

CSC 665-1: Advanced Topics in Probabilistic Graphical Models

Monte Carlo Methods

Instructor: Prof. Jason Pacheco

Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- ≻ Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- > Optimization: $x^* = \arg \max_x f(x)$

Sompute normalizer:
$$Z = \int f(x) \, dx$$

Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- ≻ Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- > Optimization: $x^* = \arg \max_x f(x)$

▷ Compute normalizer: $Z = \int f(x) dx$

Monte Carlo Integration

Estimate expectation over samples:

$$\hat{\phi} = \frac{1}{R} \sum_{r=1}^{r} \phi(x^{(r)}) \approx \mathbb{E}_p[\phi(x)], \quad \text{where } \{x^{(r)}\} \sim p(x)$$

How good is an estimate with R samples?

• Unbiased: $\mathbb{E}[\hat{\phi}] = \mathbb{E}[\phi]$

• Variance reduces at rate 1/R: $var(\hat{\phi}) = \frac{var(\phi)}{R}$

Variance independent of dimensionality of X

Markov Random Field

Consider the (pairwise) Markov Random Field :

$$p(x) = \frac{1}{Z} \prod_{s \in \mathcal{V}} \psi_s(x_s) \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t)$$

Specified up to unknown normalizer Z e.g.

$$p(x) = \frac{1}{Z}f(x)$$

Direct simulation is non-trivial in general...

Importance Sampling

Simulate from tractable distribution:

 ${x^{(r)}}_{r=1}^R \sim q(x)$

Rewrite expectation:

$$\mathbb{E}_p[\phi(x)] = \int \frac{q(x)p(x)}{q(x)}\phi(x) \, dx$$
$$= \frac{1}{\pi} \mathbb{E}_q \left[\frac{f(x)}{\phi(x)} \phi(x) \right]$$

$$Z^{\mathbf{L}q} \left\lfloor q(x)^{\varphi(w)} \right\rfloor$$

Normalized importance weights calculated without knowing Z:

$$w_r = \frac{f(x^{(r)})}{q(x^{(r)})}$$

$$\bar{w}_r = \frac{w_r}{\sum_{r'} w_{r'}}$$

Unnormalized

Normalized

Importance Sampling

Estimator variance scales catastrophically with dimension:

e.g. for N-dim. X and Gaussian q(x):

$$\frac{w_r^{\max}}{w_r^{\mathrm{med}}} = \exp(\sqrt{2N})$$

Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- > Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- > Optimization: $x^* = \arg \max_x f(x)$

▷ Compute normalizer: $Z = \int f(x) dx$

Markov Chain Monte Carlo (MCMC)

Stochastic 1st order Markov process with transition kernel:

$$T(x^{(t)} \mid x^{(t-1)})$$

$$x^{(t-1)} \longrightarrow x^{(t)} \longrightarrow x^{(t+1)} \longrightarrow x^{(t+1)}$$

- > Each $x^{(t)}$ full N-dimensional state vector
- > MCMC samples ..., $x^{(t-1)}, x^{(t)}, x^{(t+1)}, \dots$ not independent
- > New superscript notation indicates dependence:

$${x^{(t)}}_{t=1}^{T}$$

Independent

Dependent

Key Question: How many MCMC samples T are needed to draw R independent samples from p(x)?

Markov Chain Monte Carlo (MCMC)

Stochastic 1st order Markov process with transition kernel:

m((t) + (t-1))

$$T(x^{(t)} \mid x^{(t-1)})$$

$$x^{(t-1)} \longrightarrow x^{(t)} \longrightarrow x^{(t+1)} \longrightarrow x^{(t+1)}$$
E.g. Let, $T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$

- ▶ Initial state dist'n: $\mu(x^{(1)}) = (0.5, 0.2, 0.3)$
- ➤ Repeated transitions converge to target $\mu(x^{(1)})T \cdot T \cdot \ldots \cdot T = (0.2, 0.4, 0.4) = p(x)$

True for any initial state distribution

MCMC Theory

For any starting point chain converges to target p(x) if T obeys:

- > Aperiodicity: Chain should not get trapped in cycles
- > *Irreducibility*: For any state $x \in \mathcal{X}$ there is positive probability of visiting any other state $x' \in \mathcal{X}$ in finite steps
- > Ergodicity: Chain is *ergodic* if it is irreducible and aperiodic

Detailed Balance Sufficient (not necessary) condition:

$$p(x^{(t)})T(x^{(t-1)} \mid x^{(t)}) = p(x^{(t-1)})T(x^{(t)} \mid x^{(t-1)})$$

Summing over states yields target distribution: $p(x^{(t)}) = \sum p(x^{(t-1)})T(x^{(t)} \mid x^{(t-1)})$

MCMC Theory

For any starting point chain converges to target p(x) if T obeys:

- > Aperiodicity: Chain should not get trapped in cycles
- > *Irreducibility*: For any state $x \in \mathcal{X}$ there is positive probability of visiting any other state $x' \in \mathcal{X}$ in finite steps
- > Ergodicity: Chain is *ergodic* if it is irreducible and aperiodic

Detailed Balance Sufficient (not necessary) condition:

$$p(x^{(t)})T(x^{(t-1)} \mid x^{(t)}) = p(x^{(t-1)})T(x^{(t)} \mid x^{(t-1)})$$

Summing over states yields target distribution:

$$p(x^{(t)}) = \sum_{x^{(t-1)}} p(x^{(t-1)})T(x^{(t)} \mid x^{(t-1)}) \quad \begin{array}{l} \mathsf{p(x)} \text{ is eigenvector with} \\ \text{ largest eigenvalue 1} \end{array}$$

Metropolis-Hastings

 $Q(\mathbf{x}; \mathbf{x}^{(1)})$

[Source: D. MacKay]

 $P^*(\mathbf{x})$

Transition kernel with target distribution:

p(x) = 1/Zf(x)

- 1. Sample proposal: $x' \mid x^{(t-1)} \sim q(\cdot)$
- 2. Accept with probability:

$$\min\{1, a\} \quad \text{where} \quad a = \frac{f(x')}{f(x^{(t-1)})} \frac{q(x^{(t-1)} \mid x')}{q(x' \mid x^{(t-1)})}$$

Example Gaussian proposal: $q(x^{(t)} | x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2)$

- > Acceptance ratio simplifies to: $a = f(x')/f(x^{(t-1)})$
- > True for any symmetric proposal: $q(x^{(t)} | x^{(t-1)}) = q(x^{(t-1)} | x^{(t)})$
- Known as Metropolis algorithm in this case

Independent Samples

 $Q(\mathbf{x}; \mathbf{x}^{(1)})$

[Source: D. MacKay]

 $P^*(\mathbf{x})$

- **Q** How many M-H samples are required for an independent sample?
- A Consider Gaussian proposal:

 $q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2)$

- > Typically $\epsilon \ll L$ for adequate acceptance rate
- > Leads to random walk dynamics, which can be slow to converge
- ➤ <u>Rule of Thumb</u>: If average acceptance is $f \in (0, 1)$ need to run for roughly $T \approx (L/\epsilon)^2/f$ iterations for an independent sample

This is only a lower bound (and potentially very loose)

Example: Independent Samples

Very important to avoid random walk dynamics

Gibbs Sampling

Suppose target distribution is:

$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid \operatorname{Pa}(s))$$

where Pa(s) are parents of node s.

Metropolis-Hastings Proposal: For system with K variables,

$$\begin{aligned} x_1^{(t+1)} &\sim P(x_1 | x_2^{(t)}, x_3^{(t)}, \dots x_K^{(t)}) & \mathbf{0} \\ x_2^{(t+1)} &\sim P(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots x_K^{(t)}) \\ x_3^{(t+1)} &\sim P(x_3 | x_1^{(t+1)}, x_2^{(t+1)}, \dots x_K^{(t)}), \text{etc.} \end{aligned}$$

By conditional independence, Gibbs samples drawn from Markov blanket

Gibbs Sampling Properties

Since Gibbs is an M-H sampler inherits all properties:

- Aperiodicity, irreducibility, ergodicity
- Stationary distribution is p(x)

$$\blacktriangleright \text{Proposal for } x_s \text{given by: } q(x \mid x^{(t)}) = \begin{cases} p(x_s \mid x^{(t)}) & \text{If } x_{\neg s} = x^{(t)}_{\neg s} \\ 0 & \text{Otherwise} \end{cases}$$

> Samples **always accepted**:

$$\Pr(\operatorname{accept} x) = \min\left\{1, \frac{p(x)q(x^{(t)} \mid x)}{p(x^{(t)})q(x \mid x^{(t)})}\right\} = \min\left\{1, \frac{p(x)p(x_s^{(t)} \mid x_{\neg s}^{(t)})}{p(x^{(t)})p(x_s \mid x_{\neg s}^{(t)})}\right\}$$
$$= \min\left\{1, \frac{p(x_s \mid x_{\neg s}^{(t)})p(x_{\neg s}^{(t)})p(x_s^{(t)} \mid x_{\neg s}^{(t)})}{p(x_s^{(t)} \mid x_{\neg s}^{(t)})p(x_{\neg s}^{(t)})p(x_s \mid x_{\neg s}^{(t)})}\right\} = 1$$

Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H (but no adjustable parameters, so that's a plus...)

Block Gibbs Jointly sample subset $S \subset \mathcal{V}$ from $p(x_S \mid x_{\neg S})$

- Reduces random walk caused by highly correlated variables
- Requires that conditional $p(x_S \mid x_{\neg S})$ can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint: $p(x_{V\setminus S}) = \int p(x) dx_S$

Reduces dimensionality of space to be sampled

Requires that marginals are computable in closed-form

Mixing MCMC Kernels

Consider a set of MCMC kernels T_1, T_2, \ldots, T_K all having target distribution p(x) then the mixture:

$$T = \sum_{k=1}^{K} \pi_k T_k$$
 Mixing weights

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:

- 1. Sample $k \sim \pi$
- 2 Sample $x^{(t+1)} \sim T_k(x \mid x^{(t)})$

-1

Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- > Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- > Optimization: $x^* = \arg \max_x f(x)$

▷ Compute normalizer: $Z = \int f(x) dx$

Simulated Annealing

Let annealing distribution at temp τ be given by: $p_{\tau}(x) \propto (f(x))^{1/\tau}$

As $\tau \to 0$ we have:

 $\lim_{\tau \to 0} p_{\tau}(x) = \delta(x^*) \quad \text{ where } \quad x^* = \arg \max_x f(x)$

SA for Global Optimization:

Annealing schedule $\tau_0 \geq \ldots \geq \tau_t \geq \ldots \geq 0$

- 1. Sample $x^{(t)}$ from MCMC kernel T_t with target $p_{\tau_t}(x)$
- 2. Set τ_{t+1} according to annealing schedule

SA for Convergence: $\tau_0 \ge \ldots \ge 1$ Final temperature = 1

Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- > Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- > Optimization: $x^* = \arg \max_x f(x)$

Compute normalizer: $Z = \int f(x) \, dx$ Reverse IS, Chibb estimator, ... Still active research area.

Comparison to Variational

- > Asymptotically exact posterior samples (in theory)
- Easy to implement basic samplers (no derivatives)
- M-H broadly applicable, with few model constraints (Gibbs requires complete conditionals can be sampled)
- > Diagnosing convergence is tricky (easy for variational)
- > Unlike MCMC, variational inference provides:
 - Analytic posterior approximation
 - Bound of log-normalizer