

CSC 665-1: Advanced Topics in Probabilistic Graphical Models

Introduction and Course Overview

Instructor: Prof. Jason Pacheco

Outline

- Motivating examples of representation
- Efficient computation on graphical models
- Overview of course topics
- Course details (attendance, grading, etc.)

Why Graphical Models?

Structure simplifies both representation and computation

Representation Complex global phenomena arise by simpler-to-specify local interactions

<u>Computation</u> Inference / estimation depends only on subgraphs (e.g. dynamic programming, belief propagation, Gibbs sampling)

Why Graphical Models?

Structure simplifies both representation and computation

Representation Complex global phenomena arise by simpler-to-specify local interactions

<u>Computation</u> Inference / estimation depends only on subgraphs (e.g. dynamic programming, belief propagation, Gibbs sampling)

We will discuss inference later, but let's focus on representation...

Outline

- Motivating examples of representation
- Efficient computation on graphical models
- Overview of course topics
- Course details (attendance, grading, etc.)

Protein Side Chain Prediction

Problem: Given 3D protein backbone structure, estimate orientation of every side chain molecule.

Solution: Just physics of atomic interaction. Easy, right!?

Protein Side Chain Prediction

Protein Side Chain Prediction

Pose Estimation

Graphical Model

Image (Data / Observation)

Problem: Estimate orientation / shape / pose of human figure from an image

Model encodes likelihood of shape / pose / image consistency (e.g. skin color)

Pose Tracking

Frame t

Motion Prior

By composing single-frame model with temporal dynamics and motion prior we can do video tracking...

Kinematic Hand Tracking

Hidden Markov Models

Sequential models of discrete quantities of interest

Dynamical Models

Sequential models of <u>continuous</u> quantities of interest

Time

Example: Multitarget Tracking

State-Space Models

Intracortical Brain-Computer Interface

Block 12: "Multiscale Semi-Markov Model"

[Milstein, Pacheco, et al., NeurlPs 2017]

Outline

- Motivating examples of representation
- Efficient computation on graphical models
- Overview of course topics
- Course details (attendance, grading, etc.)

Why Graphical Models?

Structure simplifies both representation and computation

<u>Representation</u> Complex global phenomena arise by simpler-to-specify local interactions

<u>Computation</u> Inference / estimation depends only on subgraphs (e.g. dynamic programming, belief propagation, Gibbs sampling)

Computation in Graphical Models

This style of computation generalizes to all graphical models...

Example algorithms

- Belief propagation
- Gibbs sampling
- Particle filtering
- Viterbi decoder for HMMs
- Kalman filter (marginal inference)

Key Idea: Local computations only depend on the statistics of the current node and neighboring interactions

Outline

- Motivating examples of representation
- Efficient computation on graphical models
- Overview of course topics
- Course details (attendance, grading, etc.)

Course Overview

We will cover **five** primary topics...

Variational Inference	Advanced Markov chain Monte Carlo	Bayesian Nonparametrics	Bayesian Optimization	Bayesian Deep Learning
Efficient methods for approximate posterior inference	Techniques for obtaining asymptotically exact inference while avoiding local optima	A class of probability models where model complexity is inferred from the data	Probabilistic methods for global optimization of smooth functions	Probabilistic uncertainty models for deep learning

Variational Inference

Uses Jensen's inequality to bound quantities of inference

Advanced Markov Chain Monte Carlo

Advanced MCMC techniques reduce sample complexity and avoid getting stuck in local energy minima

Example: Parallel tempering exchange replicates across multiple MCMC chains running in (embarrassingly) parallel

Bayesian Nonparametrics

Amount and nature of data drive model complexity

Example: Dirichlet process mixture models a distribution over an <u>infinite</u> number of mixture components

Bayesian Optimization

Global optimization of <u>random functions</u>: $\min_{x} f(x)$

Bayesian Optimization

Iteratively updates distribution over function value (regression)

[Source: Ryan Adams]

Bayesian Optimization

The function is well-approximated around the minimizer

[Source: Ryan Adams]

Bayesian Deep Learning

Neural networks are graphical models too...

...but they are typically not probabilistic

Bayesian Deep Learning

Combines deep learning with uncertainty models

Data

Gaussian Mixture Model (GMM) GMM Structured Variational Autoencoder

[Source: Johnson et al., NIPS 2016]

Outline

- Motivating examples of representation
- Efficient computation on graphical models
- Overview of course topics
- Course details (attendance, grading, etc.)

Now for the bulleted lists of stuff...