

CSC 665-1: Advanced Topics in Probabilistic Graphical Models

Graphical Models

Instructor: Prof. Jason Pacheco

From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent a probability distribution*

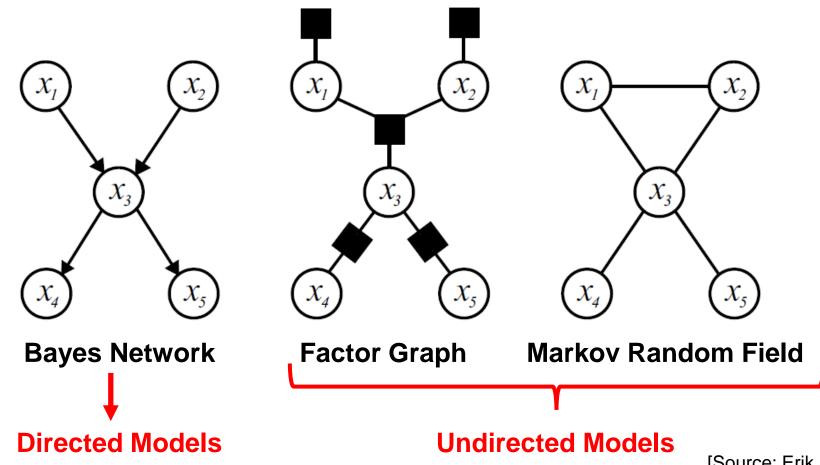
Probability Model: $p(x_1, x_2, x_3) =$ $p(x_1)p(x_2)p(x_3 | x_1, x_2)$ Graphical Model: x_1 x_2 x_3

The graphical model structure *obeys* the factorization of the probability function in a sense we will formalize later

* We will use the term "distribution" loosely to refer to a CDF / PDF / PMF

Graphical Models

A variety of graphical models can represent the same probability distribution



Factorized Probability Distributions

A probability distribution over RVs $x = (x_1, \ldots, x_d)$ can be written as a product of factors,

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

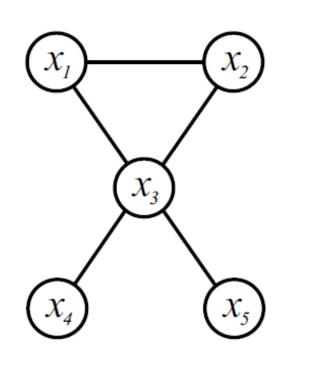
Where:

- C a collection of subsets of indices $\{1, \ldots, d\}$
- $\psi(\cdot)$ are nonnegative *factors* (or *potential functions*)
- Z the normalizing constant (or *partition function*)

$$Z = \int \prod_{c \in \mathcal{C}} \psi_c(x_c) \, dx_c$$

Undirected Graphical Models

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a set of vertices \mathcal{V} and edges \mathcal{E} . An edge $(s, t) \in \mathcal{E}$ connects two vertices $s, t \in \mathcal{V}$.



In **undirected models** edges are specified irrespective of node ordering so that,

 $(s,t)\in \mathcal{E}\Leftrightarrow (t,s)\in \mathcal{E}$

Distributions are typically specified with unknown normalization (easier to specify),

$$p(x) \propto \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in C$ (fully connected subgraph) in the MRF

Clique

 X_{5}

An MRF does not imply a unique factorization, for example all the following are "*valid*":

 $\psi(x_1, x_2, x_3, x_4, x_5)$ $\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$ $\psi(x_1, x_2)\psi(x_2, x_3)\psi(x_1, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$

A factorization is *valid* if it satisfies the *Global Markov property*, defined by conditional independencies

Conditional Independence (Undirected)

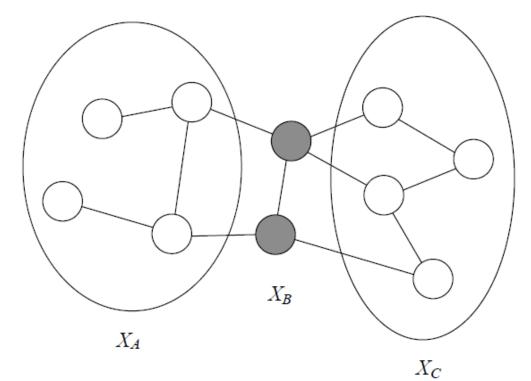
We say x_A and x_C are *independent* or $x_A \perp x_C$ if:

 $p(x_A, x_C) = p(x_A)p(x_C)$

We say they are *conditionally independent* or $x_A \perp x_C \mid x_B$ if:

$$p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$$

Def. We say p(x) is globally Markov w.r.t. \mathcal{G} if $x_A \perp x_C \mid x_B$ in any separating set of \mathcal{G} .



Conditional independence in undirected graphical models is defined by separating sets

Hammersley-Clifford Theorem

Thorem (Hammersley-Clifford). Let C denote the set of cliques of an undirected graph G. A probability distribution defined as a normalized product of non-negative potential functions on those cliques is then always Markov with respect to G:

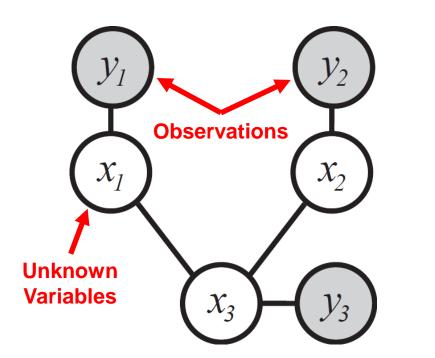
$$p(x) \propto \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

Conversely, any strictly positive density which is Markov with respect to \mathcal{G} can be represented in this factored form.

A minimal factorization is one where all factors are maximal cliques (not a strict subset of any other clique) in the MRF

Pairwise Markov Random Field

Often easier to specify and do inference on pairwise model



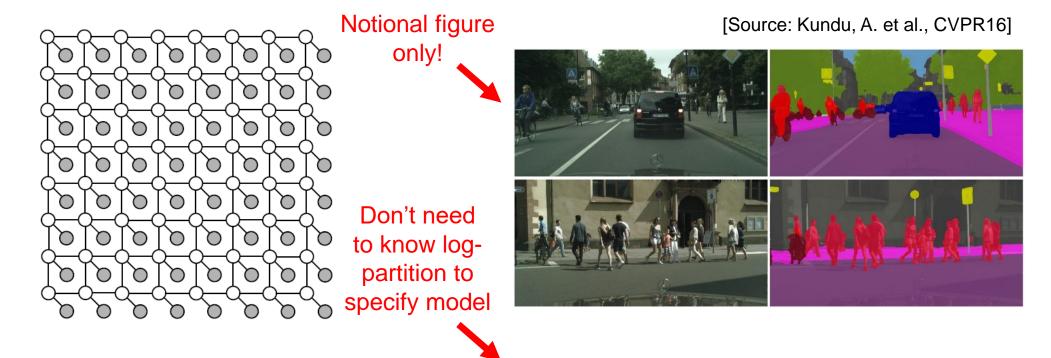
$$\psi(x,y) \propto \prod_{s \in \mathcal{V}} \psi_s(x_s,y) \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s,x_t)$$

Likelihood Prior

Restricted class of MRFs

- 2-node factor exists for every edge
- Explicit factorization of joint distribution
- High-order factors not always easily decomposed into pairwise terms

Example: Image Segmentation



Pairwise MRF energy: $-\log p(x, y) = \log Z + \sum_{i} \psi_i(x_i, y_i) + \sum_{(i,j)} \psi_{i,j}(x_i, x_j)$ Low energy configurations = High probability

L2 Likelihood: $\psi_i(x_i, y_i) = ||x_i - y_i||^2$ Potts model: $\psi_{i,j}(x_i, x_j) = \mathbb{I}(x_i = x_j)$ MAP (minimum energy) configuration = Piecewise constant regions

Factor Graphs

A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{F})$ where a hyperedge $f \in \mathcal{F}$ is a subset of vertices $f \subset \mathcal{V}$.

 X_{2}

 χ_{5}

 X_{3}

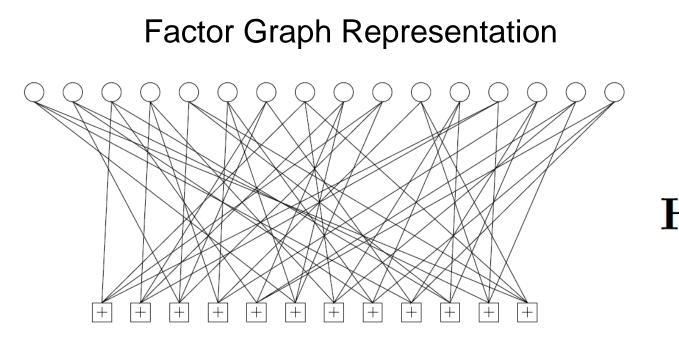
Factor graphs explicitly encode factorization of distribution:

$$p(x) \propto \prod_{f \in \mathcal{F}} \psi_f(x_f)$$

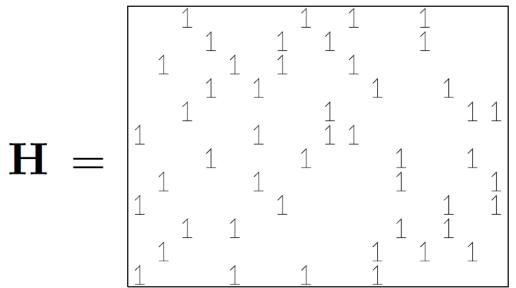
where $x_f = \{x_i : i \in f\}$ the set of variables in factor *f*. For example:

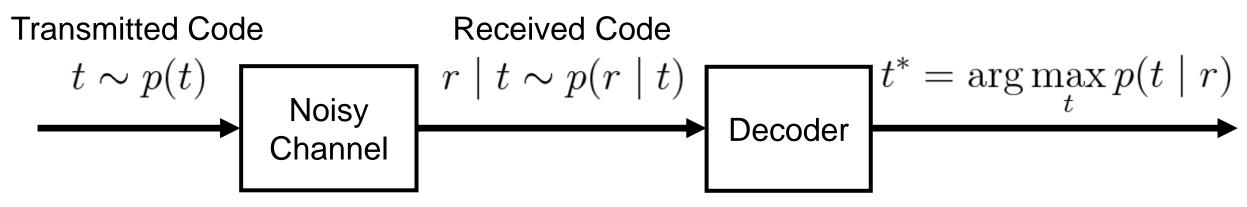
 $\psi(x_1)\psi(x_2)\psi(x_1,x_2,x_3)\psi(x_3,x_4)\psi(x_3,x_5)$

Example: Low Density Parity Check Codes

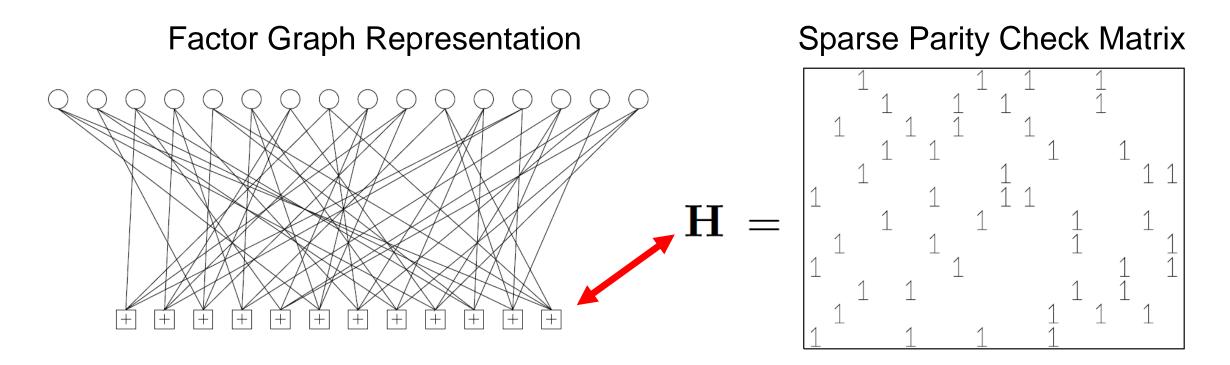


Sparse Parity Check Matrix





Example: Low Density Parity Check Codes



- Valid codes have zero parity: $p(t) \propto \mathbb{I}(Ht = 0 \mod 2)$
- Chanel noise model arbitrary, e.g. flip bits w/ ϵ probability:

Directed Graphs

Def. A <u>directed graph</u> is a graph with edges $(s, t) \in \mathcal{E}$ (arcs) connecting parent vertex $s \in \mathcal{V}$ to a child vertex $t \in \mathcal{V}$

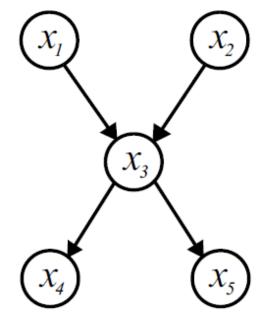
Def. <u>Parents</u> of vertex $t \in \mathcal{V}$ are given by the set of nodes with arcs pointing to t,

$$\operatorname{Pa}(t) = \{s : (s,t) \in \mathcal{E}\}$$

<u>Children</u> of $t \in \mathcal{V}$ are given by the set,

$$Ch(t) = \{t : (t,k) \in \mathcal{E}\}\$$

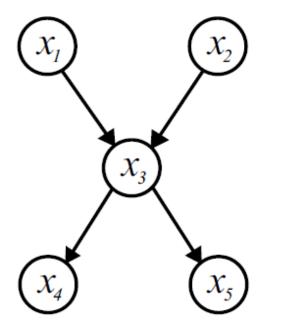
<u>Ancestors</u> are parents-of-parents. <u>Descendants</u> are children-of-children.



Bayes Network

Model factors are normalized conditional distributions:

$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid x_{\operatorname{Pa}(s)})$$
Parents of node s



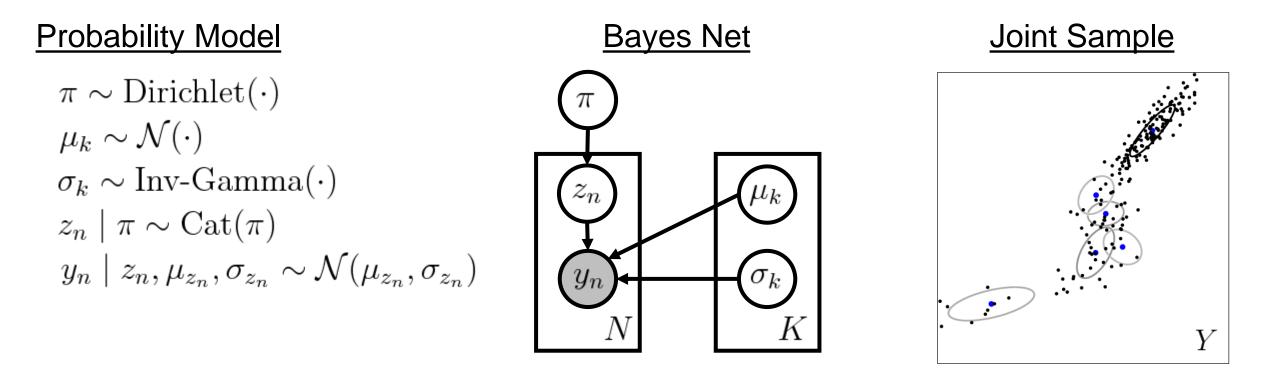
Directed acyclic graph (DAG) specifies factorized form of joint probability:

 $p(x_1)p(x_2)p(x_3 \mid x_1, x_2)p(x_4 \mid x_3)p(x_5 \mid x_3)$

Locally normalized factors yield globally normalized joint probability

Example: Gaussian Mixture Model

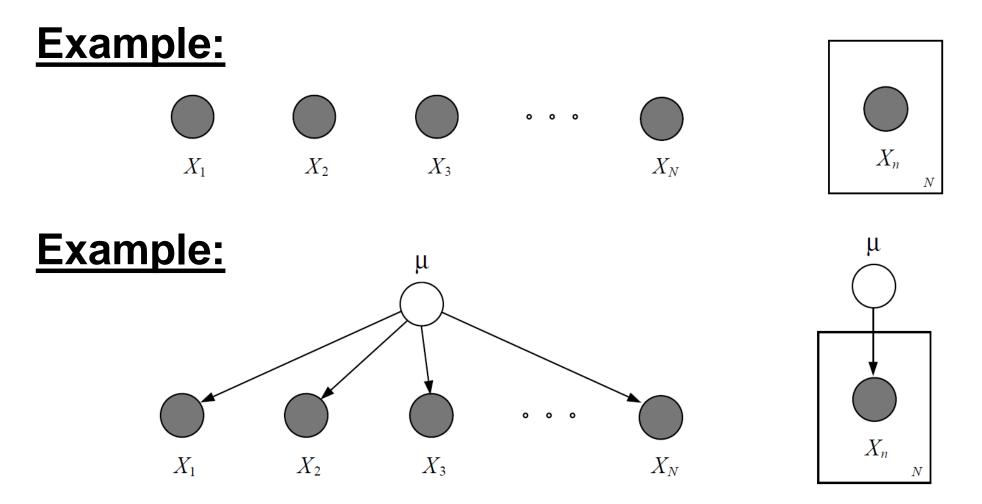
Bayes nets are easily simulated via ancestral sampling



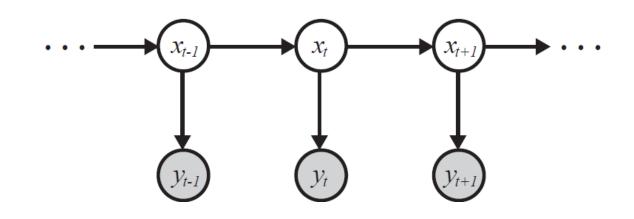
Specification is more difficult than undirected models since each factor must be a normalized probability measure

Plate Notation

Plates denote replication of elements



Example: Linear Gaussian Dynamics System



Latent state $x \in \mathbb{R}^D$ evolves according to linear dynamics.

Observations $y \in \mathbb{R}^M$ are linear functions of the state.

 $x_t = Ax_{t-1} + \epsilon$ where $\epsilon \sim \mathcal{N}(0, Q)$

 $y_t = Cx_t + \omega$ where $\omega \sim \mathcal{N}(0, R)$

"White" Noise

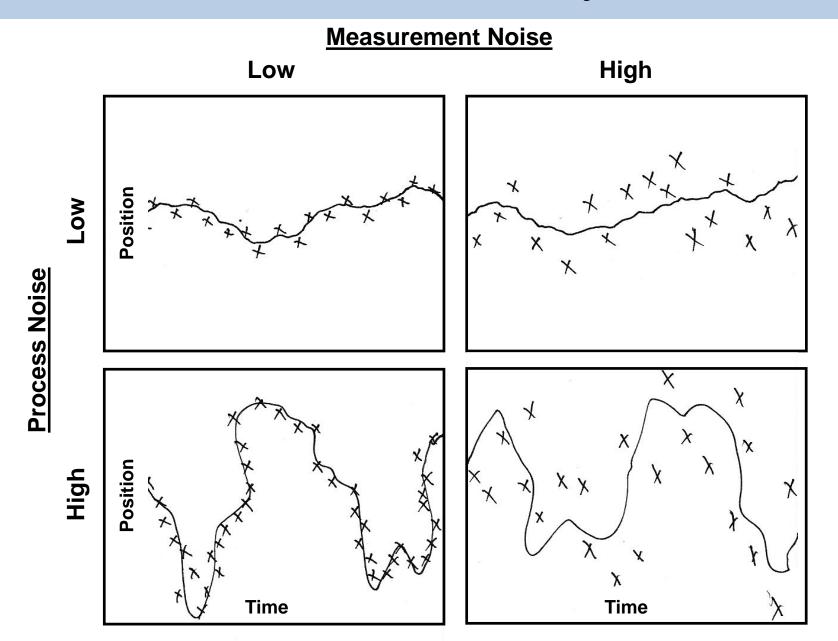
State-Space Model (equivalent):

Plant Equations

Conditional Probability Model:

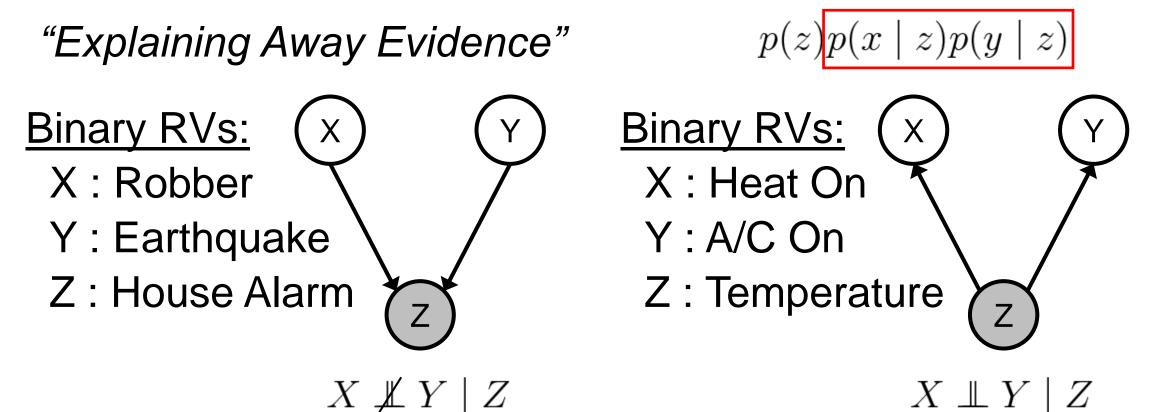
$$x_{t} \mid x_{t-1} \sim \mathcal{N}(Ax_{t-1}, Q)$$
State Dynamics Process Noise
$$y_{t} \mid x_{t} \sim \mathcal{N}(Cx_{t}, R)$$
Measurement Model Observation Noise

Example: Linear Gaussian Dynamical System



Conditional Independence (Directed)

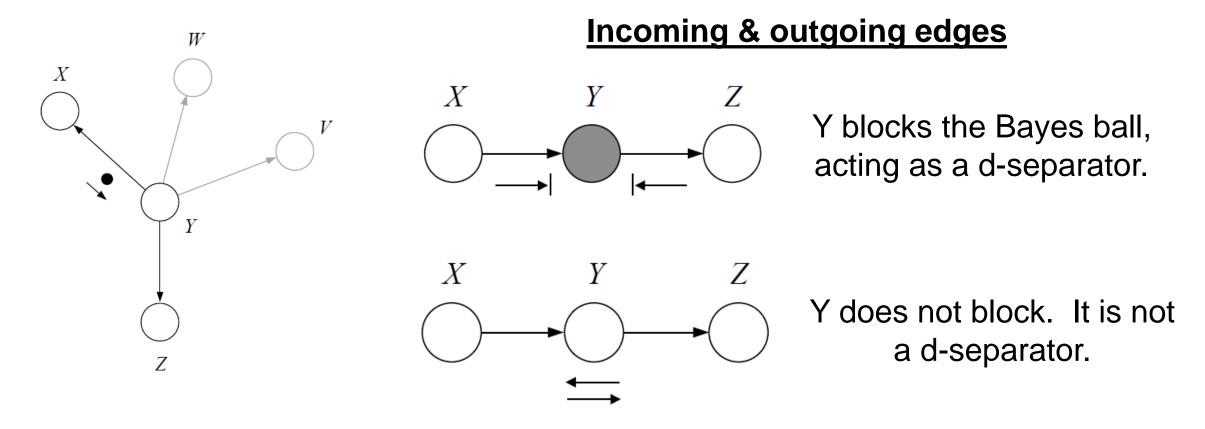
Not as simple as graph separation in directed graphs...

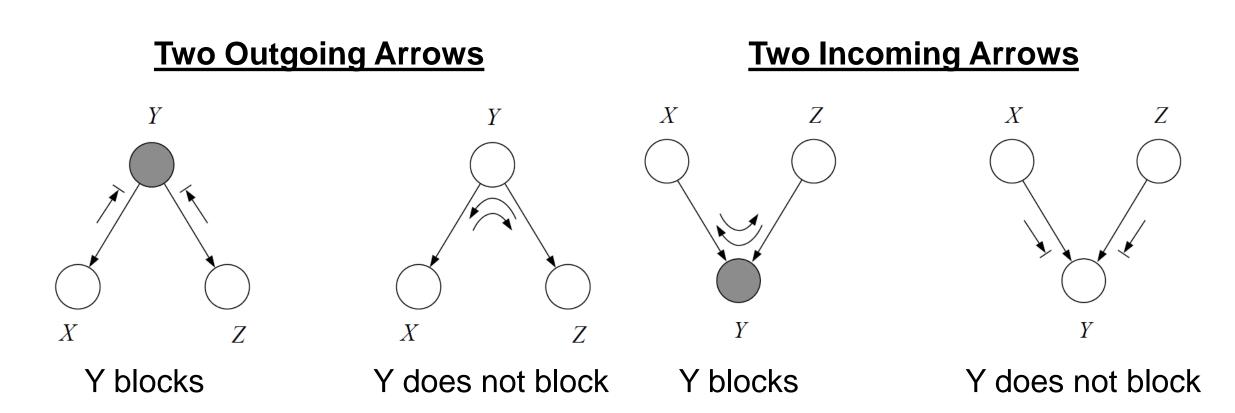


Directed separation (d-separation) property indicates conditional independence in directed models.

Bayes Ball Algorithm

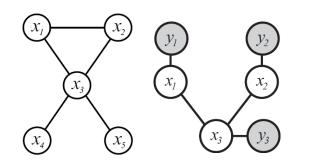
To test if $x_A \perp x_C \mid x_B$ imagine rolling a "ball" from each node in x_A . The "ball" follows certain rules defined by canonical 3-node subgraphs:





If a set x_B blocks for every node in x_C then $x_A \perp x_C \mid x_B$. Conversely, if a ball reaches *any* node in x_C then they are **not** conditionally independent.

Summary



Undirected models may be specified up to normalization. Factorization may not be unique for MRFs.

Directed models useful for product of locally-normalized conditional probabilities. Simplifies simulation via ancestral sampling. Conditional independence more difficult.

 X_5

Conditional independence given by graph separation and d-separation for undirected / directed models.

