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Inference (and related) Tasks

1
» Simulation: x ~ p(x) = Ef(:z:)

» Compute expectations: E[¢p(z)] = / p(x)p(x) dx

» Optimization: z* = arg max f(z)

xI

» Compute normalizer: Z = /f(a:') dx



Inference (and related) Tasks

» Compute expectations: E[¢p(z)] = / p(x)p(x) dx



Estimate expectation over samples:
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Monte Carlo Integration
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where {z("} ~ p(z)

How good is an estimate with R samples?

= Unbiased:
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= Variance reduces at rate 1/R: var(¢) =

var(o)
R

Variance independent of dimensionality of X



Markov Random Field

Consider the (pairwise) Markov Random Field :
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Specified up to unknown normalizer Z e.g.

Direct simulation is non-trivial in general...



Simulate from tractable distribution: ,
O} ~ g(x) 0%

Importance Sampling

Rewrite expectation: s

[ Source: D. MacKay ]
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Importance Sampling

[ Source: D. MacKay |

O(x)

Q: What Is a good proposal distribution?
0*(x),"

/

A: Minimize estimator variance

q* = argmin var,(¢)
q

minimum variance obtained when, \\ iy

q" < |¢(z)|[p(x)  Minimum variance nét achieved when q=p

» Estimator variance scales catastrophically with dimension:

qmax

e.g. for N-dim. X and Gaussian g(X): — = exp(V2N)

med
T




Inference (and related) Tasks

1
» Simulation: x ~ p(x) = Ef(:z:)



Markov Chain Monte Carlo (MCMC)

» Stochastic 15t order Markov process with transition kernel:
T(:c(f) | 5C(f—l))
—_— ) ey D)y )y L
> Each z full N-dimensional state vector

» MCMC samples ..., z0Y z® 205D " notindependent
» New superscript notation indicates dependence:

{;_U(r) R {x(t)}T Key Question: How many MCMC
r=1 =1 samples T are needed to draw R
Independent Dependent independent samples from p(x)?



Markov Chain Monte Carlo (MCMC)

» Stochastic 15t order Markov process with transition kernel:
T(:c(f) | 5C(f—l))

—_— ) ey D)y )y L
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Eg.Let, T=1| 0 0.1 0.9
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> Initial state dist'n: u(z™") = (0.5,0.2,0.3)

» Repeated transitions converge to target
w(zNT-T-...-T=(02,04,04) = p(z)

. " . . . . 06
True for any Initial state distribution [ Source: Andrieu et al. ]



MCMC Theory

For any starting point chain converges to target p(z) if T obeys:
» Aperiodicity: Chain should not get trapped In cycles

» Irreducibility: For any state x € X there Is positive
probability of visiting any other state =’ € X in finite steps

» Ergodicity: Chain is ergodic if it Is irreducible and aperiodic

Detailed Balance Sufficient (not necessary) condition:
p(gj(t))T(;C(t_l) | ;E(t)) :p(:l,‘(t_l))T(:I:(t) | m(t—l))
Summing over states yields target distribution:

Zp(tl) (f|(f1)



MCMC Theory

For any starting point chain converges to target p(z) if T obeys:
» Aperiodicity: Chain should not get trapped in cycles

» Irreducibility: For any state x € X there Is positive
probability of visiting any other state =’ € X in finite steps

» Ergodicity: Chain is ergodic if it Is irreducible and aperiodic

Detailed Balance Sufficient (not necessary) condition:
P [ 20) = pa )T (@ | 207Y)

Summing over states yields target distribution:

Z (t 1) (f | (t— 1)) pP(X) is eigenvector with
p largest eigenvalue 1



Metropolis-Hastings

Transition kernel with target distribution: [ Source: D. Mackay |

p(z) =1/Zf(x)

1. Sample proposal: =’ | z™Y ~ ¢(-)
2. Accept with probability:

fla) (=] a)
f(z=1) gz’ | z(=1)
Example Gaussian proposal: ¢(z™ | z(=1) = A/(z1 | %)
> Acceptance ratio simplifies to: a = f(z/)/f(z"™Y)
> True for any symmetric proposal: q(z\? | z=1) = g(z"Y | 2
» Known as Metropolis algorithm in this case

min{1,a} where a =




Independent Samples

. S . D. MacK
Q How many M-H samples are required for an | Souree: . Mackay:

independent sample?

A Consider Gaussian proposal: Qbexy S ex
q(x(t) ‘ $(1!:—1)) :N(fc(f_l),tfg)

» Typically e « L for adequate acceptance rate
» Leads to random walk dynamics, which can be slow to converge

» Rule of Thumb: If average acceptance is f € (0,1) need to run for
roughly 7' =~ (L/e)*/f iterations for an independent sample

This i1s only a lower bound (and potentially very loose)



Proposal:

Target:

Example: Independent Samples

Metropolis

1200 iterations
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otherwise

r=x+1

otherwise

O o=

(o' 2) =

|ndependent [ Source: D. MacKay ]

1200 iterations

1
0 5 10 15 20

From zy = 10 need ~400 steps to
reach both end states (0 and 20).
S0, ~400 steps to generate 1
Independent sample!

Very important to avoid random walk dynamics



Suppose target distribution Is:
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Gibbs Sampling

[ Source: Winn & Bishop ]
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By conditional independence,

Vet Gibbs samples drawn from
+1) (1) (1) Markov blanket
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1) lg ),...xg?),etc.



[ Source: D. MacKay ]
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Gibbs Sampling Properties

» Since Gibbs is an M-H sampler inherits all properties:
= Aperiodicity, irreducibllity, ergodicity
= Stationary distribution is p(X)

(1) (f)
() _ p(zs | z55) fz, =z
» Proposal forx,given by: q(z | z'V) { 0 Otherwise

» Samples always accepted:

.

. (t) | .(t)
. p(x)g(z") | x) . P(SC)P( | 2~ )
Pr(accept ) = min q 1, o(@®)g(z [ 2003 — min < 1, |

:min<1p(x9\x(>)p(sc(f3)< xm)} |
p( | 2 )W) p(x, | 72)




Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H
(but no adjustable parameters, so that's a plus...)

Block Gibbs Jointly sample subset S c V fromp(zs | z—s)
» Reduces random walk caused by highly correlated variables
= Requires that conditional p(zs | z—g) can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

p(zws) = /p(ﬁ'i’)dﬁ?s

» Reduces dimensionality of space to be sampled
* Requires that marginals are computable in closed-form



Mixing MCMC Kernels

Consider a set of MCMC kernels 11,15, . .., Tk all having target
distribution p(x) then the mixture:

K
1T = E Wka
k=1 I—> Mixing weights

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:

1. Sample k ~ 7
2. Sample 2 ~ Ty (z | 29)



Inference (and related) Tasks

» Optimization: z* = arg max f(z)

xI



Simulated Annealing

Let annealing distribution at temp 7 be given by:
pr(x) o< (f(@)'"

As 7 — 0 we have:
lim p,(z) = 6(z*) where " = argmax f(x)

T—0 T

SA for Global Optimization:
Annealing schedule o > ... > > ... >0

1. Sample z'* from MCMC kernel T} with target -, ()
2. Set 741 according to annealing schedule

SA for Convergence: 7 = ... > 1 Final temperature = 1
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[ Source: Andrieu et al.]



Inference (and related) Tasks

» Compute normalizer: Z = /f(a:) dx ReverselS, Chibb
estimator, ... Still active

research area.



Comparison to Variational

» Asymptotically exact posterior samples (in theory)
» Easy to Implement basic samplers (no derivatives)

» M-H broadly applicable, with few model constraints (Gibbs
requires complete conditionals can be sampled)

» Diagnhosing convergence Is tricky (easy for variational)

» Unlike MCMC, variational inference provides:
» Analytic posterior approximation
= Bound of log-normalizer



