that the dependency is assumed to be level-specific—the
probability of a decision depends only on the previous decision at the same level of the
decision tree.

Given a sequence of input vectorsUi and a corresponding sequence of output vectorsYi ,
the inference problem is to compute the conditional probability distribution over the hidden
states. This problem is intractable for general HMDTs—as can be seen by noting that the
HMDT includes the FHMM as a special case.

4. Basics of variational methodology

Variational methods are used as approximation methods in a wide variety of settings, includ-
ing finite element analysis (Bathe, 1996), quantum mechanics (Sakurai, 1985), statistical
mechanics (Parisi, 1988), and statistics (Rustagi, 1976). In each of these cases the applica-
tion of variational methods converts a complex problem into a simpler problem, where the
simpler problem is generally characterized by a decoupling of the degrees of freedom in the
original problem. This decoupling is achieved via an expansion of the problem to include
additional parameters, known as variational parameters, that must be fit to the problem at
hand.

The terminology comes from the roots of the techniques in the calculus of variations.
We will not start systematically from the calculus of variations; instead, we will jump off
from an intermediate point that emphasizes the important role of convexity in variational
approximation. This point of view turns out to be particularly well suited to the development
of variational methods for graphical models.

4.1. Examples

Let us begin by considering a simple example. In particular, let us express the logarithm
function variationally:

ln(x) = min
λ
{λx − ln λ− 1}. (14)

In this expressionλ is the variational parameter, and we are required to perform the min-
imization for each value ofx. The expression is readily verified by taking the derivative
with respect toλ, solving and substituting. The situation is perhaps best appreciated geo-
metrically, as we show in figure 14. Note that the expression in braces in Eq. (14) is linear
in x with slopeλ. Clearly, given the concavity of the logarithm, for each line having slope
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Figure 14. Variational transformation of the logarithm function. The linear functions(λx − ln λ − 1) form a
family of upper bounds for the logarithm, each of which is exact for a particular value ofx.

λ there is a value of the intercept such that the line touches the logarithm at a single point.
Indeed,−ln λ − 1 in Eq. (14) is precisely this intercept. Moreover, if we range acrossλ,
the family of such lines forms an upper envelope of the logarithm function. That is, for any
givenx, we have:

ln(x) ≤ λx − ln λ− 1, (15)

for all λ. Thus the variational transformation provides a family of upper bounds on the
logarithm. The minimum over these bounds is the exact value of the logarithm.

The pragmatic justification for such a transformation is that we have converted a nonlinear
function into a linear function. The cost is that we have obtained a free parameterλ that
must be set, once for eachx. For any value ofλwe obtain an upper bound on the logarithm;
if we setλ well we can obtain a good bound. Indeed we can recover the exact value of
logarithm for the optimal choice ofλ.

Let us now consider a second example that is more directly relevant to graphical models.
For binary-valued nodes it is common to represent the probability that the node takes one of
its values via a monotonic nonlinearity that is a simple function—e.g., a linear function—of
the values of the parents of the node. An example is the logistic regression model:

f (x) = 1

1+ e−x
, (16)

which we have seen previously in Eq. (10). Herex is the weighted sum of the values of the
parents of a node.
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The logistic function is neither convex nor concave, so a simple linear bound will not
work. However, the logistic function islog concave. That is, the function

g(x) = −ln(1+ e−x) (17)

is a concave function ofx (as can readily be verified by calculating the second derivative).
Thus we can bound the log logistic function with linear functions and thereby bound the
logistic function by the exponential. In particular, we can write:

g(x) = min
λ
{λx − H(λ)}, (18)

whereH(λ) is the binary entropy function,H(λ) = −λ ln λ− (1− λ) ln(1− λ). (We will
explain how the binary entropy function arises below; for now it suffices to think of it simply
as the appropriate intercept term for the log logistic function). We now take the exponential
of both sides, noting that the minimum and the exponential function commute:

f (x) = min
λ

[
eλx−H(λ)

]
. (19)

This is a variational transformation for the logistic function; examples are plotted in fig-
ure 15. Finally, we note once again that for any value ofλ we obtain an upper bound of the
logistic function for all values ofx:

f (x) ≤ eλx−H(λ). (20)

Good choices forλ provide better bounds.

Figure 15. Variational transformation of the logistic function.
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The advantages of the transformation in Eq. (20) are significant in the context of graphical
models. In particular, to obtain the joint probability in a graphical model we are required
to take a product over the local conditional probabilities (cf. Eq. (2)). For conditional
probabilities represented with logistic regression, we obtain products of functions of the
form f (x) = 1/(1+e−x). Such a product is not in a simple form. If instead we augment our
network representation by including variational parameters—i.e. representing each logistic
function variationally as in Eq. (20)—we see that a bound on the joint probability is obtained
by taking products of exponentials. This is tractable computationally, particularly so given
that the exponents are linear inx.

4.2. Convex duality

Can we find variational transformations more systematically? Indeed, many of the vari-
ational transformations that have been utilized in the literature on graphical models are
examples of the general principle ofconvex duality. It is a general fact of convex analysis
(Rockafellar, 1972) that a concave functionf (x) can be represented via aconjugateor dual
function as follows:

f (x) = min
λ
{λT x − f ∗(λ)}, (21)

where we now allowx andλ to be vectors. The conjugate functionf ∗(λ) can be obtained
from the following dual expression:

f ∗(λ) = min
x
{λT x − f (x)}. (22)

This relationship is easily understood geometrically, as shown in figure 16. Here we plot
f (x) and the linear functionλx for a particular value ofλ. The short vertical segments

Figure 16. The conjugate functionf ∗(λ) is obtained by minimizing across the deviations—represented as dashed
lines—betweenλx and f (x).
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represent valuesλx − f (x). It is clear from the figure that we need to shift the linear
function λx vertically by an amount which is the minimum of the valuesλx − f (x) in
order to obtain an upper bounding line with slopeλ that touchesf (x) at a single point. This
observation both justifies the form of the conjugate function, as a minimum over differences
λx − f (x), and explains why the conjugate function appears as the intercept in Eq. (21).

It is an easy exercise to verify that the conjugate function for the logarithm isf ∗(λ) =
ln λ+1, and the conjugate function for the log logistic function is the binary entropyH(λ).

Although we have focused on upper bounds in this section, the framework of convex
duality applies equally well to lower bounds; in particular forconvex f(x) we have:

f (x) = max
λ
{λT x − f ∗(λ)}, (23)

where

f ∗(λ) = max
x
{λT x − f (x)} (24)

is the conjugate function.
We have focused on linear bounds in this section, but convex duality is not restricted to

linear bounds. More general bounds can be obtained by transforming the argument of the
function of interest rather than the value of the function (Jaakkola & Jordan, 1997a). For
example, if f (x) is concave inx2 we can write:

f (x) = min
λ
{λx2− f̄ ∗(λ)}, (25)

where f̄ ∗(λ) is the conjugate function of̄f (x) ≡ f (x2). Thus the transformation yields a
quadratic bound onf (x). It is also worth noting that such transformations can be combined
with the logarithmic transformation utilized earlier to obtain Gaussian representations for
the upper bounds. This can be useful in obtaining variational approximations for posterior
distributions (Jaakkola & Jordan, 1997b).

To summarize, the general methodology suggested by convex duality is the following.
We wish to obtain upper or lower bounds on a function of interest. If the function is
already convex or concave then we simply calculate the conjugate function. If the function
is not convex or concave, then we look for an invertible transformation that renders the
function convex or concave. We may also consider transformations of the argument of the
function. We then calculate the conjugate function in the transformed space and transform
back. For this approach to be useful we need to find a transform, such as the logarithm,
whose inverse has useful algebraic properties.

4.3. Approximations for joint probabilities and conditional probabilities

The discussion thus far has focused on approximations for the local probability distributions
at the nodes of a graphical model. How do these approximations translate into approxima-
tions for the global probabilities of interest, in particular for the conditional distribution
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P(H | E) that is our interest in the inference problem and the marginal probabilityP(E)
that is our interest in learning problems?

Let us focus on directed graphs for concreteness. Suppose that we have a lower bound
and an upper bound for each of the local conditional probabilitiesP(Si | Sπ(i )). That is,
assume that we have formsPU (Si | Sπ(i ), λU

i ) and PL(Si | Sπ(i ), λL
i ), providing upper and

lower bounds, respectively, whereλU
i andλL

i are (generally different) variational para-
meterizations appropriate for the upper and lower bounds. Consider first the upper bounds.
Given that the product of upper bounds is an upper bound, we have:

P(S) =
∏

i

P
(
Si

∣∣ Sπ(i )
)

≤
∏

i

PU
(
Si

∣∣ Sπ(i ), λ
U
i

)
. (26)

This inequality holds for arbitrary settings of values of the variational parametersλU
i .

Moreover, Eq. (26) must hold for any subset ofSwhenever some other subset is held fixed;
this implies that upper bounds on marginal probabilities can be obtained by taking sums
over the variational form on the right-hand side of the equation. For example, lettingE and
H be a disjoint partition ofS, we have:

P(E) =
∑
{H}

P(H, E)

≤
∑
{H}

∏
i

PU
(
Si

∣∣ Sπ(i ), λ
U
i

)
, (27)

where, as we will see in the examples to be discussed below, we choose the variational
forms PU (Si | Sπ(i ), λU

i ) so that the summation overH can be carried out efficiently (this
is the key step in developing a variational method). In either Eq. (26) or Eq. (27), given
that these upper bounds hold for any settings of values the variational parametersλU

i , they
hold in particular for optimizing settings of the parameters. That is, we can treat the right-
hand side of Eq. (26) or the right-hand side of Eq. (27) as a function to be minimized with
respect toλU

i . In the latter case, this optimization process will induce interdependencies
between the parametersλU

i . These interdependencies are desirable; indeed they are critical
for obtaining a good variational bound on the marginal probability of interest. In particular,
the best global bounds are obtained when the probabilistic dependencies in the distribution
are reflected in dependencies in the approximation.

To clarify the nature of variational bounds, note that there is an important distinction to be
made between joint probabilities (Eq. (26)) and marginal probabilities (Eq. (27)). In Eq. (26),
if we allow the variational parameters to be set optimally for each value of the argumentS,
then it is possible (in principle) to find optimizing settings of the variational parameters that
recover the exact value of the joint probability. (Here we assume that the local probabilities
P(Si | Sπ(i )) can be represented exactly via a variational transformation, as in the examples
discussed in Section 4.1). In Eq. (27), on the other hand, we arenotgenerally able to recover
exact values of the marginal by optimizing over variational parameters that depend only on
the argumentE. Consider, for example, the case of a nodeSi ∈ E that has parents inH .
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As we range across{H} there will be summands on the right-hand side of Eq. (27) that will
involve evaluating the local probabilityP(Si | Sπ(i )) for different values of the parentsSπ(i ).
If the variational parameterλU

i depends only onE, we cannot in general expect to obtain
an exact representation forP(Si | Sπ(i )) in each summand. Thus, some of the summands in
Eq. (27) are necessarily bounds and not exact values.

This observation provides a bit of insight into reasons why a variational bound might be
expected to be tight in some circumstances and loose in others. In particular, ifP(Si | Sπ(i ))
is nearly constant as we range acrossSπ(i ), or if we are operating at a point where the
variational representation is fairly insensitive to the setting ofλU

i (for example the right-
hand side of the logarithm in figure 14), then the bounds may be expected to be tight. On
the other hand, if these conditions are not present one might expect that the bound would be
loose. However the situation is complicated by the interdependencies between theλU

i that
are induced during the optimization process. We will return to these issues in the discussion.

Although we have discussed upper bounds, similar comments apply to lower bounds,
and to marginal probabilities obtained from lower bounds on the joint distribution.

The conditional distributionP(H | E), on the other hand, is the ratio of two marginal
distributions; i.e.,P(H | E) = P(H, E)/P(E).9 To obtain upper and lower bounds on the
conditional distribution, we must have upper and lower bounds on both the numerator and
the denominator. Generally speaking, however, if we can obtain upper and lower bounds
on the denominator, then our labor is essentially finished, because the numerator involves
fewer sums. Indeed, in the case in whichS= H ∪ E, the numerator involves no sums and
is simply a function evaluation.

Finally, it is worth noting that variational methods can also be of interest simply as
tractable approximations rather than as methods that provide strict bounds (much as sam-
pling methods are used). One way to do this is to obtain a variational approximation that
is a bound for amarginal probability, and to substitute the variational parameters thus
obtained into theconditionalprobability distribution. Thus, for example, we might obtain
a lower bound on the likelihoodP(E) by fitting variational parameters. We can substi-
tute these parameters into the parameterized variational form forP(H, E) and then utilize
this variational form as an efficient inference engine in calculating an approximation to
P(H | E).

In the following sections we will illustrate the general variational framework as it has
been applied in a number of worked-out examples. All of these examples involve architec-
tures of practical interest and provide concrete examples of variational methodology. To a
certain degree the examples also serve as case histories that can be generalized to related
architectures. It is important to emphasize, however, that it is not necessarily straightfor-
ward to develop a variational approximation for a new architecture. The ease and the utility
of applying the methods outlined in this section depend on architectural details, including
the choice of node probability functions, the graph topology and the particular parameter
regime in which the model is operated. In particular, certain choices of node conditional
probability functions lend themselves more readily than others to variational transforma-
tions that have useful algebraic properties. Also, certain architectures simplify more readily
under variational transformation than others; in particular, the marginal bounds in Eq. (27)
are simple functions in some cases and complex in others. These issues are currently not
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well understood and the development of effective variational approximations can in some
cases require substantial creativity.

4.4. Sequential and block methods

Let us now consider in somewhat more detail how variational methods can be applied
to probabilistic inference problems. The basic idea is that suggested above—we wish to
simplify the joint probability distribution by transforming the local probability functions.
By an appropriate choice of variational transformation, we can simplify the form of the
joint probability distribution and thereby simplify the inference problem. We can transform
some or all of the nodes. The cost of performing such transformations is that we obtain
bounds or approximations to the probabilities rather than exact results.

The option of transforming only some of the nodes is important; it implies a role for
the exact methods as subroutines within a variational approximation. In particular, partial
transformations of the graph may leave some of the original graphical structure intact
and/or introduce new graphical structure to which exact methods can be fruitfully applied.
In general, we wish to use variational approximations in a limited way, transforming the
graph into a simplified graph to which exact methods can be applied. This will in general
yield tighter bounds than an algorithm that transforms the entire graph without regard for
computationally tractable substructure.

The majority of variational algorithms proposed in the literature to date can be divided into
two main classes:sequentialandblock. In the sequential approach, nodes are transformed
in an order that is determined during the inference process. This approach has the advantage
of flexibility and generality, allowing the particular pattern of evidence to determine the best
choices of nodes to transform. In some cases, however, particularly when there are obvious
substructures in a graph which are amenable to exact methods, it can be advantageous to
designate in advance the nodes to be transformed. We will see that this block approach is
particularly natural in the setting of parameter estimation.

5. The sequential approach

The sequential approach introduces variational transformations for the nodes in a particu-
lar order. The goal is to transform the network until the resulting transformed network is
amenable to exact methods. As we will see in the examples below, certain variational trans-
formations can be understood graphically as a sparsification in which nodes are removed
from the graph. If a sufficient number of variational transformations are introduced the
resulting graph becomes sufficiently sparse such that an exact method becomes applicable.
An operational definition of sparseness can be obtained by running a greedy triangulation
algorithm—this upper bounds the run time of the junction tree inference algorithm.

There are basically two ways to implement the sequential approach—one can begin
with the untransformed graph and introduce variational transformations one node at a time,
or one can begin with a completely transformed graph and reintroduce exact conditional
probabilities one node at a time. An advantage of the latter approach is that the graph
remains tractable at all times; thus it is feasible to directly calculate the quantitative effect
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of transforming or reintroducing a given node. In the former approach the graph is intractable
throughout the search, and the only way to assessing a transformation is via its qualitative
effect on graphical sparseness.

The sequential approach is perhaps best presented in the context of a specific example.
In the following section we return to the QMR-DT network and show how a sequential
variational approach can be used for inference in this network.

5.1. The QMR-DT network

Jaakkola and Jordan (1999b) present an application of sequential variational methods to the
QMR-DT network. As we have seen, the QMR-DT network is a bipartite graph in which
the conditional probabilities for the findings are based on the noisy-OR model (Eq. (8) for
the negative findings and Eq. (9) for the positive findings). Note that symptom nodes that are
not findings—i.e., symptoms that are not observed—can simply be marginalized out of the
joint distribution by omission and therefore they have no impact on inference. Moreover,
as we have discussed, the negative findings present no difficulties for inference—given
the exponential form of the probability in Eq. (8), the effects of negative findings on the
disease probabilities can be handled in linear time. Let us therefore assume that the updates
associated with the negative findings have already been made and focus on the problem of
performing inference when there are positive findings.

Repeating Eq. (9) for convenience, we have the following representation for the proba-
bility of a positive finding:

P( fi = 1 | d) = 1− exp

{
−
∑

j∈π(i )
θi j dj − θi 0

}
(28)

The function 1− e−x is log concave; thus, as in the case of the logistic function, we are
able to express the variational upper bound in terms of the exponential of a linear function.
In particular:

1− e−x ≤ eλx− f ∗(λ), (29)

where the conjugate function is as follows:

f ∗(λ) = −λ ln λ+ (λ+ 1) ln(λ+ 1). (30)

Plugging the argument of Eq. (28) into Eq. (29), and noting that we need a different varia-
tional parameterλi for each transformed node, we obtain:

P( fi = 1 | d) ≤ exp

{
λi

( ∑
j∈π(i )

θi j dj + θi 0

)
− f ∗(λi )

}
(31)

= eλi θi 0− f ∗(λi )
∏

j∈π(i )
[eλi θi j ]dj. (32)
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Figure 17. The QMR-DT graph after the lightly shaded finding has been subjected to a variational transformation.
The effect is equivalent to delinking the node from the graph.

The final equation displays the effect of the variational transformation. The exponential
factor outside of the product is simply a constant. The product is taken over all nodes in
the parent set for nodei , but unlike the case in which the graph is moralized for exact
computation, the contributions associated with thedj nodes are uncoupled. That is, each
factor exp(λi θi j ) is simply a constant that can be multiplied into the probability that was
previously associated with nodedj (for dj = 1). There is no coupling ofdj anddk nodes
as there would be if we had taken products of the untransformed noisy-OR. Thus the
graphical effect of the variational transformation is as shown in figure 17; the variational
transformation delinks thei th finding from the graph. In our particular example, the graph
is now rendered singly connected and an exact inference algorithm can be invoked. (Recall
that marginalizing over theunobservedsymptoms simply removes them from the graph).

The sequential methodology utilized by Jaakkola and Jordan begins with a completely
transformed graph and then reinstates exact conditional probabilities at selected nodes. To
choose the ordering in which to reinstate nodes, Jaakkola and Jordan make use of a heuristic,
basing the choice on the effect on the likelihood bound of reinstating each node individually
starting from the completely transformed state. Despite the suboptimality of this heuristic,
they found that it yielded an approximation that was orders of magnitude more accurate
than that of an algorithm that used a random ordering. Given the ordering the algorithm
then proceeds as follows: (1) Choose the next node in the ordering, and consider the effect
of reintroducing the links associated with the node into the current graph. (2) If the resulting
graph is still amenable to exact methods, reinstate the node and iterate. Otherwise stop and
run an exact method. Finally, (3) we must also choose the parametersλi so as to make the
approximation as tight as possible. It is not difficult to verify that products of the expression
in Eq. (32) yield an overall bound that is a convex function of theλi parameters (Jaakkola
& Jordan, 1999b). Thus standard optimization algorithms can be used to find good choices
for theλi .

Figure 18 shows results from Jaakkola and Jordan (1999b) for approximate inference
on four of the “CPC cases” that were mentioned earlier. For these four cases there were
a sufficiently small number of positive findings that an exact algorithm could be run to
provide a gold standard for comparison. The leftmost figure shows upper and lower bounds
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Figure 18. (a) Exact values and variational upper and lower bounds on the log-likelihood for the four tractable
CPC cases. (b) The mean correlation between the approximate and exact posterior marginals as a function of the
execution time (seconds). Solid line: variational estimates; dashed line: likelihood-weighting sampling. The lines
above and below the sampling result represent standard errors of the mean based on the ten independent runs of
the sampler.

on the log-likelihood for these cases. Jaakkola and Jordan also calculated approximate
posterior marginals for the diseases. The correlations of these marginals with the gold
standard are shown in the rightmost figure. This figure plots accuracy against run time,
for runs in which 8, 12, and 16 positive findings were treated exactly. Note that accurate
values were obtained in less than a second. The figure also shows results from a state-of-the-
art sampling algorithm (the likelihood-weighted sampler of Shwe and Cooper, 1991). The
sampler required significantly more computer time than the variational method to obtain
roughly comparable accuracy.

Jaakkola and Jordan (1999b) also presented results for the entire corpus of CPC cases.
They again found that the variational method yielded reasonably accurate estimates of the
posterior probabilities of the diseases (using lengthy runs of the sampler as a basis for
comparison) within less than a second of computer time.

5.2. The Boltzmann machine

Let us now consider a rather different example. As we have discussed, the Boltzmann
machine is a special subset of the class of undirected graphical models in which the potential
functions are composed of products of quadratic and linear “Boltzmann factors.” Jaakkola
and Jordan (1997a) introduced a sequential variational algorithm for approximate inference
in the Boltzmann machine. Their method, which we discuss in this section, yields both
upper and lower bounds on marginal and conditional probabilities of interest.

Recall the form of the joint probability distribution for the Boltzmann machine:

P(S) = exp
{∑

i< j θi j Si Sj +
∑

i θi 0Si
}

Z
. (33)

To obtain marginal probabilities such asP(E)under this joint distribution, we must calculate
sums over exponentials of quadratic energy functions. Moreover, to obtain conditional
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probabilities such asP(H | E) = P(H, E)/P(E), we take ratios of such sums, where the
numerator requires fewer sums than the denominator. The most general such sum is the
partition function itself, which is a sum overall configurations{S}. Let us therefore focus
on upper and lower bounds for the partition function as the general case; this allows us to
calculate bounds on any other marginals or conditionals of interest.

Our approach is to perform the sums one sum at a time, introducing variational trans-
formations to ensure that the resulting expression stays computationally tractable. In fact,
at every step of the process that we describe, the transformed potentials involve no more
than quadratic Boltzmann factors. (Exact methods can be viewed as creating increasingly
higher-order terms when the marginalizing sums are performed). Thus the transformed
Boltzmann machine remains a Boltzmann machine.

Let us first consider lower bounds. We write the partition function as follows:

Z =
∑
{S}

exp

{∑
j<k

θ jk Sj Sk +
∑

j

θ j 0Sj

}

=
∑
{S\Si }

∑
Si∈{0,1}

exp

{∑
j<k

θ jk Sj Sk +
∑

j

θ j 0Sj

}
, (34)

and attempt to find a tractable lower bound on the inner summand overSi on the right-hand
side. It is not difficult to show that this expression is log convex. Thus we bound its logarithm
variationally:

ln

[ ∑
Si∈{0,1}

exp

{∑
j<k

θ jk Sj Sk +
∑

j

θ j 0Sj

}]

=
∑
{ j<k}6=i

θ jk Sj Sk +
∑
j 6=i

θ j 0Sj + ln

[ ∑
Si∈{0,1}

exp

{∑
j 6=i

θi j Si Sj + θi 0Si

}]

=
∑
{ j<k}6=i

θ jk Sj Sk +
∑
j 6=i

θ j 0Sj + ln

[
1+ exp

{∑
j 6=i

θi j Sj + θi 0

}]
(35)

≥
∑
{ j<k}6=i

θ jk Sj Sk +
∑
j 6=i

θ j 0Sj + λL
i

(∑
j 6=i

θi j Sj + θi 0

)
+ H

(
λL

i

)
, (36)

where the sum in the first term on the right-hand side is a sum over all pairsj < k such that
neither j nork is equal toi , whereH(·) is as before the binary entropy function, and where
λL

i is the variational parameter associated with nodeSi . In the first line we have simply
pulled outside of the sum all of those terms not involvingSi , and in the second line we
have performed the sum over the two values ofSi . Finally, to lower bound the expression in
Eq. (35) we need only lower bound the term ln(1+ ex) on the right-hand side. But we have
already found variational bounds for a related expression in treating the logistic function;
recall Eq. (18). The upper bound in that case translates into the lower bound in the current
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Figure 19. The transformation of the Boltzmann machine under the approximate marginalization over nodeSi

for the case of lower bounds. (a) The Boltzmann machine before the transformation. (b) The Boltzmann machine
after the transformation, whereSi has become delinked. All of the pairwise parameters,θ jk , for j andk not equal
to i , have remained unaltered. As suggested by the wavy lines, the linear coefficients have changed for those nodes
that were neighbors ofSi .

case:

ln(1+ e−x) ≥ −λx + H(λ). (37)

This is the bound that we have utilized in Eq. (36).
Let us consider the graphical consequences of the bound in Eq. (36) (see figure 19).

Note that for all nodes in the graph other than nodeSi and its neighbors, the Boltzmann
factors are unaltered (see the first two terms in the bound). Thus the graph is unaltered for
such nodes. From the term in parentheses we see that the neighbors of nodeSi have been
endowed with new linear terms; importantly, however, these nodes have not become linked
(as they would have become if we had done the exact marginalization). Neighbors that were
linked previously remain linked with the sameθ jk parameter. NodeSi is absent from the
transformed partition function and thus absent from the graph, but it has left its trace via the
new linear Boltzmann factors associated with its neighbors. We can summarize the effects
of the transformation by noting that the transformed graph is a new Boltzmann machine
with one fewer node and the following parameters:

θ̃ jk = θ jk j, k 6= i

θ̃ j 0 = θ j 0+ λL
i θi j j 6= i .

Note finally that we also have a constant termλL
i θi 0 + H(λL

i ) to keep track of. This term
will have an interesting interpretation when we return to the Boltzmann machine later in
the context of block methods.

Upper bounds are obtained in a similar way. We again break the partition function into a
sum over a particular nodeSi and a sum over the configurations of the remaining nodesS\Si .
Moreover, the first three lines of the ensuing derivation leading to Eq. (35) are identical. To
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complete the derivation we now find an upper bound on ln(1+ ex). Jaakkola and Jordan
(1997a) proposed using quadratic bounds for this purpose. In particular, they noted that:

ln(1+ ex) = ln(ex/2+ e−x/2)+ x

2
(38)

and that ln(ex/2+e−x/2) is a concave function ofx2 (as can be verified by taking the second
derivative with respect tox2). This implies that ln(1+ ex) must have a quadratic upper
bound of the following form:

ln(1+ ex) ≤ λx2+ x

2
− ḡ∗(λ). (39)

whereḡ∗(λ) is an appropriately defined conjugate function. Using these upper bounds in
Eq. (35) we obtain:

ln

[ ∑
Si∈{0,1}

exp

{∑
j<k

θ jk Sj Sk +
∑

j

θ j 0Sj

}]
≤

∑
{ j<k}6=i

θ jk Sj Sk +
∑
j 6=i

θ j 0Sj

+ λU
i

(∑
j 6=i

θi j Sj + θi 0

)2

+ 1

2

(∑
j 6=i

θi j Sj + θi 0

)
− ḡ∗

(
λU

i

)
, (40)

whereλU
i is the variational parameter associated with nodeSi .

The graphical consequences of this transformation are somewhat different than those of
the lower bounds (see figure 20). Considering the first two terms in the bound, we see that

Figure 20. The transformation of the Boltzmann machine under the approximate marginalization over nodeSi

for the case of upper bounds. (a) The Boltzmann machine before the transformation. (b) The Boltzmann machine
after the transformation, whereSi has become delinked. As the dashed edges suggest, all of the neighbors ofSi

have become linked and those that were formerly linked have new parameter values. As suggested by the wavy
lines, the neighbors ofSi also have new linear coefficients. All other edges and parameters are unaltered.
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it is still the case that the graph is unaltered for all nodes in the graph other than nodeSi and
its neighbors, and moreover neighbors ofSi that were previously linked remain linked. The
quadratic term, however, gives rise to new links between the previously unlinked neighbors
of nodeSi and alters the parameters between previously linked neighbors. Each of these
nodes also acquires a new linear term. Expanding Eq. (40) and collecting terms, we see
that the approximate marginalization has yielded a Boltzmann machine with the following
parameters:

θ̃ jk = θ jk + 2λU
i θ j i θik j, k 6= i

θ̃ j 0 = θ j 0+ θi j
2 + 2λU

i θi 0θi j + λU
i θ

2
i j j 6= i .

Finally, the constant term is given byθi 0/2+ λU
i θ

2
i 0− ḡ∗(λU

i ).
The graphical consequences of the lower and upper bound transformations also have com-

putational consequences. In particular, given that the lower bound transformation introduces
no additional links when nodes are delinked, it is somewhat more natural to combine these
transformations with exact methods. In particular, the algorithm simply delinks nodes until
a tractable structure (such as a tree) is revealed; at this point an exact algorithm is called
as a subroutine. The upper bound transformation, on the other hand, by introducing links
between the neighbors of a delinked node, does not reveal tractable structure as readily.
This seeming disadvantage is mitigated by the fact that the upper bound is a tighter bound
(Jaakkola & Jordan, 1997a).

6. The block approach

An alternative approach to variational inference is to designate in advance a set of nodes
that are to be transformed. We can in principle view this “block approach” as an off-line
application of the sequential approach. In the case of lower bounds, however, there are ad-
vantages to be gained by developing a methodology that is specific to block transformation.
In this section, we show that a natural global measure of approximation accuracy can be
obtained for lower bounds via a block version of the variational formalism. The method
meshes readily with exact methods in cases in which tractable substructure can be identi-
fied in the graph. This approach was first presented by Saul and Jordan (1996), as a refined
version of mean field theory for Markov random fields, and has been developed further in a
number of recent studies (e.g., Ghahramani & Jordan, 1997; Ghahramani & Hinton, 1996;
Jordan et al., 1997).

In the block approach, we begin by identifying a substructure in the graph of interest
that we know is amenable to exact inference methods (or, more generally, to efficient
approximate inference methods). For example, we might pick out a tree or a set of chains in
the original graph. We wish to use this simplified structure to approximate the probability
distribution on the original graph. To do so, we consider a family of probability distributions
that are obtained from the simplified graph via the introduction of variational parameters.
We choose a particular approximating distribution from the simplifying family by making a
particular choice for the variational parameters. As in the sequential approach a new choice
of variational parameters must be made each time new evidence is available.
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More formally, letP(S) represent the joint distribution on the graphical model of interest,
where as beforeS represents all of the nodes of the graph andH and E are disjoint
subsets ofSrepresenting the hidden nodes and the evidence nodes, respectively. We wish to
approximate the conditional probabilityP(H | E). We introduce an approximating family
of conditional probability distributions,Q(H | E, λ), whereλ are variational parameters.
The graph representingQ is not generally the same as the graph representingP; generally
it is a sub-graph. From the family of approximating distributionsQ, we choose a particular
distribution by minimizing the Kullback-Leibler (KL) divergence,D(Q ‖ P), with respect
to the variational parameters:

λ∗ = arg min
λ

D(Q(H | E, λ) ‖ P(H | E)), (41)

where for any probability distributionsQ(S) and P(S) the KL divergence is defined as
follows:

D(Q ‖ P) =
∑
{S}

Q(S) ln
Q(S)

P(S)
. (42)

The minimizing values of the variational parameters,λ∗, define a particular distribu-
tion, Q(H | E, λ∗), that we treat as the best approximation ofP(H | E) in the family
Q(H | E, λ).

One simple justification for using the KL divergence as a measure of approximation
accuracy is that it yields the bestlower boundon the probability of the evidenceP(E)
(i.e., the likelihood) in the family of approximationsQ(H | E, λ). Indeed, we bound the
logarithm ofP(E) using Jensen’s inequality as follows:

ln P(E) = ln
∑
{H}

P(H, E)

= ln
∑
{H}

Q(H | E) · P(H, E)

Q(H | E)

≥
∑
{H}

Q(H | E) ln

[
P(H, E)

Q(H | E)

]
. (43)

The difference between the left and right hand sides of this equation is easily seen to be the
KL divergenceD(Q ‖ P). Thus, by the positivity of the KL divergence (Cover & Thomas,
1991), the right-hand side of Eq. (43) is a lower bound onP(E). Moreover, by choosingλ
according to Eq. (41), we obtain the tightest lower bound.

6.1. Convex duality and the KL divergence

We can also justify the choice of KL divergence by making an appeal to convex duality
theory, thereby linking the block approach with the sequential approach (Jaakkola, 1997).
Consider, for simplicity, the case of discrete-valued nodesH . The distributionQ(H | E, λ)
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can be viewed as a vector of real numbers, one for each configuration of the variables
H . Treat this vector as the vector-valued variational parameter “λ” in Eq. (23). Moreover,
the log probability lnP(H, E) can also be viewed as a vector of real numbers, defined on
the set of configurations ofH . Treat this vector as the variable “x” in Eq. (23). Finally,
define f (x) to be lnP(E). It can be verified that the following expression for lnP(E):

ln P(E) = ln

(∑
{H}

eln P(H,E)

)
(44)

is indeed convex in the values lnP(H, E). Moreover, by direct substitution in Eq. (22):

f ∗(Q) = min

{∑
{H}

Q(H | E, λ) ln P(H, E)− ln P(E)

}
(45)

and minimizing with respect to lnP(H, E), the conjugate functionf ∗(Q) is seen to be
the negative entropy function

∑
{H} Q(H | E) ln Q(H | E). Thus, using Eq. (23), we can

lower bound the log likelihood as follows:

ln P(E) ≥
∑
{H}

Q(H | E) ln P(H, E)− Q(H | E) ln Q(H | E) (46)

This is identical to Eq. (43). Moreover, we see that we could in principle recover the exact
log likelihood if Q were allowed to range over all probability distributionsQ(H | E). By
ranging over a parameterized familyQ(H | E, λ), we obtain the tightest lower bound that
is available within the family.

6.2. Parameter estimation via variational methods

Neal and Hinton (1999) have pointed out that the lower bound in Eq. (46) has a useful role
to play in the context of maximum likelihood parameter estimation. In particular, they make
a link between this lower bound and parameter estimation via the EM algorithm.

Let us augment our notation to include parametersθ in the specification of the joint
probability distributionP(S | θ). As before, we designate a subset of the nodesE as the
observed evidence. The marginal probabilityP(E | θ), thought of as a function ofθ , is
known as thelikelihood. The EM algorithm is a method for maximum likelihood parameter
estimation that hillclimbs in the log likelihood. It does so by making use of the convexity
relationship between lnP(H, E | θ) and lnP(E | θ) described in the previous section.

In Section 6 we showed that the function

L(Q, θ) =
∑
{H}

Q(H | E) ln P(H, E | θ)− Q(H | E) ln Q(H | E) (47)

is a lower bound on the log likelihood for any probability distributionQ(H | E). Moreover,
we showed that the difference between lnP(E | θ) and the boundL(Q, θ) is the KL
divergence betweenQ(H | E) and P(H | E). Suppose now that we allowQ(H | E) to
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range over all possible probability distributions onH and minimize the KL divergence. It
is a standard result (cf. Cover & Thomas, 1991) that the KL divergence is minimized by
choosingQ(H | E) = P(H | E, θ), and that the minimal value is zero. This is verified by
substitutingP(H | E, θ) into the right-hand side of Eq. (47) and recovering lnP(E | θ).

This suggests the following algorithm. Starting from an initial parameter vectorθ(0), we
iterate the following two steps, known as the “E (expectation) step” and the “M (maximiza-
tion) step.” First, we maximize the boundL(Q, θ) with respect to probability distributions
Q. Second, we fixQ and maximize the boundL(Q, θ) with respect to the parametersθ .
More formally, we have:

(E step) :Q(k+1) = arg max
Q
L
(
Q, θ (k)

)
(48)

(M step) :θ(k+1) = arg max
θ
L
(
Q(k+1), θ

)
(49)

which is coordinate ascent inL(Q, θ).
This can be related to the traditional presentation of the EM algorithm (Dempster, Laird,

& Rubin, 1977) by noting that for fixedQ, the right-hand side of Eq. (47) is a function of
θ only through the lnP(H, E | θ) term. Thus maximizingL(Q, θ) with respect toθ in the
M step is equivalent to maximizing the following function:∑

{H}
P
(
H | E, θ (k)

)
ln P(H, E | θ). (50)

Maximization of this function, known as the “complete log likelihood” in the EM literature,
defines the M step in the traditional presentation of EM.

Let us now return to the situation in which we are unable to compute the full conditional
distributionP(H | E, θ). In such cases variational methodology suggests that we consider
a family of approximating distributions. Although we are no longer able to perform a true
EM iteration given that we cannot avail ourselves ofP(H | E, θ), we can still perform
coordinate ascent in the lower boundL(Q, θ). Indeed, the variational strategy of minimi-
zing the KL divergence with respect to the variational parameters that define the approx-
imating family is exactly a restricted form of coordinate ascent in the first argument of
L(Q, θ). We then follow this step by an “M step” that increases the lower bound with
respect to the parametersθ .

This point of view, which can be viewed as a computationally tractable approximation
to the EM algorithm, has been exploited in a number of recent architectures, including the
sigmoid belief network, factorial hidden Markov model and hidden Markov decision tree
architectures that we discuss in the following sections, as well as the “Helmholtz machine”
of Dayan et al. (1995) and Hinton et al. (1995).

6.3. Examples

We now return to the problem of picking a tractable variational parameterization for a given
graphical model. We wish to pick a simplified graph which is both rich enough to provide
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distributions that are close to the true distribution, and simple enough so that an exact algo-
rithm can be utilized efficiently for calculations under the approximate distribution. Similar
considerations hold for the variational parameterization: the variational parameterization
must be representationally rich so that good approximations are available and yet simple
enough so that a procedure that minimizes the KL divergence has some hope of finding good
parameters and not getting stuck in a local minimum. It is not necessarily possible to realize
all of these desiderata simultaneously; however, in a number of cases it has been found that
relatively simple variational approximations can yield reasonably accurate solutions. In this
section we discuss several such examples.

6.3.1. Mean field Boltzmann machine.In Section 5.2 we discussed a sequential variational
algorithm that yielded upper and lower bounds for the Boltzmann machine. We now revisit
the Boltzmann machine within the context of the block approach and discuss lower bounds.
We also relate the two approaches.

Recall that the joint probability for the Boltzmann machine can be written as follows:

P(S| θ) = exp
{∑

i< j θi j Si Sj +
∑

i θi 0Si
}

Z
, (51)

whereθi j = 0 for nodesSi andSj that are not neighbors in the graph. Consider now the
representation of the conditional distributionP(H | E, θ) in a Boltzmann machine. For
nodesSi ∈ E andSj ∈ E, the contributionθi j Si Sj reduces to a constant, which vanishes
when we normalize. IfSi ∈ H and Sj ∈ E, the quadratic contribution becomes a linear
contribution that we associate with nodeSi . Finally, linear terms associated with nodes
Si ∈ E also become constants and vanish. In summary, we can express the conditional
distributionP(H | E, θ) as follows:

P(H | E, θ) = exp
{∑

i< j θi j Si Sj +
∑

i θ
c
i 0Si

}
Zc

, (52)

where the sums are restricted to range over nodes inH and the updated parametersθc
i 0

include contributions associated with the evidence nodes:

θc
i 0 = θi 0+

∑
j∈E

θi j Sj . (53)

The updated partition functionZc is given as follows:

Zc =
∑
{H}

[
exp

{∑
i< j

θi j Si Sj +
∑

i

θc
i 0Si

}]
. (54)

In sum, we have a Boltzmann machine on the subsetH .
The “mean field” approximation (Peterson & Anderson, 1987) for Boltzmann machines is

a particular form of variational approximation in which a completely factorized distribution
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Figure 21. (a) A nodeSi in a Boltzmann machine with its Markov blanket. (b) The approximating mean field
distribution Q is based on a graph with no edges. The mean field equations yield a deterministic relationship,
represented in the figure with the dotted lines, between the variational parametersµi andµ j for nodesj in the
Markov blanket of nodei .

is used to approximateP(H | E, θ). That is, we consider the simplest possible approxi-
mating distribution; one that is obtained by droppingall of the edges in the Boltzmann
graph (see figure 21). For this choice ofQ(H | E, µ), (where we now useµ to represent
the variational parameters), we have little choice as to the variational parameterization—to
represent as large an approximating family as possible we endow each degree of freedom
Si with its own variational parameterµi . ThusQ can be written as follows:

Q(H | E, µ) =
∏
i∈H

µ
Si
i (1− µi )

1−Si , (55)

where the product is taken over the hidden nodesH .
Forming the KL divergence between the fully factorizedQ distribution and theP distri-

bution in Eq. (52), we obtain:

D(Q ‖ P) =
∑

i

[µi lnµi + (1− µi ) ln(1− µi )]

−
∑
i< j

θi jµiµ j −
∑

i

θc
i 0µi + ln Zc, (56)

where the sums range across nodes inH . In deriving this result we have used the fact that,
under theQ distribution,Si andSj are independent random variables with mean valuesµi

andµ j .
We now take derivatives of the KL divergence with respect toµi —noting thatZc is

independent ofµi —and set the derivative to zero to obtain the following equations:

µi = σ
(∑

j

θi jµ j + θi 0

)
, (57)

whereσ(z) = 1/(1+ e−z) is the logistic function and we defineθi j equal toθ j i for j < i .
Equation (57) defines a set of coupled equations known as the “mean field equations.”
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These equations are solved iteratively for a fixed point solution. Note that each variational
parameterµi updates its value based on a sum across the variational parameters in its
Markov blanket (cf. figure 21(b)). This can be viewed as a variational form of a local
message passing algorithm.

Peterson and Anderson (1987) compared the mean field approximation to Gibbs sampling
on a set of test cases and found that it ran 10–30 times faster, while yielding a roughly
equivalent level of accuracy.

There are cases, however, in which the mean field approximation is known to break
down. These cases include sparse Boltzmann machines and Boltzmann machines with
“frustrated” interactions; these are networks whose potential functions embody constraints
between neighboring nodes that cannot be simultaneously satisfied (see also Galland, 1993).
In the case of sparse networks, exact algorithms can provide help; indeed, this observation
led to the use of exact algorithms as subroutines within the “structured mean field” approach
pursued by Saul and Jordan (1996).

Let us now consider the parameter estimation problem for Boltzmann machines. Writing
out the lower bound in Eq. (47) for this case, we have:

ln P(E | θ) ≥
∑
i< j

θi jµiµ j +
∑

i

θc
i 0µi − ln Z

−
∑

i

[µi lnµi + (1− µi ) ln(1− µi )] (58)

Taking the derivative with respect toθi j yields a gradient which has a simple “Hebbian”
termµiµ j as well as a contribution from the derivative of lnZ with respect toθi j . It is
not hard to show that this derivative is〈Si Sj 〉; where the brackets signify an average with
respect to the unconditional distributionP(S | θ). Thus we have the following gradient
algorithm for performing an approximate M step:

1θi j ∝ (µiµ j − 〈Si Sj 〉). (59)

Unfortunately, however, given our assumption that calculations under the Boltzmann dis-
tribution are intractable for the graph under consideration, it is intractable to compute the
unconditional average. We can once again appeal to mean field theory and compute an
approximation to〈Si Sj 〉, where we now use a factorized distribution on all of the nodes;
however, the M step is now a difference of gradients of two different bounds and is therefore
no longer guaranteed to increaseL. There is a more serious problem, moreover, which is
particularly salient in unsupervised learning problems. If the data set of interest is a het-
erogeneous collection of sub-populations, such as in unsupervised classification problems,
the unconditional distribution will generally be required to have multiple modes. Unfortu-
nately the factorized mean field approximation is unimodal and is a poor approximation
for a multi-modal distribution. One approach to this problem is to utilize multi-modalQ
distributions within the mean-field framework; for example, Jaakkola and Jordan (1999a)
discuss the use of mixture models as approximating distributions.

These issues find a more satisfactory treatment in the context of directed graphs, as we
see in the following section. In particular, the gradient for a directed graph (cf. Eq. (68))
does not require averages under the unconditional distribution.
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Finally, let us consider the relationship between the mean field approximation and the
lower bounds that we obtained via a sequential algorithm in Section 5.2. In fact, if we run
the latter algorithm until all nodes are eliminated from the graph, we obtain a bound that is
identical to the mean field bound (Jaakkola, 1997). To see this, note that for a Boltzmann
machine in which all of the nodes have been eliminated there are no quadratic and linear
terms; only the constant terms remain. Recall from Section 5.2 that the constant that arises
when nodei is removed isµL

i θ̂i 0 + H(µL
i ), whereθ̂i 0 refers to the value ofθi 0 after it has

been updated to absorb the linear terms from previously eliminated nodesj < i . (Recall
that the latter update is given bỹθi 0 = θi 0 + µL

i θi j for the removal of a particular nodej
that is a neighbor ofi ). Collecting together such updates forj < i , and summing across all
nodesi , we find that the resulting constant term is given as follows:∑

i

{θ̂i 0µi + H(µi )} =
∑
i< j

θi jµiµ j +
∑

i

θc
i 0µi

−
∑

i

[µi lnµi + (1− µi ) ln(1− µi )] (60)

This differs from the lower bound in Eq. (58) only by the term lnZ, which disappears when
we maximize with respect toµi .

6.3.2. Neural networks. As discussed in Section 3, the “sigmoid belief network” is essen-
tially a (directed) neural network with graphical model semantics. We utilize the logistic
function as the node probability function:

P
(
Si = 1 | Sπ(i )

) = 1

1+ exp
{−∑ j∈π(i ) θi j Sj − θi 0

} , (61)

where we assume thatθi j = 0 unlessj is a parent ofi . (In particular,θi j 6= 0⇒ θ j i = 0).
Noting that the probabilities for both theSi = 0 case and theSi = 1 case can be written in
a single expression as follows:

P
(
Si | Sπ(i )

) = exp
{(∑

j∈π(i ) θi j Sj + θi 0
)
Si
}

1+ exp
{∑

j∈π(i )θi j Sj + θi 0
} , (62)

we obtain the following representation for the joint distribution:

P(S | θ) =
∏

i

[
exp

{(∑
j∈π(i ) θi j Sj + θi 0

)
Si
}

1+ exp
{∑

j∈π(i )θi j Sj + θi 0
} ] , (63)

We wish to calculate conditional probabilities under this joint distribution.
As we have seen (cf. figure 6), inference for general sigmoid belief networks is intractable,

and thus it is sensible to consider variational approximations. Saul, Jaakkola, and Jordan
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(1996) and Saul and Jordan (1999) have explored the viability of the simple completely
factorized distribution. Thus once again we set:

Q(H | E, µ) =
∏
i∈H

µ
Si
i (1− µi )

1−Si , (64)

and attempt to find the best such approximation by varying the parametersµi .
The computation of the KL divergenceD(Q ‖ P) proceeds much as it does in the case

of the mean field Boltzmann machine. The entropy term (Q ln Q) is the same as before.
The energy term (Q ln P) is found by taking the logarithm of Eq. (63) and averaging with
respect toQ. Putting these results together, we obtain:

ln P(E | θ) ≥
∑
i< j

θi jµiµ j +
∑

i

θi 0µi −
∑

i

〈
ln

[
1+ exp

{ ∑
j∈π(i )

θi j Sj + θi 0

}]〉

−
∑

i

[µi lnµi + (1− µi ) ln(1− µi )] (65)

where〈·〉 denotes an average with respect to theQ distribution, and where we have abused
notation by definingµi values fori ∈ E; these are set to the instantiated valuesµi ∈ {0, 1}.
Note that, despite the fact thatQ is factorized, we are unable to calculate the average
of ln[1 + ezi ], where zi denotes

∑
j∈π(i ) θi j Sj + θi 0. This is an important term which

arises directly from the directed nature of the sigmoid belief network (it arises from the
denominator of the sigmoid, a factor which is necessary to define the sigmoid as a local
conditional probability). To deal with this term, Saul et al. (1996) introduced an additional
variational transformation, due to Seung (1995), that can be viewed as a refined form of
Jensen’s inequality. In particular:

〈ln[1+ ezi ]〉 = 〈ln[eξi zi e−ξi zi (1+ ezi )〉
= ξi〈zi 〉 +

〈
ln
[
e−ξi zi + e(1−ξi )zi

]〉
≤ ξi〈zi 〉 + ln

〈
e−ξi zi + e(1−ξi )zi

〉
, (66)

whereξi is a variational parameter. (Note that the inequality reduces to the standard Jensen
inequality forξi = 0). The final result can be utilized directly in Eq. (65) to provide a tractable
lower bound on the log likelihood and the variational parameterξi can be optimized along
with the other variational parameters.

Saul and Jordan (1999) show that in the limiting case of networks in which each hidden
node has a large number of parents, so that a central limit theorem can be invoked, the
parameterξi has a probabilistic interpretation as the approximate expectation ofσ(zi ),
whereσ(·) is again the logistic function.
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Figure 22. (a) A nodeSi in a sigmoid belief network machine with its Markov blanket. (b) The mean field
equations yield a deterministic relationship, represented in the figure with the dotted lines, between the variational
parametersµi andµ j for nodesj in the Markov blanket of nodei .

For fixed values of the parametersξi , by differentiating the KL divergence with respect
to the variational parametersµi , we obtain the following consistency equations:

µi = σ
(∑

j

θi jµ j + θi 0+
∑

j

θ j i (µ j − ξ j )+
∑

j

K ji

)
(67)

whereK ji is the derivative of− ln〈e−ξ j zj + e(1−ξ j )zj 〉 with respect toµi . As Saul et al.
show, this term depends on nodei , its child j , and the other parents (the “co-parents”) of
node j . Given that the first term is a sum over contributions from the parents of nodei ,
and the second term is a sum over contributions from the children of nodei , we see that
the consistency equation for a given node again involves contributions from the Markov
blanket of the node (see figure 22). Thus, as in the case of the Boltzmann machine, we find
that the variational parameters are linked via their Markov blankets and the consistency
equation (Eq. (67)) can be interpreted as a local message-passing algorithm.

Saul, Jaakkola, and Jordan (1996) and Saul and Jordan (1999) also show how to update
the variational parametersξi . The two papers utilize these parameters in slightly different
ways and obtain different update equations. (Yet another related variational approximation
for the sigmoid belief network, including both upper and lower bounds, is presented in
Jaakkola and Jordan, 1996).

Finally, we can compute the gradient with respect to the parametersθi j for fixed variational
parametersµ andξ . The result obtained by Saul and Jordan (1999) takes the following form:

1θi j ∝ (µi − ξi )µ j − θi j ξi (1− ξi )µi (1− µi ). (68)

Note that there is no need to calculate variational parameters under the unconditional distri-
bution,P(S | θ), as in the case of the Boltzmann machine (a fact first noted by Neal, 1992).
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Figure 23. The leftmost figure shows examples of the images used by Saul and Jordan (1999) in training their
handwritten digit classifier. The rightmost figure shows examples of images whose bottom halves were inferred
from their top halves via a variational inference algorithm.

Note also the interesting appearance of a regularization term—the second term in the
equation is a “weight decay” term that is maximal for non-extreme values of the varia-
tional parameters (both of these parameters are bounded between zero and one). Thus, this
computationally-motivated approximation to maximum likelihood estimation is in fact a
form of penalized maximum likelihood estimation.

Saul and Jordan (1999) tested the sigmoid belief network on a handwritten digit clas-
sification problem, obtaining results that were competitive with other supervised learning
systems. Examples of the digits that Saul and Jordan used are shown in figure 23. Figure 23
also illustrates the ability of a sigmoid belief network to “fill in” missing data. All of the
pixels in the bottom halves of these images were treated as missing and their values were
inferred via variational inference equations. As a result of this capacity for filling in missing
data, the degradation in classification performance with missing pixels is slight; indeed,
Saul and Jordan reported that the classification error went from 5 percent to 12 percent
when half of the pixels were missing.

For further comparative empirical work on sigmoid belief networks and related architec-
tures, including comparisons with Gibbs sampling, see Frey, Hinton, and Dayan (1996).

6.3.3. Factorial hidden Markov models.The factorial hidden Markov model (FHMM)
is a multiple chain structure (see figure 24(a)). Using the notation developed earlier (see
Section 3.5), the joint probability distribution for the FHMM is given by:

P
({

X(m)
t

}
, {Yt } | θ

) = M∏
m=1

[
π(m)

(
X(m)

1

) T∏
t=2

A(m)
(
X(m)

t

∣∣ X(m)
t−1

)]

×
T∏

t=1

P
(
Yt |

{
X(m)

t

}M

m=1

)
(69)

Computation under this probability distribution is generally infeasible because, as we saw
earlier, the clique size becomes unmanageably large when the FHMM chain structure is
moralized and triangulated. Thus it is necessary to consider approximations.
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Figure 24. (a) The FHMM. (b) A variational approximation for the FHMM can be obtained by picking out a
tractable substructure in the FHMM graph. Parameterizing this graph leads to a family of tractable approximating
distributions.

For the FHMM there is a natural substructure on which to base a variational algorithm. In
particular, the chains that compose the FHMM are individually tractable. Therefore, rather
than removing all of the edges, as in the naive mean field approximation discussed in the
previous two sections, it would seem more reasonable to remove only as many edges as
are necessary to decouple the chains. In particular, we remove the edges that link the state
nodes to the output nodes (see figure 24(b)). Without these edges the moralization process
no longer links the state nodes and no longer creates large cliques. In fact, the moralization
process on the delinked graph in figure 24(b) is vacuous, as is the triangulation. Thus the
cliques on the delinked graph are of sizeN2, whereN is the number of states for a single
chain. One iteration of approximate inference runs in timeO(MT N2), whereM is the
number of chains andT is the length of the time series.

Let us now consider how to express a variational approximation using the delinked
graph of figure 24(b) as an approximation. The idea is to introduce one free parameter
into the approximating probability distribution,Q, for each edge that we have dropped.
These free parameters, which we denote asλ

(m)
t , essentially serve as surrogates for the

effect of the observation at timet on state componentm. When we optimize the divergence
D(Q ‖ P)with respect to these parameters they become interdependent; this (deterministic)
interdependence can be viewed as an approximation to the probabilistic dependence that is
captured in an exact algorithm via the moralization process.

Referring to figure 24(b), we write the approximatingQ distribution in the following
factorized form:

Q
({

X(m)
t

} ∣∣ {Yt }, θ, λ
) = M∏

m=1

π̃ (m)
(
X(m)

1

) T∏
t=2

Ã(m)
(
X(m)

t

∣∣ X(m)
t−1

)
, (70)

whereλ is the vector of variational parametersλ(m)t . We define the transition matrix̃A(m)

to be the product of the exact transition matrixA(m) and the variational parameterλ(m)t :

Ã(m)
(
X(m)

t

∣∣ X(m)
t−1

) = A(m)
(
X(m)

t

∣∣ X(m)
t−1

)
λ
(m)
t , (71)

and similarly for the initial state probabilities̃π(m):

π̃ (m)
(
X(m)

1

) = π(m)(X(m)
1

)
λ
(m)
1 . (72)
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This family of distributions respects the conditional independence statements of the ap-
proximate graph in figure 24, and provides additional degrees of freedom via the variational
parameters.

Ghahramani and Jordan (1997) present the equations that result from minimizing the
KL divergence between the approximating probability distribution (Eq. (70)) and the true
probability distribution (Eq. (69)). The result can be summarized as follows. As in the other
architectures that we have discussed, the equation for a variational parameter (λ

(m)
t ) is a

function of terms that are in the Markov blanket of the corresponding delinked node (i.e.,
Yt ). In particular, the update forλ(m)t depends on the parametersλ(n)t , for n 6= m, thus linking
the variational parameters at timet . Moreover, the update forλ(m)t depends on the expected
value of the statesX(m)

t , where the expectation is taken under the distributionQ. Given
that the chains are decoupled underQ, expectations are found by running one of the exact
algorithms (for example, the forward-backward algorithm for HMMs), separately for each
chain. These expectations of course depend on the current values of the parametersλ

(m)
t

(cf. Eq. (70)), and it is this dependence that effectively couples the chains.
To summarize, fitting the variational parameters for a FHMM is an iterative, two-phase

procedure. In the first phase, an exact algorithm is run as a subroutine to calculate expec-
tations for the hidden states. This is done independently for each of theM chains, making
reference to the current values of the parametersλ

(m)
t . In the second phase, the parameters

λ
(m)
t are updated based on the expectations computed in the first phase. The procedure then

returns to the first phase and iterates.
Ghahramani and Jordan (1997) reported results on fitting an FHMM to the Bach chorale

data set (Merz & Murphy, 1996). They showed that significantly larger effective state spaces
could be fit with the FHMM than with an unstructured HMM, and that performance in terms
of probability of the test set was an order of magnitude larger for the FHMM. Moreover,
evidence of overfitting was seen for the HMM for 35 states or more; no evidence of overfitting
for the FHMM was seen for up to 1000 states.

6.3.4. Hidden Markov decision trees.As a final example we return to the hidden Markov
decision tree (HMDT) described in the introduction and briefly discuss variational approxi-
mation for this architecture. As we have discussed, a HMDT is essentially a Markov time
series model, where the probability model at each time step is a (probabilistic) decision tree
with hidden decision nodes. The Markovian dependence is obtained via separate transition
matrices at the different levels of the decision tree, giving the model a factorized structure.

The variational approach to fitting a HMDT is closely related to that of fitting a FHMM;
however, there are additional choices as to the variational approximation. In particular,
we have two substructures worth considering in the HMDT: (1) Dropping the vertical
edges, we recover a decoupled set of chains. As in the FHMM, these chains can each be
handled by the forward-backward algorithm. (2) Dropping the horizontal edges, we recover
a decoupled set of decision trees. We can calculate probabilities in these trees using the
posterior propagation algorithm described in Jordan (1994).

The first approach, which we refer to as the “forest of chains approximation,” is shown
in figure 25. As in the FHMM, we write a variational approximation for the forest of chains
approximation by respecting the conditional independencies in the approximating graph
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Figure 25. The “forest of chains approximation” for the HMDT. Parameterizing this graph leads to an approxi-
mating family ofQ distributions.

Figure 26. The “forest of trees approximation” for the HMDT. Parameterizing this graph leads to an approxi-
mating family ofQ distributions.

and incorporating variational parameters to obtain extra degrees of freedom (see Jordan
et al., 1997, for the details).

We can also consider a “forest of trees approximation” in which the horizontal links are
eliminated (see figure 26). Given that the decision tree is a fully connected graph, this is
essentially a naive mean field approximation on a hypergraph.

Finally, it is also possible to develop a variational algorithm for the HMDT that is analo-
gous to the Viterbi algorithm for HMMs. In particular, we utilize an approximationQ that
assigns probability one to a single path in the state space. The KL divergence for thisQ
distribution is particularly easy to evaluate, given that the entropy contribution to the KL
divergence (i.e., theQ ln Q term) is zero. Moreover, the evaluation of the energy (i.e., the
Q ln P term) reduces to substituting the states along the chosen path into theP distribution.

The resulting algorithm involves a subroutine in which a standard Viterbi algorithm is
run on a single chain, with the other chains held fixed. This subroutine is run on each chain
in turn.

Jordan et al. (1997) found that performance of the HMDT on the Bach chorales was
essentially the same as that of the FHMM. The advantage of the HMDT was its greater
interpretability; most of the runs resulted in a coarse-to-fine ordering of the temporal scales
of the Markov processes from the top to the bottom of the tree.
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7. Discussion

We have described a variety of applications of variational methods to problems of inference
and learning in graphical models. We hope to have convinced the reader that variational
methods can provide a powerful and elegant tool for graphical models, and that the algo-
rithms that result are simple and intuitively appealing. It is important to emphasize, however,
that research on variational methods for graphical models is of quite recent origin, and there
are many open problems and unresolved issues. In this section we discuss a number of
these issues. We also broaden the scope of the presentation and discuss a number of related
strands of research.

7.1. Related research

The methods that we have discussed all involve deterministic, iterative approximation al-
gorithms. It is of interest to discuss related approximation schemes that are either non-
deterministic or non-iterative.

7.1.1. Recognition models and the Helmholtz machine.All of the algorithms that we
have presented have at their core a nonlinear optimization problem. In particular, after
having introduced the variational parameters, whether sequentially or as a block, we are left
with a bound such as that in Eq. (27) that must be optimized. Optimization of this bound is
generally achieved via a fixed-point iteration or a gradient-based algorithm. This iterative
optimization process induces interdependencies between the variational parameters which
give us a “best” approximation to the marginal or conditional probability of interest.

Consider in particular a problem in which a directed graphical model is used for unsu-
pervised learning. A common approach in unsupervised learning is to consider graphical
models that are oriented in the “generative” direction; that is, they point from hidden vari-
ables to observables. In this case the “predictive” calculation ofP(E | H) is elementary.
The calculation ofP(H | E), on the other hand, is a “diagnostic” calculation that proceeds
backwards in the graph. Diagnostic calculations are generally non-trivial and require the
full power of an inference algorithm.

An alternative approach to solving iteratively for an approximation to the diagnostic
calculation is to learn both a generative model and a “recognition” model that approximates
the diagnostic distributionP(H | E). Thus we associate different parameters with the gene-
rative model and the recognition model and rely on the parameter estimation process to bring
these parameterizations into register. This is the basic idea behind the “Helmholtz machine”
(Dayan et al., 1995; Hinton et al., 1995).

The key advantage of the recognition-model approach is that the calculation ofP(H | E)
is reduced to an elementary feedforward calculation that can be performed quickly.

There are some disadvantages to the approach as well. In particular, the lack of an
iterative algorithm makes the Helmholtz machine unable to deal naturally with missing
data, and with phenomena such as “explaining-away,” in which the couplings between
hidden variables change as a function of the conditioning variables. Moreover, although
in some cases there is a clear natural parameterization for the recognition model that is
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induced from the generative model (in particular for linear models such as factor analysis),
in general it is difficult to insure that the models are matched appropriately.10 Some of
these problems might be addressed by combining the recognition-model approach with the
iterative variational approach; essentially treating the recognition-model as a “cache” for
storing good initializations for the variational parameters.

7.1.2. Sampling methods.In this section we make a few remarks on the relationships
between variational methods and stochastic methods, in particular the Gibbs sampler. In
the setting of graphical models, both classes of methods rely on extensive message-passing.
In Gibbs sampling, the message-passing is particularly simple: each node learns the cur-
rent instantiation of its Markov blanket. With enough samples the node can estimate the
distribution over its Markov blanket and (roughly speaking) determine its own statistics.
The advantage of this scheme is that in the limit of very many samples, it is guaranteed
to converge to the correct statistics. The disadvantage is that very many samples may be
required.

The message-passing in variational methods is quite different. Its purpose is to couple the
variational parameters of one node to those of its Markov blanket. The messages do not come
in the form of samples, but rather in the form of approximate statistics (as summarized by the
variational parameters). For example, in a network of binary nodes, while the Gibbs sampler
is circulating messages of binary vectors that correspond to theinstantiationsof Markov
blankets, the variational methods are circulating real-valued numbers that correspond to
thestatisticsof Markov blankets. This may be one reason why variational methods often
converge faster than Gibbs sampling. Of course, the disadvantage of these schemes is that
they do not necessarily converge to the correct statistics. On the other hand, they can provide
bounds on marginal probabilities that are quite difficult to estimate by sampling. Indeed,
sampling-based methods–while well-suited to estimating the statistics of individual hidden
nodes–are ill-equipped to compute marginal probabilities such asP(E) =∑H P(H, E).

An interesting direction for future research is to consider combinations of sampling
methods and variational methods. Some initial work in this direction has been done by
Hinton, Sallans, and Ghahramani (1999), who discuss brief Gibbs sampling from the point
of view of variational approximation.

7.1.3. Bayesian methods.Variational inference can be applied to the general problem of
Bayesian parameter estimation. Indeed we can quite generally treat parameters as additional
nodes in a graphical model (cf. Heckerman, 1999) and thereby treat Bayesian inference on
the same footing as generic probabilistic inference in a graphical model. This probabilistic
inference problem is often intractable, and variational approximations can be useful.

A variational method known as “ensemble learning” was originally introduced as a way
of fitting an “ensemble” of neural networks to data, where each setting of the parameters
can be thought of as a different member of the ensemble (Hinton & van Camp, 1993). Let
Q(θ | E) represent a variational approximation to the posterior distributionP(θ | E). The
ensemble is fit by minimizing the appropriate KL divergence:

K L(Q ‖ P) =
∫

Q(θ | E) ln
Q(θ | E)

P(θ | E)
dθ. (73)
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Following the same line of argument as in Section 6, we know that this minimization must
be equivalent to the maximization of a lower bound. In particular, copying the argument
from Section 6, we find that minimizing the KL divergence yields the best lower bound on
the following quantity:

ln P(E) = ln
∫

P(E | θ)P(θ) dθ, (74)

which is the logarithm of themarginal likelihood; a key quantity in Bayesian model selection
and model averaging.

More recently, the ensemble learning approach has been applied to mixture of experts ar-
chitectures (Waterhouse, MacKay, & Robinson, 1996) and hidden Markov models (MacKay,
1997). One interesting aspect of these applications is that they do not assume any particular
parametric family forQ, rather they make the nonparametric assumption thatQ factorizes
in a specific way. The variational minimization itself determines the best family given this
factorization and the prior onθ .

Jaakkola and Jordan (1997b) have also developed variational methods for Bayesian in-
ference, using a variational approach to find an analytically tractable approximation for
logistic regression with a Gaussian prior on the parameters.

7.1.4. Perspective and prospectives.Perhaps the key issue that faces developers of vari-
ational methods is the issue of approximation accuracy. One can develop an intuition for
when variational methods perform well and when they perform poorly by examining their
properties in certain well-studied cases. In the case of fully factorized approximations for
undirected graphs, a good starting point is the statistical mechanics literature where this
approximation can give not only good, but indeed exact, results. Such cases include densely
connected graphs with uniformly weak (but non-negative) couplings between neighboring
nodes (Parisi, 1988). The mean field equations for these networks have a unique solution
that determines the statistics of individual nodes in the limit of very large graphs.

Kearns and Saul (1998) have utilized large deviation methods to study the approximation
accuracy of bounds on the likelihood for dense directed graphs. Characterizing the accuracy
in terms of the numberN of parents for each node (assumed constant) in a layered graph, they
have shown that the gap between variational upper and lower bounds converges at a rate of
O(
√

ln(N)/N). Their approach utilizes a rather general form of upper and lower bounds for
the local conditional probabilities that does not depend on convexity properties. Thus their
result should be expected to be rather robust across the general family of variational methods;
moreover, faster rates may be obtainable for the convexity-based variational approximations
discussed in the current paper.

In more general graphical models the conditions for convergence of fully factorized
variational approximations may not be so favorable. In general some nodes may have a
small Markov blanket or may be strongly dependent on particular neighbors, and variational
transformations of such nodes would yield poor bounds. More globally, if there are strong
probabilistic dependencies in the model the posterior can have multiple modes (indeed, in the
limiting case of deterministic relationships one can readily create switching automata that
have multiple modes). Fully factorized approximations, which are necessarily unimodal,
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will fail in such cases. Handling such cases requires making use of methods that transform
only a subset of the nodes, incorporating exact inferential procedures as subroutines to
handle the untransformed structure. The exact methods can capture the strong dependencies,
leaving the weaker dependencies for the variational transformations. In practice, achieving
this kind of division of labor either requires that the strong dependencies can be identified
in advance by inspection of the graph, or can be identified in the context of a sequential
variational method via simple greedy calculations.

An alternative approach to handling multiple modes is to utilize mixture models as
approximating distributions (theQ distributions in block variational methods). See Jaakkola
and Jordan (1999a) and Bishop et al. (1998) for discussion of this approach.

Finally, it is also important to stress the difference between joint distributionsP(H, E),
and conditional distributionsP(H | E). In many situations, such as classification problems
in which H represents a category label, the joint distributionP(H, E) is multi-modal, but
the conditional distributionP(H | E) is not. Thus factorized approximations may make
sense for inference problems even when they would be poor overall approximations to the
joint probability model.

Another key issue has to do with broadening the scope of variational methods. In this
paper we have presented a restricted set of variational techniques, those based on convexity
transformations. For these techniques to be applicable the appropriate convexity properties
need to be identified. While it is relatively easy to characterize small classes of models where
these properties lead to simple approximation algorithms, such as the case in which the
local conditional probabilities are log-concave generalized linear models, it is not generally
easy to develop variational algorithms for other kinds of graphical models. A broader
characterization of variational approximations is needed and a more systematic algebra is
needed to match the approximations to models.

Other open problems include: (1) the problem of combining variational methods with
sampling methods and with search based methods, (2) the problem of making more in-
formed choices of node ordering in the case of sequential methods, (3) the development
of upper bounds within the block framework, (4) the combination of multiple variational
approximations for the same model, and (5) the development of variational methods for
architectures that combine continuous and discrete random variables.

Similar open problems exist for sampling methods and for methods based on incomplete
or pruned versions of exact methods. The difficulty in providing solid theoretical foundations
in all of these cases lies in the fact that accuracy is contingent to a large degree on the actual
conditional probability values of the underlying probability model rather than on the discrete
properties of the graph.

Appendix

In this section, we calculate the conjugate functions for the logarithm function and the log
logistic function.

For f (x) = ln x, we have:

f ∗(λ) = min
x
{λx − ln x}. (A.1)
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Taking the derivative with respect tox and setting to zero yieldsx = λ−1. Substituting back
in Eq. (A.1) yields:

f ∗(λ) = ln λ+ 1, (A.2)

which justifies the representation of the logarithm given in Eq. (14).
For the log logistic functiong(x) = − ln(1+ e−x), we have:

g∗(λ) = min
x
{λx + ln(1+ e−x)}. (A.3)

Taking the derivative with respect tox and setting to zero yields:

λ = e−x

1+ e−x
, (A.4)

from which we obtain:

x = ln
1− λ
λ

(A.5)

and

ln(1+ e−x) = ln
1

1− λ. (A.6)

Plugging these expressions back into Eq. (A.3) yields:

g∗(λ) = −λ ln λ− (1− λ) ln(1− λ), (A.7)

which is the binary entropy functionH(λ). This justifies the representation of the logistic
function given in Eq. (19).
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Notes

1. Our presentation will take the point of view that moralization and triangulation, when combined with a local
message-passing algorithm, aresufficientfor exact inference. It is also possible to show that, under certain
conditions, these steps arenecessaryfor exact inference. See Jensen and Jensen (1994).

2. Here and elsewhere we identify thei th node with the random variableSi associated with the node.
3. We define a clique to be a subset of nodes which are fully connected and maximal; i.e., no additional node

can be added to the subset so that the subset remains fully connected.
4. Note in particular that figure 2 is the moralization of figure 1.
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5. The acronym “QMR-DT” refers to the “Decision Theoretic” version of the “Quick Medical Reference.”
6. In particular, the pattern of missing edges in the graph implies that (a) the diseases are marginally independent,

and (b) given the diseases, the symptoms are conditionally independent.
7. Jaakkola and Jordan (1999b) also calculated the median of the pairwise cutset size. This value was found to

be 106.5, which also rules out exact cutset methods for inference for the QMR-DT.
8. It is also possible to consider more general Boltzmann machines with multivalued nodes, and potentials that

are exponentials of arbitrary functions on the cliques. Such models are essentially equivalent to the general
undirected graphical model of Eq. (3) (although the latter can represent zero probabilities while the former
cannot).

9. Note that we treatP(H, E) in general as a marginal probability; that is, we do not necessarily assume thatH
andE jointly exhaust the set of nodesS.

10. The particular recognition model utilized in the Helmholtz machine is a layered graph, which makes weak
conditional independence assumptions and thus makes it possible, in principle, to capture fairly general
dependencies.
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