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Monte Carlo Integration

Estimate expectation over samples:

How good is an estimate with R samples?

Unbiased: 

Variance reduces at rate 1/R:

Variance independent of dimensionality of X



Markov Random Field

Consider the (pairwise) Markov Random Field :

Specified up to unknown normalizer Z e.g.

Direct simulation is non-trivial in general…



Importance Sampling

Simulate from tractable distribution:

Rewrite expectation:

[ Source: D. MacKay ]

Normalized importance weights 
calculated without knowing Z:

Unnormalized Normalized



Importance Sampling

Q: What is a good proposal distribution?

A: Minimize estimator variance

minimum variance obtained when,

 Estimator variance scales catastrophically with dimension:

[ Source: D. MacKay ]

Minimum variance not achieved when q=p

e.g. for N-dim. X and Gaussian q(x):
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Markov Chain Monte Carlo (MCMC)

 Stochastic 1st order Markov process with transition kernel:

 Each       full N-dimensional state vector

 MCMC samples                                       not independent

 New superscript notation indicates dependence:

… …

Independent Dependent

Key Question: How many MCMC 

samples T are needed to draw R 

independent samples from p(x)?



Markov Chain Monte Carlo (MCMC)

 Stochastic 1st order Markov process with transition kernel:

E.g. Let,

 Initial state dist’n:

 Repeated transitions converge to target

… …

True for any initial state distribution [ Source: Andrieu et al. ]



MCMC Theory

For any starting point chain converges to target        if T obeys:

 Aperiodicity: Chain should not get trapped in cycles

 Irreducibility: For any state           there is positive 
probability of visiting any other state            in finite steps

 Ergodicity: Chain is ergodic if it is irreducible and aperiodic

Detailed Balance Sufficient (not necessary) condition:

Summing over states yields target distribution:
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p(x) is eigenvector with 

largest eigenvalue 1



Metropolis-Hastings

Transition kernel with target distribution:

1. Sample proposal:

2. Accept with probability:

Example Gaussian proposal:

 Acceptance ratio simplifies to:

 True for any symmetric proposal:

 Known as Metropolis algorithm in this case

[ Source: D. MacKay ]

where



Independent Samples

Q How many M-H samples are required for an

independent sample?

A Consider Gaussian proposal:

 Typically           for adequate acceptance rate

 Leads to random walk dynamics, which can be slow to converge

 Rule of Thumb: If average acceptance is              need to run for 
roughly                     iterations for an independent sample 

[ Source: D. MacKay ]

This is only a lower bound (and potentially very loose)



Example: Independent Samples

Target:

Proposal:

Metropolis Independent

From               need ~400 steps to 

reach both end states (0 and 20).  

So, ~400 steps to generate 1 

independent sample!

[ Source: D. MacKay ]

Very important to avoid random walk dynamics



Gibbs Sampling

Suppose target distribution is:

where Pa(s) are parents of node s.

Metropolis-Hastings Proposal:

For system with K variables,

[ Source: Winn & Bishop ]

By conditional independence, 

Gibbs samples drawn from 

Markov blanket



[ Source: D. MacKay ]



Gibbs Sampling Properties

 Since Gibbs is an M-H sampler inherits all properties:
Aperiodicity, irreducibility, ergodicity

Stationary distribution is p(x)

 Proposal for    given by:

 Samples always accepted:



Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H 
(but no adjustable parameters, so that’s a plus…)

Block Gibbs Jointly sample subset           from
Reduces random walk caused by highly correlated variables

Requires that conditional                    can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

Reduces dimensionality of space to be sampled

Requires that marginals are computable in closed-form



Mixing MCMC Kernels

Consider a set of MCMC kernels                      all having target 
distribution p(x) then the mixture:

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:
1. Sample

2. Sample  

Mixing weights
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Simulated Annealing

Let annealing distribution at temp   be given by:

As            we have: 

SA for Global Optimization:
Annealing schedule

1. Sample       from MCMC kernel     with target 

2. Set        according to annealing schedule

SA for Convergence:                     Final temperature = 1

where



t=100 t=500

t=1k t=5k

[ Source: Andrieu et al.]



Inference (and related) Tasks

 Simulation:

 Compute expectations:

 Optimization:

 Compute normalizer: Reverse IS, Chibb

estimator, … Still active 

research area.



Comparison to Variational

 Asymptotically exact posterior samples (in theory)

 Easy to implement basic samplers (no derivatives) 

 M-H broadly applicable, with few model constraints (Gibbs 
requires complete conditionals can be sampled)

 Diagnosing convergence is tricky (easy for variational)

 Unlike MCMC, variational inference provides:
 Analytic posterior approximation
 Bound of log-normalizer


