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CS242: Lecture 6B Outline

 Importance sampling and likelihood weighting

Sequential Monte Carlo: Particle Filters



Monte Carlo Estimators

• Expectation estimated from empirical distribution of L samples:

• For any L this estimator, a random variable, is unbiased:

• Guarantees about estimator quality as number of samples L grows:

Practical challenge:

Must draw samples!



Importance Sampling
Target Distribution: Proposal Distribution:

• Estimate target moments via importance weighted samples:

Assumes we can evaluate un-normalized densities, and sample

• Estimator is asymptotically unbiased, and minimum-variance proposal distribution is

For evaluation of f(x), this is more efficient than sampling from target p(x)!



Importance Sampling
Target Distribution: Proposal Distribution:

• Optimal proposal can be derived via Jensen’s inequality:

• Estimator is asymptotically unbiased, and minimum-variance proposal distribution is

For evaluation of f(x), this is more efficient than sampling from target p(x)!



Selecting Proposal Distributions

Target Distribution Good Proposal Poor Proposal

Kernel or Parzen window estimators

interpolate to predict density:



Selecting Proposal Distributions
• For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal

Empirical variance of weights may not predict estimator variance!

• Always (asymptotically) unbiased, but variance of estimator can 

be enormous unless weight function bounded above: 

Samples (L) Samples (L)
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Non-linear State Space Models

• State dynamics and measurements given by 

potentially complex nonlinear functions

• Noise sampled from non-Gaussian distributions

• Usually no closed form for messages or marginals



Sequential Importance Sampling

• Suppose interested in some complex, global function of state:

• Could use Markov structure to construct efficient proposal:

Weights will become degenerate, with most approaching zero



Particle Resampling

Resample with replacement produces random discrete 

distribution with same mean as original distribution

While remaining unbiased, 

resampling avoids degeneracies in 

which most weights go to zero

where



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 

using a set of samples

• Propagate over time using 

sequential importance

sampling with resampling



Particle Filters:  The Movie

(M. Isard, 1996)



BP for State-Space Models

Inference (Product step of BP):

where

Prediction (Integral/Sum step of BP):



Particle Filter:  Measurement Update

Variance of importance weights increases with each update

• Incoming message: A set of L weighted particles

• Bayes’ Rule:  Posterior at particles proportional to prior times likelihood 



Particle Filter:  Sample Propagation

• State Posterior Estimate: A set of L weighted particles

• Prediction:  Sample next state conditioned on current particles

Assumption for now:  Can exactly simulate temporal dynamics



Particle Filter:  Resampling

• State Posterior Estimate:

• Prediction:  Sample next state conditioned on randomly chosen particles

Resampling with replacement preserves 

expectations, but increases the variance of 

subsequent estimators



Particle Filter:  Resampling

• State Posterior Estimate:

Resampling with replacement preserves 

expectations, but increases the variance of 

subsequent estimators

• Effective Sample Size:

• Prediction:  Sample next state conditioned on randomly chosen particles



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 

using a set of samples

• Propagate over time using 

sequential importance

sampling with resampling



Bootstrap Particle Filter Summary

• Assume sample-based approximation of incoming message:

• Account for observation via importance weights:

• Sample from forward dynamics distribution of next state:

• Represent state estimates 

using a set of samples

• Propagate over time using 

sequential importance

sampling with resampling



Bootstrap Particle Filter Summary

1. Propagation

2. Weighting

3. Resampling

[ Source: Cappe ]



Toy Nonlinear Model

Dynamics Measurement

Gaussian

Noise

x
t

y t

Nonlinear dynamics and observation model…

…filter equations lack closed form.



Toy Nonlinear Model

What is the probability that a state sequence, sampled 

from the prior model, is consistent with all observations?

Particle Filter Marginal KDEs Full Sequence Importance Sampling

x
t

y t



A More General Particle Filter
• Assume sample-based approximation 

of previous state’s marginal:

• Account for observation and proposal via importance weights:

• Sample from a proposal distribution q:

• Resample to avoid particle degeneracy:



Switching State-Space Model

…

…

Discrete switching state:
With stochastic 
transition matrix

Switching state selects dynamics:
[ Video: Isard & Blake, ICCV 1998. ]

(e.g. Nonlinear Gaussian )

Colors indicate 3 writing modes



Example:  Particle Filters for SLAM
Simultaneous Localization & Mapping (FastSLAM, Montemerlo 2003) 

 
 

 

 

 

 

An online SLAM algorithm factorize that formula to estimate the robot state at current 

time t  

 

 

 

 

 

 

FastSLAM approach 

 

It solves the SLAM problem using particle filters. Particle filters are mathematical 

models that represent probability distribution as a set of discrete particles which occupy 

the state space. 
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Fig1: Diagram of a SLAM technique 

Fig2: probability distribution (ellipse) as particle set (red dots) 

x 

Raw odometry (controls)

True trajectory (GPS)

Inferred trajectory & landmarks

Control inputs from time 1 to t



Dynamical System Inference

Smoothing

Define shorthand notation: 

Compute              at each time t

Filtering

Compute full posterior marginal
at each time t



Dynamical System Inference

Smoothing

Define shorthand notation: 

Filtering

If estimates at time t are not needed immediately, then better smoothed
estimates are possible by incorporating future observations



A Note On Smoothing

 Each resampling step discards states and they cannot subsequently restored

 Resampling introduces dependence across trajectories (common ancestors)

 Smoothed marginal estimates are generally poor

 Backwards simulation improves estimates of smoothed trajectories



Particle Filter Smoothing
Smoothing distribution factorizes as,

Markov property removes

dependence on yt+1 … yT
Filter distribution at time T

Suggests an algorithm to sample from              :

1. Compute and store filter marginals,                 for t=1,…,T

2. Sample final state from full posterior marginal, 

3. Sample in reverse for t=(T-1),(T-2),…,2,1 from, 

Use resampling idea to sample from current particle trajectories in reverse



Particle Filter Smoothing

Reverse conditional given by def’n of conditional prob.:

Forward pass sample-based filter marginal estimates:

Thus particle estimate of reverse prediction is:

where



Particle Filter Smoothing



Particle Smoothing Example

Smoothing trajectories for T=100.  

True states (*).

Kernel density estimates based on 

smoothed trajectories.True states (*).



Additional Particle Filter Topics

 Auxiliary particle filter – bias samples towards those more likely to “survive”

 Rao-Blackwell PF – analytically marginalize tractable sub-components of the 

state (e.g. linear Gaussian terms)

 MCMC PF – apply MC kernel with correct target             to sample trajectory prior 

to the resampling step

 Other smoothing topics:

 Generalized two-filter smoothing

 MC approximation of posterior marginals

 Maximum a posteriori (MAP) particle filter

 Maximum likelihood parameter estimation using PF


