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Abstract 
• Explain belief propagation (BP) 
• Developed unified approach  
• Compares BP to Bethe approximation of statistical physics  
• BP can only converge to a fixed point (which is also the stationary point of the Bethe 

approximation to free energy)  
• Belief propagation is used to solve inference problems (based on local message passing)  

  
Inference Problems 
• Many algorithms are just special cases of the BP algorithm 

o Viterbi 
o Forward-backward 
o Iterative decoding algorithms for Gallager codes and turbocodes 
o Pearl's belief propagation algorithm for Bayesian networks 
o Kalman filter 
o Transfer-matrix approach 

  
  

  

http://www.merl.com/publications/docs/TR2001-22.pdf


1 INFERENCE AND GRAPHICAL MODELS  
  

Bayes Networks 
Inference problem: Get probability of patient having disease; or any marginal probability in 
problem. 
• 'Bayesian Networks' are the most popular type of graphical model  
• Used in expert systems of medicine, languages, search, etc. 

  
Example 
Want to construct a machine that will automatically give diagnoses for patients. Each patient has 
some (possibly incomplete) information: symptoms and test result. We infer the probability of a 
disease. We know statistical dependencies between symptoms, test results, and disease  
• Recent trip to Asia (A), increases chances of tuberculosis (T) 
• Smoking (S) is risk factor for lung cancer (L) and bronchitis (B) 
• Presence of either E tuberculosis or lung cancer can be detected by an X-ray result (X) but the 

X-ray alone cannot distinguish between them.  
• Dyspnoea (D) shortness of breath may be caused by bronchitis (B) or either tuberculosis or 

lung cancer, E. 
PGM would look like 

 
Nodes 
• Represent variable that exists in discrete number of possible states 
• Filled-in are "observable" nodes, when we have information about patient 
• Empty nodes, "hidden" nodes  

𝑥𝑖 
• Variable representing different possible states of node 𝑖 

Arrow 
• Conditional Probability 
• 𝑝(𝑥𝐿|𝑥𝑆) 
• Conditional probability of lung cancer given they do/do not smoke  
• S is "parent" of L because 𝑥𝐿 is conditionally dependent on 𝑥𝑠 
• 𝐷 has more than one parent, so 𝑝(𝑥𝐷|𝑥𝐸, 𝑥𝐵) 

Joint Probability 



• Product of all probabilities of the parent nodes and all conditional probabilities 
𝑝(𝑥𝐴, 𝑥𝑇 ,  𝑥𝐸,  𝑥𝐿 , 𝑥𝑆 , 𝑥𝐵 , 𝑥𝐷 , 𝑥𝑋)

= 𝑝(𝑥𝐴)𝑝(𝑥𝑆)𝑝(𝑥𝑇|𝑥𝐴)𝑝(𝑥𝐿|𝑥𝑆)𝑝(𝑥𝐵|𝑥𝑆)𝑝(𝑥𝐸|𝑥𝑇 , 𝑥𝐿)𝑝(𝑥𝐷|𝑥𝐸 , 𝑥𝐵)𝑝(𝑥𝑋|𝑥𝐸) 
  
Directed acyclic graph  
•  arrows do not loop around in a cycle  
• 𝑃𝑎𝑟(𝑥𝑖) is the states of the parents of node 𝑖 and if node 𝑖 has no parents, it is simply 𝑝(𝑥𝑖) 
• Directed acyclic graph of 𝑁 random variables that defines a joint probability function 

𝑝(𝑥1, 𝑥2,… ,  𝑥𝑁) =∏𝑝(𝑥𝑖|𝑃𝑎𝑟(𝑥𝑖))

𝑁

𝑖=1

 

  
Goal: compute marginal probabilities 
• Probability that patient has certain disease  
• "inference" = computation of marginal probabilities  
• Marginal probabilities are defined in terms of sums over all possible states of all other nodes  

𝑝(𝑥𝑁) =∑∑… ∑ 𝑝(𝑥1, 𝑥2, … ,  𝑥𝑁)

𝑥𝑁−1𝑥2𝑥1

= 𝑏(𝑥𝑁) 

  
• Marginal Probabilities are the beliefs 

𝑏(𝑥𝑖) 
  
Challenge 
• Number of terms in the marginal probability sum grows exponentially w/ # of nodes in 

network -> Back Propagation 
• BP computes in time that grows only linearly with number of nodes in system  
• BP = "inference engine" acting on statistical data encoded in large Bayesian network  

  
  

Pairwise Markov Random Fields 
Inference problem: inferring state of underlying scene in image 
Challenge 
• Computer vision 

Pairwise MRFs 
• Want to infer 'what is really out there' in vision problem, using only a 2D array of numbers  

Example: 
• Infer the distance of objects in a scene from the viewer 
• Given 1000x1000 gray-scale image 
• 𝑖 ranges over million possible pixel positions  

𝑦𝑖 
• Observed quantities  
•  filled in circles 

𝑥𝑖 
• Latent variable 
• Quantities we want to infer about in underlying scene  
• Needs to have some structure, otherwise the problems are ill-posed  
• We encode structure by saying the nodes 𝑖 are arranged in 2D grid, and scene variables 𝑥𝑖 are 

'compatible' with nearby scene variables 𝑥𝑗  



• empty circles 
𝑖 

• Single pixel position, or small patch of pixels 
𝝓𝒊(𝒙𝒊, 𝒚𝒊) 

• Assume there is statistical dependency between 𝑥𝑖 an 𝑦𝑖 
• 𝜙𝑖(𝑥𝑖 , 𝑦𝑖)  is the "evidence" for 𝑥𝑖 

  

𝝍𝒊𝒋(𝒙𝒊,  𝒙𝒋) 
• Compatibility function  / potential function  
• Only connects nearby positions - why we call it "pairwise"  
• Undirected compatibility function instead of directed arrows as in Bayesian network because 

no node is another node's parent  
Take overall joint probability of scene xi and image yi to be: 
  

𝑝({𝑥}, {𝑦}) =
1

𝑍
∏𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

(𝑖𝑗)

∏𝜙(𝑥𝑖 , 𝑦𝑖)

𝑖

 

  
Iterates over each set of adjacent pixels (pairs - "pairwise") and computes the statistical 
dependence 𝝓𝒊(𝒙𝒊, 𝒚𝒊) between that pixel 𝑦 and it's underlying inference quantity   𝑥 
Result is -> Markov Random Field 

 
  
Inference problem: compute belief, 𝑏(𝑥𝑖) for all positions 𝑖 to infer about underlying scene (similar 
to that for Bayes Networks) 
  

Potts and Ising Models 
Inference problem: computing local 'magnetizations'  
• Example of MRF in physics  
• Inference problem is the computing local 'magnetizations'  

  

Tanner Graphs and Factor Graphs - Error Correcting Codes (ECC) 
Inference Problem: receiver of coded message that has been corrupted by noisy channel is trying to 
infer the message that was initially transmitted 
  
Block parity-check codes 
• Try to send 𝑘 information bits in a block of 𝑁 bits 



• 𝑁 > 𝑘 to provide redundancy that can be used to recover from errors induced by the noisy 
channel 

𝑁 = 6, 𝑘 = 3 binary code - Tanner Graph Example 
Circles = Bits (6 bits) 
• Bit that participates in the parity check  

Squares 
• Parity check 

Parity Checks: 
• [Square 1] Forces sum of bits 1 and 2 and 4 to be even  
• [Square 2] Forces sum of bits 1, 3, and 5 to be even 
• [Square 3] Forces sum of bits 2, 3, and 6 to be even  

There are 8 codewords that satisfy 3 parity-check constraints: 000000, 001011, 010101, 011110, 
100110, 101101, 110011, 111000.  
The first 3 bits are information bits. Remaining bits are uniquely determined as the codeword.  
  
Assume the codeword is 010101, but the word '011101' was received. We can assume that 010101 
is the real codeword because it is only a single bit-flip away.  
 
Usually, N and k are too large for this - # of codewords is exponentially huge and we cannot look 
through them all. -> Turn to BP algorithm.  
  
Redefine in Probabilistic Formulation  
• Received sequence of 𝑁 bits 𝑦𝑖 and we are tryhing to find the 𝑁 bits of the true transmitted 

codeword 𝑥𝑖 (latent variable).  
• Assume noisy channel is memoryless - so each bit flip is independent of all other bit flips  
• Each bit has a conditional probability 𝑝(𝑥𝑖|𝑦𝑖) 
• Example: 1st bit received is 0, and bits are flipped with probability 𝑓; probability that the first 

bit was transmitted as 0 is 1 − 𝑓. 𝑝(𝑥1 = 0|𝑦1 = 0) = 1 − 𝑓 
• Overall probability of codeword is product of each bit's (node's) probability 

∏𝑝(𝑥𝑖|𝑦𝑖)

𝑁

𝑖=1

 

  
But, we need to make sure the parity check constraints hold. 
  
-> Joint probability function that combines conditional probabilities w/ parity check constraints  
𝑦𝑖 = observed bit , 𝑥𝑖 = actual bit  

𝑝({𝑥}, {𝑦}) = 𝜓135(𝑥1, 𝑥5, 𝑥3)𝜓124(𝑥1, 𝑥4, 𝑥2, )𝜓236(𝑥3, 𝑥6, 𝑥2)∏𝑝(𝑦𝑖|𝑥𝑖)

6

𝑖=1

 

Each ψ is a parity check function. 
• Value 1 if sum is even 
• Value 0 if sum is odd  

Note: the parity functions are in terms of the ACTUAL bits because THOSE are what the code was 
built for. When sending the message, the code was created such that the original numbers fulfill the 
parity checks (not an error-prone arrival bit, 𝑦𝑖) 
Note: Because the observed value is based on the real value (not the other way around) we write 
the product at the end in terms of 𝑦|𝑥.  



  
Joint probability distribution, genericized for 𝑁 bits with 𝑁 − 𝑘 parity checks: 

𝑝({𝑥}, {𝑦}) = ∏𝜓𝑗({𝑥}𝑗)

𝑁−𝑘

𝑗=1

∏𝑝(𝑦𝑖|𝑥𝑖)

𝑁

𝑖=1

 

ψj({x}j) represents the 𝑗th parity check 𝜓𝑗  and all nodes in it as {𝑥}𝑗  

  
Marginalizing: 
• Minimize # of bits decoded incorrectly 
• Compute marginal probability for each bit 𝑖 and threshold bit to most probable value, for 

example: 
  

𝑝(𝑥𝑁 , 𝑦𝑁)

= ∑∑… ∑ ∑∑… ∑ 𝑝({𝑥}, {𝑦})

𝑦𝑁−1𝑦2𝑦1𝑥𝑁−1𝑥2𝑥1

 =∑∑… ∑ ∑∑… ∑ ∏𝜓𝑗({𝑥}𝑗)

𝑁−𝑘

𝑗=1

∏𝑝(𝑦𝑖|𝑥𝑖)

𝑁

𝑖=1𝑦𝑁−1𝑦2𝑦1𝑥𝑁−1𝑥2𝑥1

  

  
•  but this may not yield a valid codeword, since each bit is minimized independently  
• Above computation will take exponentially huge time  
• --> Resort to BP algorithm  

Note: BP is not exact, but effective in practice. Achieves 'near-Shannon' limit performance.  
  
Factor Graph 
• Generalization of Tanner graph  
• Square represents any function of its variables (its variables are the nodes attached to it) 

o Can have any number of variables, even just 1 
• Joint probability function of factor graph of 𝑁 variables with 𝑀 functions: 

𝑝({𝑥}) =
1

𝑍
∏𝜓({𝑥𝑎})

𝑀

𝑎=1

 

The observed nodes yi are absorbed into the functions ψ and not written out. 
  

Converting Graphical Models 
Can convert arbitrary pairwise MRF's or Bayesian networks into equivalent factor graphs. 
MRF -> Factor Graph 
• Observable node is replaced by factor function of single variable F 
• Factor graph function 𝜓({𝑥𝑎}) is equivalent to 𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) when they link latent nodes, or 

single node function 𝜙(𝑥𝑖 , 𝑦𝑖) when attatched to single latent node.  
Below shows a MRF -> Factor Graph 
  



•  

 
Bayesian Networks, pairwise Markov Random Fields and factor graphs are all mathematically 
equivalent  
• Bayesian networks & pairwise MRFs can be converted into factor graphs (see above) 
• reverse is also true 
• for future work, choose to use pairwise MRFs 

  
  

  



2 Standard Belief Propagation 
"observed" nodes 𝑦𝑖 
joint probability distribution of unknown variable 𝑥𝑖: 

𝑝({𝑥}) =
1

𝑍
∏𝜙𝑖𝑗(𝑥𝑖 , 𝑥𝑗)
(𝑖,𝑗)

∏𝜙𝑖(𝑥𝑖)

𝑖

 

  

message from hidden node 𝑖 to hidden node 𝑗 about what state j should be in: 𝑚𝑖𝑗(𝑥𝑗) 
• 𝑚𝑖𝑗(𝑥𝑗) is same dimensionality as 𝑥𝑗  
• each component is proportional to how likely node 𝑖 thinks node j will be in corresponding state  

belief at node 𝑖 is proportional to product of local evidence at that node & all message 

𝑏𝑖(𝑥𝑖) = 𝑘𝜙𝑖(𝑥𝑖) ∏ 𝑚𝑗𝑖(𝑥𝑖)

𝑗∈𝑁(𝑖)

 

normalization constant: 𝑘 
• beliefs must sum to 1 

nodes neighboring 𝑖: 𝑁(𝑖) 
Messages are determined self-consistently by message update rules: 

𝑚𝑖𝑗(𝑥𝑗) ←∑𝜙𝑖(𝑥𝑖)𝜓𝑖𝑗(𝑥𝑖 ,  𝑥𝑗) 

𝑥𝑖

∏ 𝑚𝑘𝑖(𝑥𝑖)

𝑘∈𝑁(𝑖)∖𝑗

 

Which states 
• Message from 𝑥𝑖 → 𝑥𝑗  ,  𝑚𝑖𝑗(𝑥𝑗) is the sum of all previous current states multiplied by the 

product of all messages from neighbors of 𝑖 to 𝑖 except for 𝑗, because that is the node few are 
sending a message to now; that sum of messages is displayed below  
  

Above is an example pairwise-MRF  (Figure 12). The belief at node 1 is 

 
where k is probably a constant, phi_1 is the evidence (the relationship between the observed data x, 
filled-in node, and latent data y, empty node). Evidence is necessary to dictate what we think y is based 
on x. m_21 is the message from 2 to 1.  
If we write out what message 2 to 1 is, we find it composes of the belief at node 3 and belief at node 4: 
  

 
And simplifying it all into 1 sum we find 
  

 
  
which shows that the belief at node 1 𝑏1(𝑥1) is the marginal probability at node 1 (meaning it's the 
belief at node 1 with all the states of the other nodes marginalized out by summing over them). 
  
Order to compute? 



• usually start at edges and compute message only when we have all available messages necessary  
• for above example, we should've started at 3 and 4 to compute belief for 1.  

Why is message passing so awesome? 
• look at example above, if we start at nodes 3 and 4, we only need to compute the message once 

per node. And, each message only depends on the node before. The time complexity is 
proportional to the number of links (edges)  in the graph  this is WAYYYY LESS than the time it 
takes to compute marginal probabilities naively (aka, doing the equation above for belief 1 for 
every single node separately). 

Why do loops mess everything up? 
• because each belief depends on the chain of messages before it being computed. If there was a 

loop back to the current node then it would get all messed up because that chain would not 
terminate. That's why we consider only loop-free pairwise MRFs  

  

2-node marginal probabilities  
𝑝𝑖𝑗(𝑥𝑖 , 𝑥𝑗) 

• for neighbors i and j  
• obtained by marginalizing joint probability function over every node except for these 2  

  

 
equation 20: 

 
except there is a typo, second product should be all neighbors of j except for i 
If we marginalize equation 20 over j we will get the belief of 𝑖, as shown above in equation 13: 

 
 thus: 

 
And what do we do about loops?  
• run it as normal and wait until it converges  
• but it may circulate indefinitely and it may never converge 

  

  
  
  
  
  

  



3 FREE ENERGIES 
Fixed points of belief propagation = the stationary points of Bethe free, for 
pairwise MRF 

1. Derive Bethe Free Energy (because Gibbs is intractable) 
a. Define KL-Distance with approximating distribution in terms of energy via Boltzmann's 
b. Derive Gibbs Free Energy as equal to minimum KL-distance 
c. Derive Mean Field Gibbs Free Energy to make #2 more tractable 
d. Derive Bethe Free Energy, which consists of all tree-like distributions  

2. Show stationary points (minima) of Bethe Free Energy are equal to fixed points of Belief 
Propagation  

  

But first… Distribution Bounding 
We are trying to find the distribution 𝑞 within the space of all distributions 𝑄, for which 𝑞 = 𝑝 almost 
everywhere (then it is a minimum of the KL). We limit 𝑞 to space of distributions in order to make the 
problem tractable. 𝑝(𝑥, 𝐷) is the joint distribution of D data and x latent variable, and 𝑞(𝑥) is the 

approximating distribution (Expectation is over X, but follow functional form of KL) : 𝐾𝐿(𝑞(𝑥) ∥

𝑝(𝑥, 𝐷)) =  𝔼𝑥 [log (
𝑞(𝑥)

𝑝(𝑥,𝐷)
)] 

 
log(𝑍) = min

𝑞∈𝑄𝐺𝑖𝑏𝑏𝑠
𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) ≤ min

𝑞∈𝑄𝐵𝑒𝑡h𝑒
𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) ≤ min

𝑞∈𝑄𝑀𝑒𝑎𝑛 𝐹𝑖𝑒𝑙𝑑
𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) 

 

 Constraint Set Tractability based on 
constraint set 

log(𝑍) 
 

 

min
𝑞∈𝑄𝐺𝑖𝑏𝑏𝑠

𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) All distributions intractable 

min
𝑞∈𝑄𝑀𝑒𝑎𝑛 𝐹𝑖𝑒𝑙𝑑

𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) 
 

 

min
𝑞∈𝑄𝐵𝑒𝑡h𝑒

𝐾𝐿(𝑞(𝑥)||𝑝(𝑥, 𝐷)) Distributions that 
obey tree-like 
factorization 

Tractable by 
optimization (can find 
local minimia) 

  
  

1 Deriving Bethe Free Energy 
1. Define KL- Distance w/ the approximating distribution in terms of energy  (via 

Boltzmann's) 
a. KL-Distance, Equation 22 (𝐾𝐿𝐷 = 𝐷) 

•  



b. Replace p(x) in Equation 22 with Boltzmann's Distribution p({x}) =
1

Z
e−E({x}), allow T = 1. 

But first, rewrite Eq 22 in terms of expectation (KL(q(x) ∥ p(x)) =  𝔼q(x) [log (
q(x)

p(x)
)] =

∑ q(x) log (
q(x)

p(x)
)x∈𝒳 ) to get Equation 23: 

• 𝑫(𝒃({𝒙}) ∥ 𝒑({𝒙}) = ∑ 𝒃({𝒙}) 𝒍𝒏 (
𝒃({𝒙})

𝒑({𝒙})
){𝒙} = 𝔼𝒃(𝒙) [𝒍𝒐𝒈 (

𝒃(𝒙)

𝒑(𝒙)
)] 

= 𝔼𝒃(𝒙) [𝒍𝒐𝒈(
𝒃(𝒙)

𝟏
𝒁𝒆

−𝑬({𝒙})
)] 

We can turn the division of the log into a subtraction, and distribute the 
Expectation linearly: 

= 𝔼𝑏(𝑥) [log(𝑏(𝑥)) − log (
1

𝑍
𝑒−𝐸({𝑥}))]

= 𝔼𝑏(𝑥)[log(𝑏(𝑥))] −𝔼𝑏(𝑥) [ log (
1

𝑍
𝑒−𝐸({𝑥}))] 

 

= 𝔼𝑏(𝑥)[log(𝑏(𝑥))] −𝔼𝑏(𝑥)[ log(𝑒
−𝐸({𝑥})) − log(Z)] 

 

= 𝔼𝑏(𝑥)[log(𝑏(𝑥))] −𝔼𝑏(𝑥)[ log(𝑒
−𝐸({𝑥}))] −  𝔼𝑏(𝑥)[− ln(𝑍)] 

 
= 𝔼𝑏(𝑥)[log(𝑏(𝑥))] + 𝔼𝑏(𝑥)[ 𝐸({𝑥})] + 𝔼𝑏(𝑥)[ln(𝑍)] 

 
By the definition of Expectation: 𝔼𝑃(𝑥)[𝑓(𝑥)] = ∑ 𝑝𝑖 𝑓(𝑎𝑖)

𝐾
𝑖=1 ,  get Equation 23: 

 

=∑𝑏({𝑥}) log(𝑏({𝑥}))
{𝑥}

+∑𝑏({𝑥})𝐸({𝑥})

{𝑥}

+ ln(𝑍) 

 

ii. Note that ∑ 𝑏({𝑥}) log(𝑏({𝑥})){𝑥}  is the entropy of 𝑏({𝑥}) 

iii. optimal b(x) approximating distribution is given by −ln(𝑍) (next eq.) 
iv.   

 Boltzmann's Distribution / Gibbs distribution 
• comes from assuming Boltzmann's Law 

o Boltzmann's law describes power radiated from a black body in terms of 
its temperature: total energy radiated per unit surface area of a black 
body across all wavelengths per unit time is directly proportional to the 
fourth power of the black body's temperature  

o "The initial state in most cases is bound to be highly improbable and from 
it the system will always rapidly approach a more probable state until it 
finally reaches the most probable state, i.e. that of the heat equilibrium. If 
we apply this to the second basic theorem we will be able to identify that 
quantity which is usually called entropy with the probability of the 
particular state." (Boltzmann, 1877) (1) from here 

• distribution is a probability distribution that a system will be in a certain state as 
a function of the state's energy and temperature (T) of the system  

• 𝑝𝑖 ∝
1

𝑍
𝑒−

𝐸(𝑥)

𝑇  

o Z is the normalization  

https://en.m.wikipedia.org/wiki/Boltzmann_distribution
http://crystal.med.upenn.edu/BoltzmannsEntropy3.pdf


o T is temperature 
o E(x) is energy of state  

• Also known as Gibbs distribution 
• Physicists specialize on this class of distributions   
• Any distribution can be expressed in this form by raising it to an exponent and 

normalizing using 𝑍 
• 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑒−𝐸𝑛𝑒𝑟𝑔𝑦 → 𝑒𝑛𝑒𝑟𝑔𝑦 = − log(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 

o put into terms of energy because systems decrease in entropy  
  

2. Derive Gibbs Free Energy 
a. Solve Eq 23 for ln(𝑍) to get Equation 24, Gibbs Free Energy: 

b. 𝐺(𝑏{𝑥}) =  ∑ 𝑏({𝑥})𝐸({𝑥}){𝑥} +  ∑ 𝑏({𝑥}) log(𝑏({𝑥})){𝑥}  

𝐺(𝑏{𝑥}) = U(b{x}) − S(b{x}) 
𝐺(𝑏{𝑥}) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦  

i. where 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =  𝑈(𝑏{𝑥}) =  ∑ 𝑏({𝑥})𝐸({𝑥}){𝑥}  
1. average energy: expectation (average) of Boltzmann's Energy 

ii. where negative of the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑆(𝑏{𝑥}) = ∑ 𝑏({𝑥}) log(𝑏({𝑥})){𝑥}   

iii. balance, because average energy wants to keep q small, and entropy wants to spread 
out q (because we minimize the entire eq, therefore maximizing the negative entropy) 

c. KL distance is 0 when Equation 24 achieves its minimal value of −ln(𝑍) . 
d. 𝐺(𝑏{𝑥}) is a functional of b, we want to find the b that minimizes the Gibbs Free Energy 

(same as maximizing likelihood; remember, high energy means unstable, we want stable so 
we want lower energy) 

e. This minimization is a balance between U and S. Negative entropy, -S, is considered, thus 
entropy wants to be as large as possible. However, U wants to keep q small.  
  
Free Energy Background  
Process will only happen spontaneously (without added energy) if it increases the entropy of 
the universe - 2nd Law of Thermodynamics ("total entropy of an isolated system can never 
decrease over time")  
• need a metric to capture the effect of a reaction on the entropy of the  universe --> 

Gibbs Free Energy 
• provides measure of how much usable ("useful") energy is released (or consumed) 

when the reaction takes place ; the amount of "Free" or "useful" energy available to 
do work (associated with chemical reaction) 

In biology,  Gibbs Free Energy is defined as Gibbs Free Energy Change Equation: 
o Δ𝐺 = 𝐺𝑓𝑖𝑛𝑎𝑙 − 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
o tells us maximum usable energy released (or absorbed) in going from 

initial to final state 
• if Δ𝐺 (Gibbs Free Energy) is negative, it means there is a negative energy release 

which means they do increase entropy and can happen sponatenously  
• else, they are non-spontaneous and need input energy 

3. Derive Mean Field Gibbs Free Energy  
a. Although we know 𝑝 is not independent, we assume that the approximating distribution 𝑏 

is, and so we define dependency structure as independent 
b. Assume b is independent and we are working with a pairwise MRF: 

i.  𝑏({𝑥}) = ∏ 𝑏𝑖(𝑥𝑖)𝑖  and ∑ 𝑏𝑖(𝑥𝑖)𝑖 = 1 

https://www.khanacademy.org/science/biology/energy-and-enzymes/free-energy-tutorial/a/gibbs-free-energy


c. Energy of Markov Random Field, Eq 26 

i.  

  
a. Eq 27 uses the definition of 𝑈(𝑏{𝑥}) from Eq 24 to derive mean-field average energy, Eq 27 

  

i.  

  
a. Only a function of one-node beliefs, therefore we derive Bethe, to get a function of 2-node 

beliefs. 
Background Mean Field Theory (MFT) 
o also known as variational methods  
o takes optimization problems defined over discrete variables & converts them to 

continuous -> allows to compute gradients of energy and use optimization 
techniques  

o can use deterministic annealing methods : define 1-parameter family of 
optimization problems indexed by temperature parameter T  

o approximate distribution 𝑃(𝑥|𝑧) using a simpler distribution 𝐵∗(𝑥|𝑧) 
• easy to estimate MAP of 𝑃( ) from 𝐵∗( ) 
• need to specify  

1. class of approximating distributions for the belief,𝐵∗( )  --> 
Factorizable  

2. measure of similarity between B and P -->  Kullback-Leibler 
Divergence  

3. algorithm for finding B∗( ) that minimizes similarity distance --> 
minimize energy  

Mean Field Free Energies  
o Class of approximating distributions: 

• factorizable so 𝐵(𝑥) = ∏ 𝑏𝑖(𝑥𝑖)𝑖∈𝑉  
• {𝑏𝑖{𝑥𝑖}) are pseudo-marginals, so each belief is greater than 0 and the 

sum of all beliefs over a certain x (node) is 1  
• MAP estimate of x is the that which maximizes the belief, �̅�𝑖 =

argmax
xi

𝑏∗(𝑥𝑖)     

  

4. Derive Bethe Free Energy from Gibbs 
a. Derive Gibbs free energy that is function of 1-node and 2-node beliefs and can work on any 

tree-like distribution -> Bethe 
b. if graph is singly connected (connected graph where there is only 1 path between each pair 

of nodes, same as tree) we use the joint probability distribution given in Eq 30.  
c. Goal: optimize over distributions 𝑞 ∈ 𝑄𝐵𝐸𝑇𝐻𝐸 consistent with tree-structured Markov 

Random Field 
1. Any tree-structured distribution 𝑞(𝜃) can be written as the factorization below, 

which is product over unary nodes times a ratio of pairwise and unary nodes as 
reparameterization 

http://www.cs.jhu.edu/~ayuille/courses/Stat238-Winter10/YuilleMicroBook.pdf
https://frnsys.com/ai_notes/foundations/graphs.html


1. 𝑞(𝜃) = ∏ 𝑞𝑠(𝜃𝑠)𝑆∈𝒱 ∏
𝑞𝑠𝑡(𝜃𝑠 ,𝜃𝑡)

𝑞𝑠(𝜃𝑠)𝑞𝑡(𝜃𝑡)
(𝑠,𝑡)∈ℰ  

2. Equation 30, similar except denominator takes each belief to a power, 𝑞𝑖 which 
is the number of nodes neighboring node 𝑖; reparameterization w/ excess 
variables dropped: 

1.  

2. ???? How is this equal to the other reparameterization. The 
denominator clearly has power!?  

3. Example: Convert Bayes net factorization & write it using #1 factorization: 
 

𝑞(𝜃) = (𝑞1(𝜃1)𝑞2(𝜃2)𝑞3(𝜃3)𝑞4(𝜃4)) (
𝑞12(𝜃1, 𝜃2)

𝑞1(𝜃1)𝑞2(𝜃2)
)(

𝑞13(𝜃1, 𝜃3)

𝑞1(𝜃1)𝑞3(𝜃3)
)(

𝑞34(𝜃3, 𝜃4)

𝑞3(𝜃3)𝑞4(𝜃4)
) 

Simplify: 

𝑞(𝜃) = (𝑞1(𝜃1)𝑞2(𝜃2)𝑞3(𝜃3)𝑞4(𝜃4)) (
𝑞12(𝜃1, 𝜃2)

𝑞1(𝜃1)𝑞2(𝜃2)
)(

𝑞13(𝜃1, 𝜃3)

𝑞1(𝜃1)𝑞3(𝜃3)
)(

𝑞34(𝜃3, 𝜃4)

𝑞3(𝜃3)𝑞4(𝜃4)
) 

𝑞(𝜃) = (𝑞1(𝜃1))(
𝑞12(𝜃1, 𝜃2)

𝑞1(𝜃1)
)(

𝑞13(𝜃1, 𝜃3)

𝑞1(𝜃1)
)(

𝑞34(𝜃3, 𝜃4)

𝑞3(𝜃3)
) 

Note that conditional probability is given by: 𝑃(𝐵|𝐴) =
𝑃(𝐴,𝐵)

𝑃(𝐴)
 

𝑞(𝜃) = (𝑞1(𝜃1))(𝑞2(𝜃2)|𝑞1(𝜃1))(𝑞2(𝜃3)|𝑞1(𝜃1))(𝑞2(𝜃4)|𝑞1(𝜃3)) 

 
4. Distributions of the form R necessarily satisfy Local 

Marginal Consistency: 
1. 𝑞𝑠(𝜃𝑠) = ∫ 𝑞𝑠𝑡(𝜃𝑠, 𝜃𝑡)𝑑𝜃𝑡 ∀𝑡 ∈ Γ(𝑠) 
2. Where Γ(𝑠) is all neighbors of S 

 
5. For SOME REASON? Nodes on their own are not 

marginals. 𝑞𝑠(𝑥𝑠) ≠ ∫ 𝑞(𝑥)𝑑𝑥∖𝑠 

6. To fix this we locally constrain the problem so each node 
can be locally marginalized by its neighbors: 

1. 𝑞𝑠(𝜃𝑠) = ∫ 𝑞𝑠𝑡(𝜃𝑠, 𝜃𝑡)𝑑𝜃𝑡 ∀𝑡 ∈ Γ(𝑠) 
d. If q is not a tree, then q is an approximation, otherwise q is the exact approximation  

 
 

e.  
f. From Gibbs Free Energy, Equation 24, Gibbs Free Energy, we know average energy: 

1. 𝑈(𝑏{𝑥}) =  ∑ 𝑏({𝑥})𝐸({𝑥}){𝑥}  
g. From Gibbs Free Energy, Equation 24, Gibbs Free Energy, we know entropy: 

𝑆(𝑏{𝑥}) = −∑𝑏({𝑥}) log(𝑏({𝑥}))
{𝑥}

 

1. Deriving 𝑆𝐵𝑒𝑡h𝑒  from Equation 28, the mean-field entropy, combined with the 
correct joint probability distribution, we get Equation 31 

2.  



3. If b is not a tree, then b is an approximation, otherwise q is the exact 
approximation  

h. Average Energy, 𝑈,  
1. of pairwise MRFs with 2-node beliefs that obey conditions 

1.  ∑ 𝑏𝑖(𝑥𝑖)𝑥𝑖 = ∑ 𝑏𝑖𝑗(𝑥𝑖 ,  𝑥𝑗)𝑥𝑖,𝑥𝑗 = 1,  

2. is similar to Equation 27, except the belief is of both 𝑖, 𝑗 together, and not each 
separately multiplied together, average energy Eq 29: 

3. 𝑈 = −∑ 𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)(𝑖𝑗) ln (𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)) − ∑ 𝑏𝑖(𝑥𝑖)i ln(𝜙𝑖(𝑥𝑖)) 

4. Replace − ln(𝜙𝑖(𝑥𝑖)) = 𝐸𝑖(𝑥𝑖) where it is the local energy 

5. Replace − ln(𝜙𝑖𝑗(𝑥𝑖 , 𝑥𝑗) − ln(𝜙𝑖(𝑥𝑖)) − ln (𝜙𝑗(𝑥𝑗)) = 𝐸𝑖𝑗(𝑥𝑖 , 𝑥𝑗) 

6. To get Equation 32, average energy: 

7.  

i. Bethe Free Energy, altogether: 
1. 𝐺 = 𝑈 − 𝑆 
2. Equation 33 

3.  
4. Equal to the Gibbs Free Energy for pairwise MRFs when graph has no 

loops 
5. Belief propagation beliefs are the global minima of Bethe free energy 

when the graph has no loops -> set of beliefs gives a BP fixed point in any 
graph only if they local stationary points of Bethe Free Energy  

 
Bethe  Background - Bethe Method 
• pronounced [bay-duh] 
• dates back to 1935 in Bethe's famous approximation method for magnets  
• 1951: cluster variation method  
• Kikuchi constructed more accurate free energy approximation from Bethe's work 
• Yedidia creates generalized belief propagation (GBP) from Kikuchi approximations  
• History: 

o Bethe(energy)  -> Kikuchi (more accurate free energy)  -> Kedidia (generalized 
belief prop, GBP) 

  
  
  
  
  
  

  



3.3 EQUIVALENCE OF BP to BETHE APPROXIMATION  
Bethe Free Energy = Gibbs free energy for pairwise MRFs 
Bethe Free Energy is minimal for correct marginals  
BP gives correct marginals 
∴ BP beliefs are global minimia of Bethe Free Energy  
  
*Proof*  
Set of beliefs gives a BP fixed point in any graph if and only if they are local stationary points of the 
Bethe Free Energy (belief propagation can only converge to a stationary point of an approximate 
free energy (Bethe Free Energy in statistical physics)  
  

 

 

 
1) Add marginalization constraint to beliefs 

o need to enforce marginalization constraint in 𝐺𝐵𝑒𝑡h𝑒 : a belief over a node is equal to 
the pair-wise belief of this node and another node marginalized over the other node: 

i. 𝑏𝑖(𝑥𝑖) = ∑ 𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)𝑗  
o Use Lagrange Multipliers. Brief recap of how they work: 

Method of Lagrange Multipliers: 
• Convert constraint surface to implicit surface function where 

o 𝑔(𝑥) = 0 
o For example, to constrain to a unit circle,   𝑥2 + 𝑦2 = 1 →   𝑥2 + 𝑦2 −

1 = 0 
• Can write set of points likes this 

o Direction in which points grow is equal to (−𝜆) scaled version of 
constraint surface  (∇xg) 

o ∇xf = −λ∇xg 
o ∇ (f + λg) = 0 

• So for every constraint we add to the problem, we add 1 new variable to the 
problem .  
o Create new function 𝐿(𝑥, λ) = 𝑓(𝑥) + 𝜆𝑔(𝑥) 
o Increase dimensionality of problem  
o Unconstrained extrema of L correspond to extrema of f constrained to 

g 
  

• 𝛾𝑖𝑗 ,  𝛾𝑖 normalize 𝑏𝑖𝑗 , 𝑏𝑖 

 . 𝜆𝑖𝑗(𝑥𝑗) multiplier that enforces marginalization 𝑏𝑖(𝑥𝑖) = ∑ 𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)𝑗  
• Turn 𝐺𝑏𝑒𝑡h𝑒 into L by adding 𝜆(∑ 𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) − 𝑏𝑖(𝑥𝑖)𝑗 ) 

• Take derivative with respect to 𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗) and set equal to 0 (
𝜕𝐿

𝜕𝑏𝑖𝑗(𝑥𝑖,𝑥𝑗)
= 0) to get 

Equation 34 



f.  

g. do same with 𝑏𝑖(𝑥𝑖) , 
𝜕𝐿

𝜕𝑏𝑖(𝑥𝑖)
= 0, Equation 35: 

h.  

i. Differentiating the Lagrangian with respect to the Lagrange multipliers gives the 

marginalized constraints (
𝜕𝐿

𝜕𝜆𝑖𝑗
) 

j. Suppose we have set of messages and beliefs that are a fixed-point of belief 
propagation: 

k. 𝜆𝑖𝑗(𝑥𝑗) = ln∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖  

 
2) Proof 
Going from Eq 34 to 20 (Belief equation for 2-node beliefs ) 

• Use Equation 36 𝜆𝑖𝑗(𝑥𝑗) = ln∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖  in Equation 34 

a. ln (𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)) = −𝐸𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + 𝜆𝑖𝑗(𝑥𝑗) + 𝜆𝑗𝑖(𝑥𝑖) + 𝛾𝑖𝑗 − 1 

b. ln (𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)) = −𝐸𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + ln∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖 + ln∏ 𝑚𝑘𝑖(𝑥𝑖)𝑘∈𝑁(𝑖)∖𝑗 + 𝛾𝑖𝑗 −

1 

c. Because 𝑝 is a pairwise MRF we can replace −𝐸𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = log (𝜓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)) +

log(𝜙𝑖(𝑥𝑖)) + log (𝜙𝑗(𝑥𝑗)) 

d. ln (𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)) = (log (𝜓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)) + log(𝜙𝑖(𝑥𝑖)) + log (𝜙𝑗(𝑥𝑗))) +

ln∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖 + ln∏ 𝑚𝑘𝑖(𝑥𝑖)𝑘∈𝑁(𝑖)∖𝑗 + 𝛾𝑖𝑗 − 1 

e. Because a sum of logs is a log of their product: 

f. log(𝜓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)𝜙𝑖(𝑥𝑖)𝜙𝑗(𝑥𝑗)∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖 ∏ 𝑚𝑘𝑖(𝑥𝑖)𝑘∈𝑁(𝑖)∖𝑗 ) + 𝛾𝑖𝑗 − 1 

g. Somehow 𝛾𝑖𝑗 − 1 gets turned into the k within the log, and we get: 

h. log (𝑏𝑖𝑗(𝑥𝑖 , 𝑥𝑗)) = log(𝑘𝜓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)𝜙𝑖(𝑥𝑖)𝜙𝑗(𝑥𝑗)∏ 𝑚𝑘𝑗(𝑥𝑗)𝑘∈𝑁(𝑗)∖𝑖 ∏ 𝑚𝑘𝑖(𝑥𝑖)𝑘∈𝑁(𝑖)∖𝑗 ) 

i. Removing logs,  
j. We end up with Equation 20 

k.  

1. NOTE: I think TYPO is above. Second prod should be over neighbors of j not 
including i. 

3) Proof 
Going from Eq 35 to 13 (Belief equation for 1-node beliefs ) 

Not enough time to prove. 
 
 

Equation 36, Set of messages and beliefs that are fixed-point of BP -𝜆𝑖𝑗(𝑥𝑗) 

  



 
Above and the beliefs satisfy equations 34 and 35 ( the derivative w.r.t to the belief on xi and xj, and 
just xi, eq f and h above) using  

Equation 13: Belief equation for 1-node beliefs 

 
Equation 20: 

Belief equation for 2-node beliefs  

  
  
  
  
  
  
  
  
  
  
  
  

Extended Discussion 
Standard BP converges to stationary points of constrained Bethe Free Energy but BP does not 
minimize the Bethe Free Energy - relationship is one-way! 
• BP does not decrease Bethe Free Energy at each iteration 

Some have made algorithms that minimize free energy on a feasible set of beliefs - these are slower 
than BP but always converge 



Necessary Background – KL Divergence 
  
Entropy 
• origins in information theory (goal: quantify how much information is in data)  

• 𝐻 = −∑ 𝑝(𝑥𝑖) ∙ log 𝑝(𝑥𝑖)
𝑁
𝑖=1  

• minimum number of bits it would take to encode information 
• measure of spread or uncertainty in a distribution 

  
  

  
  
Expectation 
•  long-run average value of repetitions of the same experiment it represents 

• 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑒𝑎𝑛 =  𝜇 = 𝔼[𝑥] = ∑ 𝑝𝑖𝑎𝑖
𝑘
𝑖=1 = ∑ 𝑝0𝑥0 + 𝑝1𝑥1 +⋯𝑝𝑘𝑥𝑘

𝑘
𝑖=0  

• expectation is property of probability distribution 
• expectation of some function 𝑓 over a probability distribution 𝑃 of an outcome x; By the definition 

of expectation: 

𝔼𝑃(𝑥)[𝑓(𝑥)] =∑𝑝𝑖 𝑓(𝑎𝑖)

𝐾

𝑖=1

 

Rules: 
a. Expectation of a constant with respect to x is the constant: 𝔼[𝑐] = 𝑐 ∑ 𝑝𝑖

𝑘
𝑖=1 = 𝑐 

b. Expectation is linear operator 𝔼[𝑓(𝑥) + 𝑔(𝑥)] = 𝔼[𝑓(𝑥)] +  𝔼[𝑔(𝑥)] and 𝔼[𝑐𝑓(𝑥)] =
𝑐𝔼[𝑓(𝑥)] 

c. Expectation of independent outcomes separate: 𝔼[𝑓(𝑥)𝑔(𝑦)] = 𝔼[𝑓(𝑥)] 𝔼[𝑔(𝑦)] if x and y 
are independent. 

  

Kullback-Leibler Divergence  
• 𝐾𝐿(𝑃(𝑥) ∥ 𝑄(𝑥)) is the measure of inefficiency in using the probability distribution Q to 

approximate the true probability distribution P ; similar to the distance between distributions Q 
and P (although not symmetric) 

• also known as relative entropy, or KL-divergence, or KL-distance 
• KL Divergence is very similar to entropy - except it tells us how much information is lost when we 

substitute our observed distribution for a parametrized approximation 

𝑝(𝑥) unknown true distribution; intractable (cannot take Expectation of it) 

𝑞(𝑥) approximating  distribution; can take expectation 

  

http://www.inf.ed.ac.uk/teaching/courses/it/2012/01_expectations.pdf


Not sure ?  
• Infer KL-divergence by taking likelihood ratio (LR) between the two distributions: 

𝐿𝑅 =
𝑞(𝑥)

𝑝(𝑥)
 

• indicates how likely a data-point is to occur in 𝑞(𝑥) as opposed to 𝑝(𝑥) 
• take the log to better quantify  

log 𝐿𝑅 = log (
𝑞(𝑥)

𝑝(𝑥)
) 

• if we have large set of data sampled from q(x), how much will each sample on average indicate 
that q(x) better describes the data than p(x)?  

• calculate average predictive power by sampling N points from p(x) and normalizing the sum for 
each sample,  

1

𝑁
∑log (

𝑞(𝑥𝑖)

𝑝(𝑥𝑖)
)

𝑁

𝑖=1

 

• using definition of expectation∑ 𝑝𝑖 𝑓(𝑎𝑖)
𝐾
𝑖=1 = 𝔼𝑃(𝑥)[𝑓(𝑥)] 

1

𝑁
∑log (

𝑞(𝑥𝑖)

𝑝(𝑥𝑖)
)

𝑁

𝑖=1

= 𝔼𝑞(𝑥) [log (
𝑞(𝑥)

𝑝(𝑥)
)] 

Not sure ?  
  
  
  

𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) =  𝔼𝑞(𝑥) [log (
𝑞(𝑥)

𝑝(𝑥)
)] 

• Note: The numerator of the log is what the expectation is taken over.  
Can be rewritten by the definition of expectation, 𝔼𝑃(𝑥)[𝑓(𝑥)] = ∑ 𝑝𝑖 𝑓(𝑎𝑖)

𝐾
𝑖=1  

𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) =  𝔼𝑞(𝑥) [log (
𝑞(𝑥)

𝑝(𝑥)
)] = ∑ 𝑞(𝑥) log (

𝑞(𝑥)

𝑝(𝑥)
)

𝑥∈𝒳

 

Converting the division in the log to subtraction we find: 

𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) =  ∑ 𝑞(𝑥𝑖)(log(𝑞(𝑥𝑖) − log(𝑝(𝑥𝑖)) 

𝑥𝑖∈𝒳

 

  
Entropy in KL: 

∑𝑝(𝑥𝑖) log(𝑝(𝑥𝑖))

𝑛

𝑖=0

 

• entropy of distribution p ; expected value of the information content of P 
• note if you break up sum above, you will get entropy of  q. 

  
KL-Distance Characteristics: 
• not a metric because it is not symmetric, 𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) ≠ 𝐾𝐿(𝑝(𝑥) ∥ 𝑞(𝑥)) 
• 𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) ≥ 0           Gibbs Inequality 

•   
• 𝐾𝐿(𝑞(𝑥) ∥ 𝑝(𝑥)) = 0 if 𝑞 = 𝑝 almost everywhere 

• q can have area where p does not, even when above = 0 
  



  
  

𝐷𝐾𝐿(𝑃(𝑥) ∥ 𝑄(𝑥))                                                                    D_KL(Q(x)∥P(x)) 
  
 
  
Extraneous: 
From Bishop, page 55 
If we use q(x) to make a coding scheme to transmit value x, the average additional amount of 
information (measured in nats) required to specify value of x is 𝐾𝐿(𝑝||𝑞) 

 
Iff 𝑝(𝑥) = 𝑞(𝑥) then 𝐾𝐿(𝑝||𝑞) ≥ 0 
Using Jensen's Inequality below, where 

𝑓(𝑥) = ln {
𝑞(𝑥)

𝑝(𝑥)
} 𝑑𝑥 

𝐾𝐿(𝑝||𝑞) = −𝑝(𝑥) ln(∫
𝑞(𝑥)

𝑝(𝑥)
)dx ≥ −𝑙𝑛∫ 𝑥 

  
convex  
• convex function has every chord above or on the function 
• the requirement for convexity says that the 2nd derivative of the function be everywhere positive 

• 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≤ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏) 
• 𝑥 = 𝑎,  𝑥 = 𝑏 interval 
• 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≤ 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑐h𝑜𝑟𝑑 

strictly convex 
• equality 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≤ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏) holds only for 𝜆 = 0 𝑎𝑛𝑑 1 

concave 
• opposite of convex 
• every chord lies on or below  
• if 𝑓(𝑥) is convex, −𝑓(𝑥) is concave 

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


  
Jensen's inequality 
• rewrite 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≤ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏) using proof  by induction: 

•  

• in the continuous form: 
•   

 
  



Necessary Background – Stationary vs Fixed Points 

Stationary point 
• point of differentiable function where function's derivative is zero  

𝑑𝑓

𝑑𝑥
= 0 

• minima, maxima, and inflections  
  

 
  
• example: in Yedidia, we are looking for the stationary points in the free energy optimization, since 

it is the point that minimizes the free energy  
  
fixed point 
• element of function's domain that is mapped to itself by the function 
• 𝑓(𝑥) = 𝑥 
• example: in belief propagation, we find fixed points once the model has converged 

o assume we have a sequence of 𝑧: {𝑧1, 𝑧2, … , 𝑧𝑘+1,… } 
o Once 𝑧𝑘+1 = 𝑔(𝑧𝑘) we have converged because 𝑧𝑘+1 = 𝑧𝑘 and changing k no longer 

changes z 
o once all messages stop changing, we have fixed points of z: 

• 𝑚𝑡,𝑠
𝑘+1(𝑥𝑠) = 𝑚𝑡,𝑠

𝑘 (𝑥𝑠) 
• message from t to s at iteration k+1 is the same as it was at iteration k  

o we may never reach a fixed point if graph is not a tree or has cycles (same as never 
converging)  

  
side: in Yedidia, Bethe Free Energy. 
• by proving the fixed points of belief propagation (the ultimately converged value of messages) is 

the same as the stationary point of Bethe Free energy (the minimum of the free energy 
optimization) we know that minimizing the free energy is the same as converging on belief 
propagation network 



  
 
 
 
 
 

Additional Papers 
Long, but still in draft: 
Bethe free energy, Kikuchi approximations, and belief propagation algorithms 
  
Later, more updated version: 
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms 
  

 
 

http://www.stat.ucla.edu/~sczhu/workshops/sctv01/TR2001-16.pdf
http://www.pachecoj.com/courses/csc665-1/papers/Yedidia_GBP_InfoTheory05.pdf
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