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From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent 
a probability distribution*

Probability Model:
Graphical Model:

The graphical model structure obeys the factorization of the 
probability function in a sense we will formalize later

* We will use the term “distribution” loosely to refer to a CDF / PDF / PMF



Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models



Factorized Probability Distributions

A probability distribution over RVs                           can be 
written as a product of factors,

Where:

• a collection of subsets of indices

• are nonnegative factors (or potential functions)

• the normalizing constant (or partition function)



Undirected Graphical Models

A graph is a set of vertices    and edges    .  An edge                 
connects two vertices             .

In undirected models edges are specified 
irrespective of node ordering so that,

Distributions are typically specified with 
unknown normalization (easier to specify),



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Clique

A factorization is valid if it satisfies the Global 
Markov property, defined by conditional 

independencies



We say      and      are independent
or               if:

We say they are conditionally
independent or                       if:

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .

Conditional Independence (Undirected)

[ Source: Michael I. Jordan]

Conditional independence

in undirected graphical models

is defined by separating sets



Hammersley-Clifford Theorem

A minimal factorization is one where all factors are maximal 
cliques (not a strict subset of any other clique) in the MRF



Pairwise Markov Random Field

Likelihood Prior

Restricted class of MRFs
• 2-node factor exists for every edge

• Explicit factorization of joint distribution

• High-order factors not always easily 
decomposed into pairwise terms

Unknown

Variables

Observations

Often easier to specify and do inference on pairwise model



Example: Image Segmentation

Pairwise MRF energy:

[Source: Kundu, A. et al., CVPR16]

L2 Likelihood: Potts model:

Low energy configurations = High probability

MAP (minimum energy) configuration = Piecewise constant regions

Don’t need

to know log-

partition to

specify model

Notional figure

only!



Factor Graphs

A hypergraph where a hyperedge is a subset 
of vertices          .

Factor graphs explicitly encode factorization of 
distribution:

where                            the set of variables in 
factor f.  For example:           



Example: Low Density Parity Check Codes

Sparse Parity Check MatrixFactor Graph Representation

Noisy 

Channel

Transmitted Code Received Code

Decoder

[Source: David MacKay]



Example: Low Density Parity Check Codes

• Valid codes have zero parity:

• Chanel noise model arbitrary, e.g. flip bits w/    probability:

Sparse Parity Check MatrixFactor Graph Representation

n-th bit [Source: David MacKay]



Directed Graphs

Def. A directed graph is a graph with edges               (arcs) 
connecting parent vertex           to a child vertex           

Def. Parents of vertex          are given by the 
set of nodes with arcs pointing to   ,

Children of          are given by the set,

Ancestors are parents-of-parents.  
Descendants are children-of-children.



Bayes Network

Model factors are normalized conditional distributions:

Directed acyclic graph (DAG) specifies 
factorized form of joint probability:

Locally normalized factors yield globally 
normalized joint probability

Parents of node s



Bayes nets are easily simulated via ancestral sampling

Specification is more difficult than undirected models since 
each factor must be a normalized probability measure

Example: Gaussian Mixture Model

Probability Model Bayes Net Joint Sample



Plate Notation

Plates denote replication of elements

Example:

Example:



Latent state             evolves 
according to linear dynamics. 

Observations             are 
linear functions of the state.

Example: Linear Gaussian Dynamics System

Conditional Probability Model: State-Space Model (equivalent):

where

where

“White” NoiseState Dynamics Plant EquationsProcess Noise

Measurement Model Observation Noise



Example: Linear Gaussian Dynamical System
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Conditional Independence (Directed)

Not as simple as graph separation in directed graphs…

X Y

Z

X Y

Z

X : Robber

Y : Earthquake

Z : House Alarm

Binary RVs:

X : Heat On

Y : A/C On

Z : Temperature

Binary RVs:

“Explaining Away Evidence”

Directed separation (d-separation) property indicates 
conditional independence in directed models.



Bayes Ball Algorithm

To test if                      imagine rolling a “ball” from each node in       
.  The “ball” follows certain rules defined by canonical 3-

node subgraphs:

Incoming & outgoing edges

Y blocks the Bayes ball, 

acting as a d-separator.

Y does not block.  It is not 

a d-separator.

[Source: Michael I Jordan]



Two Outgoing Arrows Two Incoming Arrows

Y blocks Y blocksY does not block Y does not block

If a set      blocks for every node in     then                      .  
Conversely, if a ball reaches any node in     then they are not
conditionally independent.



Summary

Conditional independence given by 
graph separation and d-separation 
for undirected / directed models.

Undirected models may be specified up to 
normalization.  Factorization may not be 

unique for MRFs.

X Y

Z

Directed models useful for product of 
locally-normalized conditional probabilities.  

Simplifies simulation via ancestral sampling.  
Conditional independence more difficult.


