Monte Carlo Estimation

One reason to sample a distribution is to approximate expected values under that distribution...

Expected value of function f(x) w.r.t. distribution p(x) given by,

$$\mathbb{E}_p[f(x)] = \int p(x)f(x) \, dx \equiv \mu$$

- Doesn't always have a closed-form for arbitrary functions
- > Suppose we have iid samples: $\{x_i\}_{i=1}^N \sim p(x)$
- Monte Carlo estimate of expected value,

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N f(x_i) \approx \mathbb{E}_p[f(x)]$$

Samples must be independent!

Markov chain Monte Carlo methods

- The approximations of expectation that we have looked at so far have assumed that the samples are independent draws.
- This sounds good, but in high dimensions, we do not know how to get good independent samples from the distribution.
- MCMC methods drop this requirement.
- Basic intuition
 - If you have finally found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

- Samples are conditioned on the previous one (this is the Markov chain).
- MCMC is often a good hammer for complex, high dimensional, problems.
- Main downside is that it is not "plug-and-play"
 - Doing well requires taking advantage to the structure of your problem
 - MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).
 - If there are faster solutions, you can incorporate that (and MCMC becomes a way to improve/select these good guesses).

Metropolis Algorithm

We want samples $z^{(1)}, z^{(2)}, \dots$

Again, write
$$p(z) = \tilde{p}(z)/Z$$

Assume that $q(z|z^{(prev)})$ can be sampled easily

Also assume that $q(\)$ is symmetric, i.e., $q\!\left(\left.z_{A}\right|z_{B}\right) = q\!\left(\left.z_{B}\right|z_{A}\right)$

For example,
$$q(z|z^{(prev)}) \sim \mathbb{N}(z; z^{(prev)}, \sigma^2)$$

Metropolis Algorithm

Always emit one or the other

If things get better, always accept. If they get worse, sometimes accept.

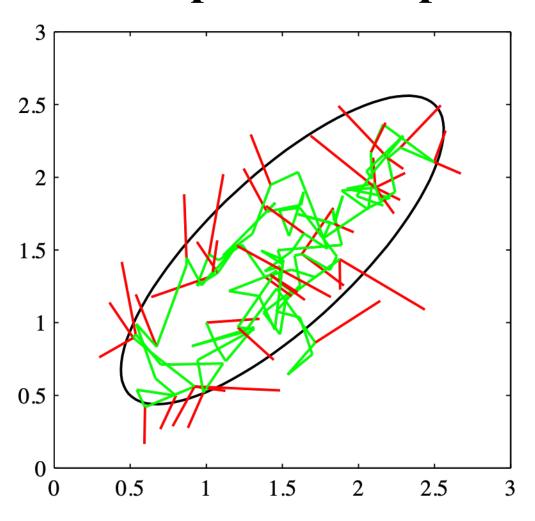
Metropolis Algorithm

Note that

$$A\left(z,z^{(prev)}
ight) = \min \left(1,rac{ ilde{p}\left(z
ight)}{ ilde{p}\left(z^{(prev)}
ight)}
ight) = \min \left(1,rac{p\left(z
ight)}{p\left(z^{(prev)}
ight)}
ight)$$

So we do not need to normalize p(z)

Metropolis Example



Green follows accepted proposals Red are rejected moves.

Markov chain view

Denote an initial probability distribution by $p(z^{(1)})$

Define transition probabilities by:

$$T(z^{(prev)},z) = p(z|z^{(prev)})$$
 (a probability distribution)

T can change over time, but for now, assume that it it is always the same (homogeneous chain)

A given chain evolves from a sample of $p(z^{(1)})$, and is an instance from an essemble of chains.

Markov Chain Monte Carlo (MCMC)

➤ Stochastic 1st order Markov process with transition kernel:

$$T(z^{(t)} \mid z^{(t-1)})$$

$$z^{(t-1)} \longrightarrow z^{(t)} \longrightarrow z^{(t+1)} \longrightarrow \cdots$$

- \triangleright Each $x^{(t)}$ full N-dimensional state vector
- ightharpoonup MCMC samples ..., $z^{(t-1)}, z^{(t)}, z^{(t+1)}, ...$ not independent
- New superscript notation indicates dependence:

$$\{z^{(\ell)}\}_{\ell=1}^L \qquad \{z^{(t)}\}_{t=1}^T$$
 Independent Dependent

Key Question: How many MCMC samples T are needed to draw L independent samples from p(x)?

Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our **target distribution** p(z).
- This implies that the distribution being sampled at time t+1 would be the same as that of time t (stationary).
- If our stationary (target) distribution is p(), then if we imagine an ensemble of chains, they are in each state with (long-run) probability p().
 - On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the percentage of states would not be stable.

Markov Chain Monte Carlo (MCMC)

Stochastic 1st order Markov process with transition kernel:

$$T(z^{(t)} \mid z^{(t-1)})$$

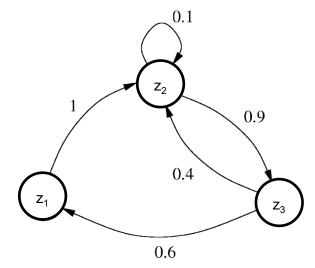
$$z^{(t-1)} \longrightarrow z^{(t)} \longrightarrow z^{(t+1)} \longrightarrow z^{(t$$

E.g. Let,
$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- ➤ Initial state dist'n: $\mu(z^{(1)}) = (0.5, 0.2, 0.3)$
- Repeated transitions converge to target $\mu(z^{(1)}) \cdot T \cdot T \cdot \dots T = (0.2, 0.4, 0.4) = p(z)$

True for any initial state distribution

How can we formalize this?



[Source: Andrieu et al.]

Detailed balance

• Detailed balance is defined by:

$$p(z)T(z,z') = p(z')T(z',z)$$
(We assume that $T(\bullet) > 0$)

• Detailed balance is a sufficient condition for p() to be a stationary distribution with respect to the positive T.

Sufficient but *not* necessary

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z)$$
 (because?)

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z)$$
 (marginalization)
$$= \sum_{z'} p^{(prev)}(z) T(z,z')$$
 (because?)

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z)$$
 (marginalization)
 $= \sum_{z'} p^{(prev)}(z) T(z,z')$ (detailed balance)
 $= p^{(prev)}(z) \sum_{z'} T(z,z')$ (because?)

$$egin{aligned} p(z) &= \sum_{z'} p^{(prev)}(z') T(z',z) & ext{(marginalization)} \ &= \sum_{z'} p^{(prev)}(z) T(z,z') & ext{(detailed balance)} \ &= p^{(prev)}(z) \sum_{z'} T(z,z') & ext{(moving constant out of sum)} \ &= p^{(prev)}(z) \sum_{z'} p(z'|z) & ext{(because?)} \end{aligned}$$

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z) \qquad \text{(marginalization)}$$

$$= \sum_{z'} p^{(prev)}(z) T(z,z') \qquad \text{(detailed balance)}$$

$$= p^{(prev)}(z) \sum_{z'} T(z,z') \qquad \text{(moving constant out of sum)}$$

$$= p^{(prev)}(z) \sum_{z'} p(z'|z) \qquad \text{(definition of T)}$$

$$= p^{(prev)}(z) \sum_{z'} \frac{p(z',z)}{p(z)} \qquad \text{(because?)}$$

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z) \qquad \text{(marginalization)}$$

$$= \sum_{z'} p^{(prev)}(z) T(z,z') \qquad \text{(detailed balance)}$$

$$= p^{(prev)}(z) \sum_{z'} T(z,z') \qquad \text{(moving constant out of sum)}$$

$$= p^{(prev)}(z) \sum_{z'} p(z'|z) \qquad \text{(definition of T)}$$

$$= p^{(prev)}(z) \sum_{z'} \frac{p(z',z)}{p(z)} \qquad \text{(definition of "|")}$$

$$= p^{(prev)}(z) \frac{p(z)}{p(z)} \qquad \text{(because?)}$$

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z) \qquad \text{(marginalization)}$$

$$= \sum_{z'} p^{(prev)}(z) T(z,z') \qquad \text{(detailed balance)}$$

$$= p^{(prev)}(z) \sum_{z'} T(z,z') \qquad \text{(moving constant out of sum)}$$

$$= p^{(prev)}(z) \sum_{z'} p(z'|z) \qquad \text{(definition of T)}$$

$$= p^{(prev)}(z) \sum_{z'} \frac{p(z',z)}{p(z)} \qquad \text{(definition of "|")}$$

$$= p^{(prev)}(z) \frac{p(z)}{p(z)} \qquad \text{(marginalization)}$$

$$= p^{(prev)}(z) \qquad \text{(because?)}$$

$$p(z) = \sum_{z'} p^{(prev)}(z') T(z',z) \qquad \text{(marginalization)}$$

$$= \sum_{z'} p^{(prev)}(z) T(z,z') \qquad \text{(detailed balance)}$$

$$= p^{(prev)}(z) \sum_{z'} T(z,z') \qquad \text{(moving constant out of sum)}$$

$$= p^{(prev)}(z) \sum_{z'} p(z'|z) \qquad \text{(definition of T)}$$

$$= p^{(prev)}(z) \sum_{z'} \frac{p(z',z)}{p(z)} \qquad \text{(definition of "|")}$$

$$= p^{(prev)}(z) \frac{p(z)}{p(z)} \qquad \text{(marginalization)}$$

$$= p^{(prev)}(z) \qquad \text{(canceling)}$$

Detailed balance (continued)

- Detailed balance (for p()) means that *if* our chain was generating samples from p(), it would continue to due so.
 - We will address how it gets there soon.
 - For MCMC algorithms like Metropolis, it is important that the stationary state is the distribution we want (most Markov chains converge to *something*),
- Does the Metropolis algorithm have detailed balance?

Recall that in Metropolis,
$$A(z,z') = \min\left(1,\frac{p(z)}{p(z')}\right)$$

For detailed balance, we need to show (in general) p(z')T(z',z) = p(z)T(z,z')

Recall that in Metropolis,
$$A(z,z') = \min\left(1,\frac{p(z)}{p(z')}\right)$$

For detailed balance, we need to show (in general)

$$p\!\left(z'\right)\!T\!\left(z',\!z\right)\!=p\!\left(z\right)\!T\!\left(z,\!z'\right)$$

In Metropolis this is

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

Probability of transition from z to z' is the probability that z' is proposed, **and** it is accepted.

Recall that in Metropolis,
$$A(z,z') = \min\left(1,\frac{p(z)}{p(z')}\right)$$

$$p(z')q(z|z')A(z,z') = q(z|z')\min(p(z'),p(z))$$
 (because?)

Recall that in Metropolis,
$$A(z,z') = \min\left(1,\frac{p(z)}{p(z')}\right)$$

$$p(z')q(z|z')A(z,z') = q(z|z')\min(p(z'),p(z))$$
 (bring $p(z')$ into A)
$$= q(z'|z)\min(p(z'),p(z))$$
 (because?)

Recall that in Metropolis, $A(z,z') = \min\left(1,\frac{p(z)}{p(z')}\right)$

$$\begin{aligned} p(z')q(z|z')A(z,z') &= q(z|z')\min(p(z'),p(z)) & \text{(bring } p(z') \text{ into } A) \\ &= q(z'|z)\min(p(z'),p(z)) & \text{q() is symmetric} \\ &= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)},1\right) & \text{(because?)} \end{aligned}$$

Recall that in Metropolis, $A(z,z') = \min \left[1, \frac{p(z)}{p(z')}\right]$

$$\begin{aligned} p(z')q(z|z')A(z,z') &= q(z|z')\min(p(z'),p(z)) & \text{(bring } p(z') \text{ into } A) \\ &= q(z'|z)\min(p(z'),p(z)) & \text{q() is symmetric} \\ &= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)},1\right) & \text{(divide the min() by } p(z)) \\ &= p(z)q(z'|z)\min\left(1,\frac{p(z')}{p(z)}\right) & \text{(switch order in min())} \\ &= p(z)q(z'|z)A(z',z) & \text{(because?)} \end{aligned}$$

Recall that in Metropolis, $A(z,z') = \min \left[1, \frac{p(z)}{p(z')}\right]$

$$\begin{aligned} p(z')q(z|z')A(z,z') &= q(z|z')\min(p(z'),p(z)) & \text{(bring } p(z') \text{ into } A) \\ &= q(z'|z)\min(p(z'),p(z)) & \text{q() is symmetric} \\ &= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)},1\right) & \text{(divide the min() by } p(z)) \\ &= p(z)q(z'|z)\min\left(1,\frac{p(z')}{p(z)}\right) & \text{(switch order in min())} \\ &= p(z)q(z'|z)A(z',z) & \text{(definition of } A(z',z)) \end{aligned}$$

Ergodic chains

- Different starting probabilities will give different chains
- We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.
- Such chains are called ergodic, and the common stationary state is called the equilibrium state.
- Ergodic chains have a unique equilibrium.

When do our chains converge?

- Important theorem tells us that for finite state spaces* our chains converge to equilibrium under two relatively weak conditions.
 - (1) Irreducible
 - We can get from any state to any other state
 - (2) Aperiodic
 - The chain does not get trapped in cycles
- These are true for detailed balance (there exists a stationary state) with T>0 (you can get there).
 - Detailed balance is sufficient, but not necessary for convergence—it is a stronger property than (1) & (2)

^{*}Infinite or uncountable state spaces introduces additional complexities, but the main thrust is similar.

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $\pi(z)$ be the stationary distribution

Let
$$p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z)$$

What is $p^{(t+1)}(z)$ in terms of $\pi(z)$?

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $\pi(z)$ be the stationary distribution

Let
$$p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z)$$

$$p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')$$

$$= \sum_{z'} \pi(z') T(z,z') - \sum_{z'} \Delta^{(t)}(z') T(z,z')$$

$$= \pi(z) - \Delta^{(t+1)}(z)$$

Let
$$p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z)$$

$$p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')$$

$$= \sum_{z'} \pi(z') T(z,z') - \sum_{z'} \Delta^{(t)}(z') T(z,z')$$

$$= \pi(z) - \Delta^{(t+1)}(z)$$
Cannot die!
Dies out

$$p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')$$

$$= \sum_{z'} \pi(z') T(z,z') - \sum_{z'} \Delta^{(t)}(z') T(z,z')$$

$$= \pi(z) - \Delta^{(t+1)}(z)$$

Claim that
$$\left| \Delta^{(t)}(z) \right| < (1-v)^t$$

where $v = \min_{z} \min_{z':\pi(z')>0} \frac{T(z,z')}{\pi(z)}$

and we have $0 < v \le 1$

Matrix-vector representation

Chains (think ensemble) evolve according to:

$$p(z) = \sum_{z'} p(z') T(z',z)$$

Matrix vector representation:

$$\mathbf{p} = \mathbf{T}\mathbf{p}'$$

And, after *n* iterations after a starting point:

$$\mathbf{p}^{(n)} = \mathbf{T}^N \mathbf{p}^{(0)}$$

Matrix representation

A single transition is given by

$$p = Tp'$$

Note what happens for stationary state:

$$\mathbf{p}^* = \mathbf{T}\mathbf{p}^*$$
 What does this equation look like?

Matrix representation

A single transition is given by

$$p = Tp'$$

Note what happens for stationary state:

$$\mathbf{p}^* = \mathbf{T}\mathbf{p}^*$$

So, \mathbf{p}^* is an eigenvector with eigenvalue one.

And, intutively, if things converge, $\mathbf{p}^* = \mathbf{T}^{\infty} \mathbf{p}^{(0)}$

For any $\mathbf{p}^{(0)}$!

Aside on stochastic matrices

- A right (row) stochastic matrix has non-negative entries, and its rows sum to one.
- A left (column) stochastic matrix has non-negative entries, and its columns sum to one.
- A doubly stochastic matrix has both properties.

Aside on stochastic matrices

- In our problem, T is a left (column) stochastic matrix.
 - If you want to be right handed, take the transpose
- The column vector, **p**, also has non-negative elements, that sum to one (stochastic vector).

Aside on stochastic matrices

- In our problem, T is a left (column) stochastic matrix.
 - If you want to be right handed, take the transpose
- The column vector, **p**, also has non-negative elements, that sum to one (stochastic vector).
- Fun facts
 - The product of a stochastic matrix and vector is a stochastic vector.
 - The product of two stochastic matrices is a stochastic matrix.

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = ?$$

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

 T^N cannot grow without bound,

Why not?

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

 T^N cannot grow without bound,

because it is a stochastic matrix.

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

 T^N cannot grow without bound,

because it is a stochastic matrix.

Logic:

- Product of stochastic matrix is a stochastic matrix
- Colums of (left) stochastic matrix sum to 1
- Power is a bunch of products

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

Since T^N cannot grow without bound, the eigenvalue magnitudes (remember they can be complex) are inside [0,1].

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

Since T^N cannot grow without bound, the eigenvalue magnitudes (remember they can be complex) are inside [0,1].

In fact, for our situation, the second biggest absolute value of the eigenvalues is less than one (not so easy to prove), which also means the biggest one is 1 (otherwise T will go to zero).

$$\Lambda = \left[egin{array}{cccc} 1 & & & & \ & \lambda_2 & & & \ & & \lambda_K \end{array}
ight] ext{ and } \Lambda^\infty = \left[egin{array}{cccc} ? & & \ \end{array}
ight]$$

$$\Lambda^{\infty}E^{-1}= egin{pmatrix} & & & \ & ? & & \ & & \end{pmatrix}$$

$$\Lambda^{\infty}E^{-1}=\left(egin{array}{c} E^{-1}ig(1,:ig)\ oldsymbol{0}^T\ & ...\ oldsymbol{0}^T \end{array}
ight)$$

Write \mathbf{p} in terms of the eigen basis

$$\mathbf{p} = \sum_i a_i \mathbf{e}_i$$

$$E^{-1}(1,:) \cdot \mathbf{p} = \sum_{i} a_{i} E^{-1}(1,:) \cdot \mathbf{e}_{i} = a_{1}$$

Write **p** in terms of the eigen basis

$$\mathbf{p} = \sum_i a_i \mathbf{e}_i$$

$$E^{-1}\big(1,:\big) \bullet \mathbf{p} = \sum_i a_i E^{-1}\big(1,:\big) \bullet \mathbf{e}_i \, = a_1$$

$$\begin{cases} E^{-1} \bullet E = I \\ \text{And the columns of E are } \mathbf{e}_i \\ \text{So, } E^{-1}(1,:) \bullet E = \begin{pmatrix} 1,0,0,\cdots.0 \end{pmatrix} \\ \text{(first row of the inverse), and} \\ \text{so } E^{-1}(1,:) \bullet \mathbf{e}_1 = 1 \\ \text{and } E^{-1}(1,:) \bullet \mathbf{e}_{i \neq 1} = 0 \end{cases}$$

Write **p** in terms of the eigen basis

$$\mathbf{p} = \sum_i a_i \mathbf{e}_i$$

$$E^{-1}\big(1,:\big) \bullet \mathbf{p} = \sum_i a_i E^{-1}\big(1,:\big) \bullet \mathbf{e}_i \, = a_1$$

$$\operatorname{and}, \qquad \Lambda^{\infty} E^{-1} \mathbf{p} = \left(egin{array}{c} E^{-1} ig(1,:) ullet \mathbf{p} \ 0 \ ... \ 0 \end{array}
ight) = \left(egin{array}{c} a_1 \ 0 \ ... \ 0 \end{array}
ight)$$

Recall that we are studying $E\Lambda^{\infty}E^{-1}\mathbf{p}$

$$\Lambda^{\infty}E^{-1}\mathbf{p}=\left(egin{array}{cc} a_1 \ 0 \ ... \ 0 \end{array}
ight)$$

So,
$$E \Lambda^{\infty} E^{-1} \mathbf{p} = ?$$

Recall that we are studying $E\Lambda^{\infty}E^{-1}\mathbf{p}$

$$\Lambda^{\infty}E^{-1}\mathbf{p}=\left(egin{array}{c} a_1 \ 0 \ ... \ 0 \end{array}
ight)$$

So,
$$E \Lambda^{\infty} E^{-1} \mathbf{p} = a_1 \mathbf{e_1}$$

So,
$$\mathbf{p}^* = \mathrm{E}\Lambda^{\infty}E^{-1}\mathbf{p}$$

 $\mathrm{E}\Lambda^{\infty}E^{-1}\mathbf{p}=\mathbf{p}^*$ no mater what the initial point \mathbf{p} is.

So, glossing over details, we have convergence to equilibrium.

Justification relies on Perron Frobenius theorem

Let $A = (a_{ij})$ be an $n \times n$ positive matrix: $a_{ij} > 0$ for $1 \le i, j \le n$. Then the following statements hold.

- 1. There is a positive real number r, called the **Perron root** or the **Perron–Frobenius eigenvalue**, such that r is an eigenvalue of A and any other eigenvalue λ (possibly, complex) is strictly smaller than r in absolute value, $|\lambda| < r$. Thus, the spectral radius $\rho(A)$ is equal to r.
- 2. The Perron–Frobenius eigenvalue is simple: r is a simple root of the characteristic polynomial of A. Consequently, the eigenspace associated to r is one-dimensional. (The same is true for the left eigenspace, i.e., the eigenspace for A^T .)
- 3. There exists an eigenvector $v = (v_1, ..., v_n)$ of A with eigenvalue r such that all components of v are positive: A v = r v, $v_i > 0$ for $1 \le i \le n$. (Respectively, there exists a positive left eigenvector $w : w^T A = r w^T$, $w_i > 0$.)
- 4. There are no other positive (moreover non-negative) eigenvectors except v (respectively, left eigenvectors except w), i.e. all other eigenvectors must have at least one negative or non-real component.
- 5. $\lim_{\substack{k \to \infty \\ w^T}} A^k/r^k = vw^T$, where the left and right eigenvectors for A are normalized so that $w^Tv = 1$. Moreover, the matrix v
- 6. Collatz–Wielandt formula: for all non-negative non-zero vectors x, let f(x) be the minimum value of $[Ax]_i/x_i$ taken over all those i such that $x_i \neq 0$. Then f is a real valued function whose maximum is the Perron–Frobenius eigenvalue.
- 7. A "Min-max" Collatz–Wielandt formula takes a form similar to the one above: for all strictly positive vectors x, let g(x) be the maximum value of $[Ax]_i/x_i$ taken over i. Then g is a real valued function whose minimum is the Perron–Frobenius eigenvalue.
- 8. The Perron-Frobenius eigenvalue satisfies the inequalities

$$\min_{i} \sum_{j} a_{ij} \le r \le \max_{i} \sum_{j} a_{ij}.$$

Main points about P-F for positive square matrices

- The maximal eigenvalue is strictly maximal and real valued (item 1).
- Its eigenvector (as computed by software*) has all positive (or negative) real components (item 3).
- The maximal eigenvalue of a stochastic matrix has absolute value 1 (item 8 applied to stochastic matrix).

*P-F says that the positive version exists, but software might hand you the negative of that, but you can negate it to be consistent with P-F.

Summary on matrix version of stationarity

 $\mathbf{p}^* = \mathbf{T}\mathbf{p}^*$ is an eigenvector with eigenvalue one.

We have written it as $\mathbf{p}^* \parallel \mathbf{e}^1$ because \mathbf{e}^1 is the eigenvector normalized to norm 1 (not stochastic).

Intuitively (perhaps), T will reduce any component of p orthogonal to p^* , and T^N will kill off such components as $N \to \infty$.

Algebraic proof

Neal '93 provides an algebraic proof which does not rely on spectral theory.

MCMC so far

- Under reasonable (easily checked and/or arranged) conditions, ensembles of chains over discretized states converge to an equilibrium state.
- Easiest way to prove (or check) that this is the case is to show detailed balance and use T>0.
- Nice analogy with powers of stochastic matrices, which converge to an operator based on the largest magnitude eigenvector (not covered in F18)
- In theory, to use MCMC for sampling a distribution, we simply need to ensure that our target distribution is the equilibrium state.
- In practice we do not know even know if we have visited the best place yet. (The ensemble metaphor runs into trouble if you have a small number of chains compared to the number of states).

MCMC in theory

- The time it takes to get reasonably close to equilibrium (where samples come from the target distribution) is called "burn in" time.
 - I.E., how long does it take to forget the starting state.
 - There is no general way to know when this has occurred.
- The average time it takes to visit a state is called "hit time".
- What if we really want independent samples?
 - In theory we can take every Nth sample (some theories about how long to wait exist, but it depends on the algorithm and distribution).

MCMC for ML in practice

- We use MCMC for machine learning problems with very complex distributions over high dimensional spaces.
- Variables can be either discrete or continuous (often both)
- Despite the gloomy worst case scenario, MCMC is often a good way to find good solutions (either by MAP or integration).
 - Key reason is that there is generally structure in our distributions.
 - We need to exploit this knowledge in our proposal distributions.
 - Instead of getting hung up about whether you actually have convergence
 - Enjoy that fact that what you are doing is principled and can improve any answer (with respect to your model) that you can get by other means
 - Your model should be able to tell you which proposed solution are good.

Metropolis-Hastings MCMC method

- Like Metropolis, but now q() is not necessarily symmetric.
- Metropolis is a special case of MH.

Metropolis-Hastings MCMC method

Does Metropolis-Hastings converge to the target distribution?

- Like Metropolis, but now q() is not necessarily symmetric.
- If Metropolis-Hastings has detailed balance, then it converges to the target distribution under weak conditions.
 - The converse is not true, but generally samplers of interest will have detailed balance

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

$$p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z))$$

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

$$p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z))$$

$$\left\{ \text{ Recall that } A(z,z') = \min \left(1, \frac{p(z)q(z'|z)}{p(z')q(z|z')} \right) \right\}$$

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

$$p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z))$$

$$= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)}\frac{q(z|z')}{q(z'|z)},1\right)$$

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

$$p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z))$$

$$= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)}\frac{q(z|z')}{q(z'|z)},1\right)$$

$$= p(z)q(z'|z)\min\left(1,\frac{p(z')}{p(z)}\frac{q(z|z')}{q(z'|z)}\right)$$

$$p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z)$$

$$p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z))$$

$$= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)}\frac{q(z|z')}{q(z'|z)},1\right)$$

$$= p(z)q(z'|z)\min\left(1,\frac{p(z')}{p(z)}\frac{q(z|z')}{q(z'|z)}\right)$$

$$= p(z)q(z'|z)A(z',z)$$

Metropolis-Hastings comments

- Again it does not matter if we use unnormalized probabilities.
- It should be clear that the previous version, where q() is symmetric, is a special case.
- q() can be anything, but you need to specify the reverse move (often tricky)
 - If you are using MH for optimization (not integration), then getting this only approximately right might be OK.

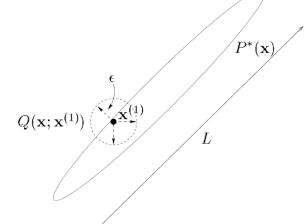
Metropolis-Hastings

Transition kernel with target distribution:

$$p(x) = 1/Zf(x)$$

- 1. Sample proposal: $x' \mid x^{(t-1)} \sim q(\cdot)$
- 2. Accept with probability:

$$\min\{1, a\} \quad \text{ where } \quad a = \frac{f(x')}{f(x^{(t-1)})} \frac{q(x^{(t-1)} \mid x')}{q(x' \mid x^{(t-1)})}$$



[Source: D. MacKay]

Example Gaussian proposal: $q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2)$

- Acceptance ratio simplifies to: $a = f(x')/f(x^{(t-1)})$
- True for any symmetric proposal: $q(x^{(t)} \mid x^{(t-1)}) = q(x^{(t-1)} \mid x^{(t)})$
- Known as Metropolis algorithm in this case

Independent Samples

[Source: D. MacKay]

Q How many M-H samples are required for an independent sample?

A Consider Gaussian proposal:

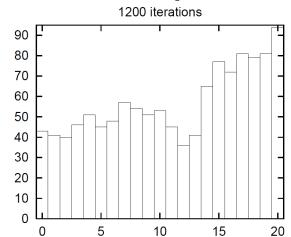
$$q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2)$$

- Typically $\epsilon \ll L$ for adequate acceptance rate
- Leads to random walk dynamics, which can be slow to converge
- Rule of Thumb: If average acceptance is $f \in (0,1)$ need to run for roughly $T \approx (L/\epsilon)^2/f$ iterations for an independent sample

This is only a lower bound (and potentially very loose)

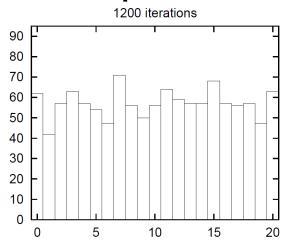
Example: Independent Samples

State evolution for t=1...600, horizontal bars denote intervals of 50



Independent

[Source: D. MacKay]



Target:
$$p(x) = \begin{cases} \frac{1}{21} & x \in \{0, \dots, 20\} \\ 0 & \text{otherwise} \end{cases}$$

Proposal:
$$q(x' \mid x) = \begin{cases} \frac{1}{2} & x' = x \pm 1 \\ 0 & \text{otherwise} \end{cases}$$

From $x_0 = 10$ need ~400 steps to reach both end states (0 and 20). So, ~400 steps to generate 1 independent sample!

Very important to avoid random walk dynamics

Administrivia

- Homework 5 out, due Monday, Dec. 7 (2 weeks)
 - Particle filtering
 - Gibbs sampling
- We **do** have class this Wednesday

Gibbs Sampling

Suppose target distribution is:

$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid \text{Pa}(s))$$

where Pa(s) are parents of node s.

Metropolis-Hastings Proposal:

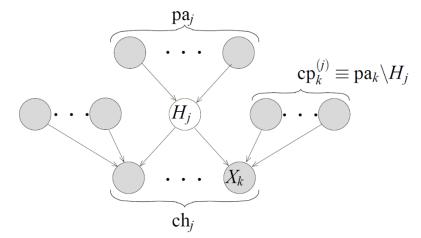
 $x_1^{(t+1)} \sim P(x_1|x_2^{(t)}, x_3^{(t)}, \dots x_K^{(t)})$

For system with K variables,

$$x_2^{(t+1)} \sim P(x_2|x_1^{(t+1)}, x_3^{(t)}, \dots x_K^{(t)})$$

 $x_3^{(t+1)} \sim P(x_3|x_1^{(t+1)}, x_2^{(t+1)}, \dots x_K^{(t)}), \text{ etc.}$

[Source: Winn & Bishop]



By conditional independence, Gibbs samples drawn from Markov blanket

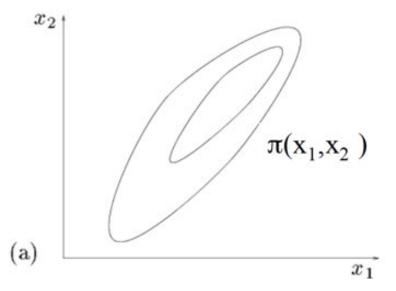
Recall for undirected MRFs the Markov Blanket are immediate neighbors

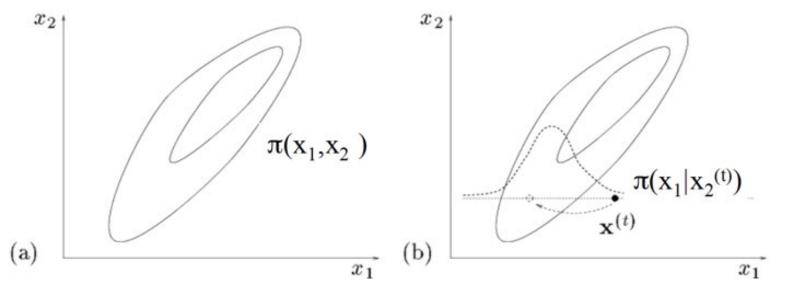
Gibbs sampling

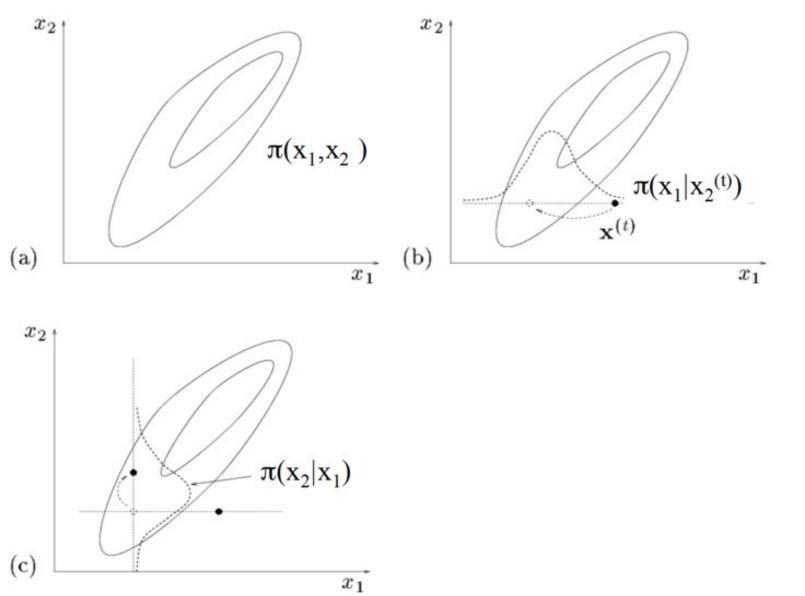
- Gibbs sampling is special case of MH.
- The proposal distribution will be cycle over $p(z_n | \{z_{i \neq n}\})$
- We will always accept the proposal.
- You might notice that the transition function, T(), varies (cycles) over time.
 - This is a relaxation of our assumption used to provide intuition about convergence
 - However, it still OK because the concatenation of the T() for a cycle converge

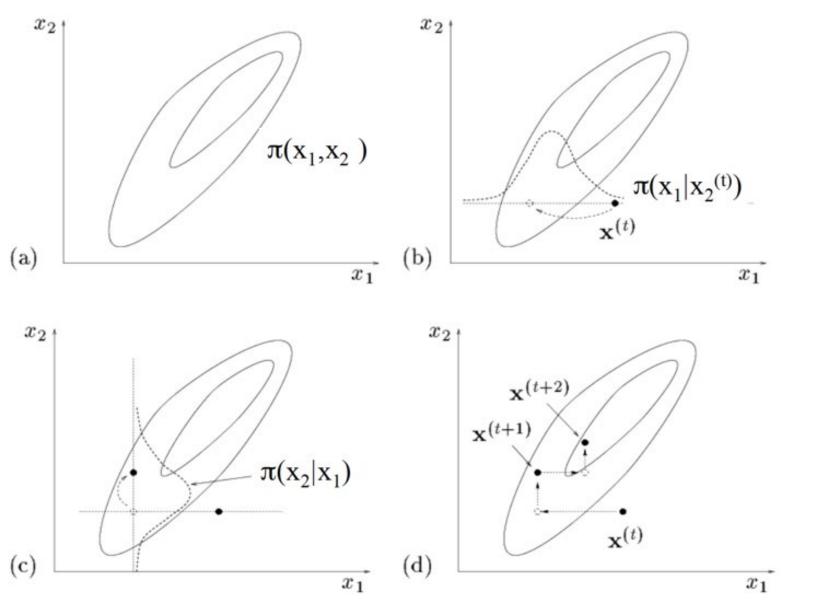
Consider a set of N variables, $z_1, z_1, ..., z_N$. Then Gibbs says

```
Initialize \left\{z_i^{(0)}: i=1,...,N\right\}
While not_bored
            For i=1 to N
                      Sample z_i^{(\tau+1)} \sim p(z_i | z_1^{(\tau+1)}, ..., z_{i-1}^{(\tau+1)}, z_{i+1}^{(\tau)}, ..., z_M^{(\tau)})
                      Always accept (i.e., emit z=z_1^{(\tau+1)},...,z_{i-1}^{(\tau+1)},z_i^{(\tau+1)},z_{i+1}^{(\tau)},...,z_M^{(\tau)})
```







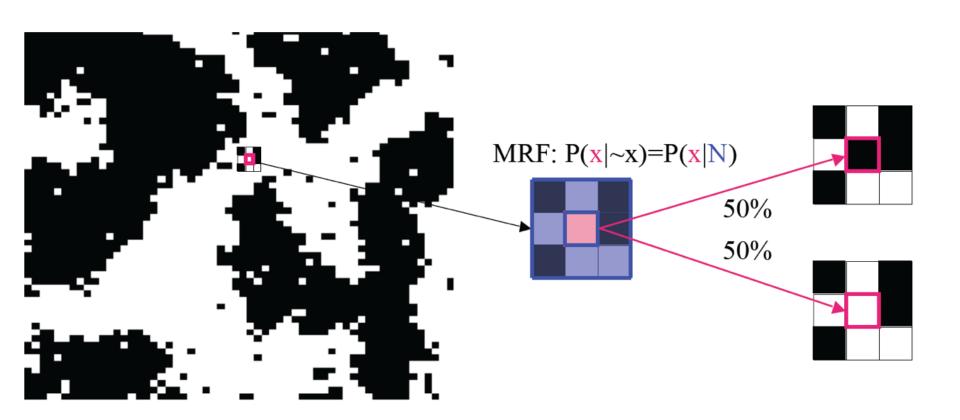


(Source: D. MacKay)

Examples of Gibbs

- If one can specify the conditional distributions in a way that they can be sampled, Gibbs can be a very good method.
- Typical examples include symmetric systems like the Markov random field grids we had for images.
 - With a Markov property, the conditional probability can be quite simple.

Examples of Gibbs



Examples of Gibbs

Weak Affinity to Neighbors

Strong Affinity to Neighbors

(From Dellaert and Zhu tutorial)

Gibbs as Metropolis Hastings (M-H)

To see Gibbs as MH, and to understand why we always accept, consider that if it were MH, then our proposal distribution, $q_i()$, for a given variable, i, would be

$$q_i\!\left(\mathbf{z}^*ig|\mathbf{z}
ight) = p\!\left(z_i^*ig|\mathbf{z}_{\setminus \mathrm{i}}
ight) \quad ext{ and } \quad q_i\!\left(\mathbf{z}ig|\mathbf{z}^*
ight) = p\!\left(z_iig|\mathbf{z}_{\setminus \mathrm{i}}^*
ight)$$

And we have $\mathbf{z}_{i}^* = \mathbf{z}_{i}$ because only *i* changes.

The "*" here means next state, NOT stationary state.

$$\mathbf{A}\left(\mathbf{z}^{*},\mathbf{z}\right) = \min\left(1, \frac{p\left(\mathbf{z}^{*}\right)q_{i}\left(\mathbf{z}\left|\mathbf{z}^{*}\right)\right)}{p\left(\mathbf{z}\right)q_{i}\left(\mathbf{z}^{*}\left|\mathbf{z}\right)\right)}\right) \tag{def'n of A())}$$

$$A(\mathbf{z}^*, \mathbf{z}) = \min \left(1, \frac{p(\mathbf{z}^*)q_i(\mathbf{z}|\mathbf{z}^*)}{p(\mathbf{z})q_i(\mathbf{z}^*|\mathbf{z})} \right)$$

$$= \min \left(1, \frac{p(\mathbf{z}^*)p(\mathbf{z}_i^*|\mathbf{z}^*)q_i(\mathbf{z}|\mathbf{z}^*)}{p(\mathbf{z}_i)p(\mathbf{z}_i^*|\mathbf{z}_{\setminus i})q_i(\mathbf{z}^*|\mathbf{z})} \right)$$
(because?)

$$A(\mathbf{z}^{*}, \mathbf{z}) = \min \left(1, \frac{p(\mathbf{z}^{*})q_{i}(\mathbf{z}|\mathbf{z}^{*})}{p(\mathbf{z})q_{i}(\mathbf{z}^{*}|\mathbf{z})} \right)$$

$$= \min \left(1, \frac{p(\mathbf{z}_{\backslash i}^{*})p(z_{i}^{*}|\mathbf{z}_{\backslash i}^{*})q_{i}(\mathbf{z}|\mathbf{z}^{*})}{p(\mathbf{z}_{\backslash i})p(z_{i}|\mathbf{z}_{\backslash i})q_{i}(\mathbf{z}^{*}|\mathbf{z})} \right)$$

$$= \min \left(1, \frac{p(\mathbf{z}_{\backslash i}^{*})p(z_{i}|\mathbf{z}_{\backslash i})q_{i}(\mathbf{z}^{*}|\mathbf{z})}{p(\mathbf{z}_{\backslash i})p(z_{i}|\mathbf{z}_{\backslash i}^{*})p(z_{i}|\mathbf{z}_{\backslash i}^{*})} \right)$$

$$= \min \left(1, \frac{p(\mathbf{z}_{\backslash i}^{*})p(z_{i}|\mathbf{z}_{\backslash i})p(z_{i}|\mathbf{z}_{\backslash i}^{*})}{p(\mathbf{z}_{\backslash i})p(z_{i}|\mathbf{z}_{\backslash i}^{*})p(z_{i}|\mathbf{z}_{\backslash i}^{*})} \right)$$
(because?)

$$\begin{split} \mathbf{A}\left(\mathbf{z}^{*},\mathbf{z}\right) &= \min\left(1, \frac{p\left(\mathbf{z}^{*}\right)q_{i}\left(\mathbf{z}|\mathbf{z}^{*}\right)}{p\left(\mathbf{z}\right)q_{i}\left(\mathbf{z}^{*}|\mathbf{z}\right)}\right) & \text{(def'n of A())} \\ &= \min\left(1, \frac{p\left(\mathbf{z}_{\backslash i}^{*}\right)p\left(z_{i}^{*}|\mathbf{z}_{\backslash i}^{*}\right)q_{i}\left(\mathbf{z}|\mathbf{z}^{*}\right)}{p\left(\mathbf{z}_{\backslash i}\right)p\left(z_{i}|\mathbf{z}_{\backslash i}\right)q_{i}\left(\mathbf{z}^{*}|\mathbf{z}\right)} & \text{(def'n of "bar")} \\ &= \min\left(1, \frac{p\left(\mathbf{z}_{\backslash i}^{*}\right)p\left(z_{i}|\mathbf{z}_{\backslash i}\right)p\left(z_{i}|\mathbf{z}_{\backslash i}\right)}{p\left(\mathbf{z}_{\backslash i}\right)p\left(z_{i}|\mathbf{z}_{\backslash i}\right)}\right) & \text{(Gibbs, coloring)} \\ &= \min\left(1, 1\right) & \text{(cancel colors using } \mathbf{z}_{\backslash i}^{*} = \mathbf{z}_{\backslash i} \text{ , as only } z_{i} \text{ changes)} \\ &= 1 \end{split}$$

Exploring the space

- Algorithms like Metropolis-Hastings exhibit "random walk behavior" if the step size (proposal variance) is small
 - Random walk dynamics is practical limitation of MCMC
 - Leads to long mixing times (e.g. long burn-in time)
- If the step size is too big, then you get rejected too often
- Adaptive methods exist (see slice sampling in Bishop)

Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H (but no adjustable parameters, so that's a plus...)

Block Gibbs Jointly sample subset $S \subset \mathcal{V}$ from $p(x_S \mid x_{\neg S})$

- Reduces random walk caused by highly correlated variables
- Requires that conditional $p(x_S \mid x_{\neg S})$ can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

$$p(x_{\mathcal{V}\setminus S}) = \int p(x)dx_S$$

- Reduces dimensionality of space to be sampled
- Requires that marginals are computable in closed-form

Combined samplers

Different samplers fail in different ways, so combine them...

- 1. Initialise $x^{(0)}$.
- 2. For i = 0 to N 1
 - Sample $u \sim \mathcal{U}_{[0,1]}$.
 - If $u < \nu$

Apply the MH algorithm with a global proposal.

else

Apply the MH algorithm with a random walk proposal.

...can also combine with Gibbs proposals

Mixing MCMC Kernels

Consider a set of MCMC kernels T_1, T_2, \dots, T_K all having target distribution p(x) then the mixture:

$$T = \sum_{k=1}^K \pi_k T_k$$
 Mixing weights

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:

- 1. Sample $k \sim \pi$
- 2. Sample $x^{(t+1)} \sim T_k(x \mid x^{(t)})$

MCMC Summary

- Markov chain induced by MCMC transition kernel T(z,z')
- Converges to stationary distribution iff chain is ergodic
 - Chain is ergodic if it is irreducible (can get from any z to any z') and aperiodic (doesn't get trapped in cycles)
- Easier to prove detailed balance, which implies ergodicity

$$p(z)T(z,z') = p(z')T(z',z)$$

 Metropolis algorithm samples from symmetric proposal q(z'|z) and accepts sample z' with probability,

$$A = \min\left(1, \frac{\widetilde{p}(z')}{\widetilde{p}(z)}\right)$$

MCMC Summary

 Metropolis-Hastings allows non-symmetric proposal q(z'|z) and accepts sample z' with probability,

$$A = \min\left(1, \frac{\widetilde{p}(z')}{\widetilde{p}(z)} \frac{q(z \mid z')}{q(z' \mid z)}\right)$$

• Gibbs sampler on random vector $z = (z_1, \dots, z_d)^T$ successively samples from *complete conditionals*,

$$z_1^{\text{new}} \sim p(z_1 \mid z_2^{\text{old}}, \dots, z_d^{\text{old}})$$
 $z_2^{\text{new}} \sim p(z_2 \mid z_1^{\text{new}}, z_3^{\text{old}}, \dots, z_d^{\text{old}})$
 \dots
 $z_d^{\text{new}} \sim p(z_d \mid z_1^{\text{new}}, \dots, z_{d-1}^{\text{new}})$

Gibbs is instance of M-H which always accepts

Inference (and related) Tasks

- Simulation: $x \sim p(x) = \frac{1}{Z}f(x)$
- Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- Optimization: $x^* = \arg \max_{x} f(x)$
- Compute normalizer: $Z = \int f(x) dx$

Inference (and related) Tasks

• Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

• Compute expectations:
$$\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$$

- Optimization: $x^* = \arg \max_{x} f(x)$
- Compute normalizer: $Z = \int f(x) dx$

- Analogy with physical systems
- Relevant for optimization (not integration)
- Powers of probability distributions emphasize the peaks
- If we are looking for a maximum within a lot of distracting peaks, this can help.

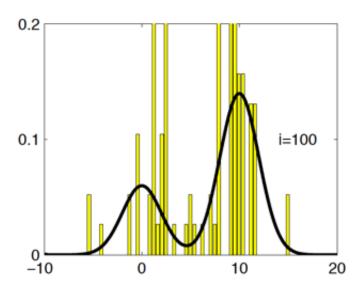
- Define a temperature T, and a cooling schedule (black magic part)
- Lower temperatures correspond to emphasized maximal peaks.
 - Hence we exponentiate by (1/T).
- The terminology makes sense because the number of states accessible to a physical system decreases with temperature.

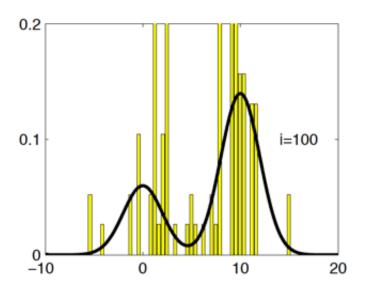
- 1. Initialise $x^{(0)}$ and set $T_0 = 1$.
- 2. For i = 0 to N 1
 - Sample $u \sim \mathcal{U}_{[0,1]}$.
 - Sample $x^* \sim q(x^*|x^{(i)})$.
 - $\quad \text{If } u < \mathcal{A}(x^{(i)}, x^{\star}) = \min \left\{ 1, \frac{p^{\frac{1}{T_i}}(x^{\star})q(x^{(i)}|x^{\star})}{p^{\frac{1}{T_i}}(x^{(i)})q(x^{\star}|x^{(i)})} \right\}$ $x^{(i+1)} = x^{\star}$

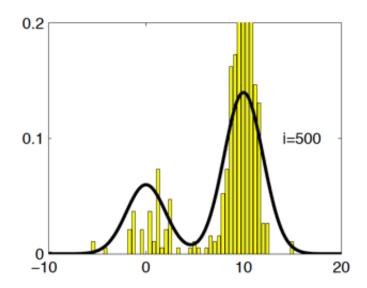
else

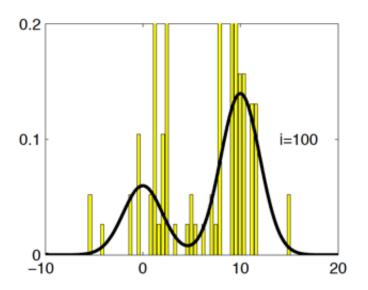
$$x^{(i+1)} = x^{(i)}$$

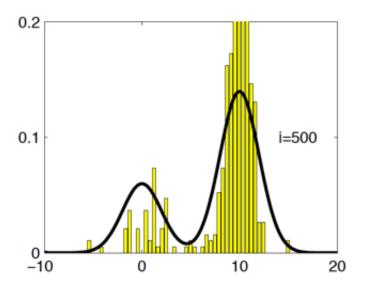
- Set T_{i+1} according to a chosen cooling schedule.

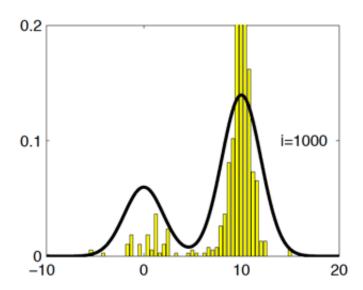




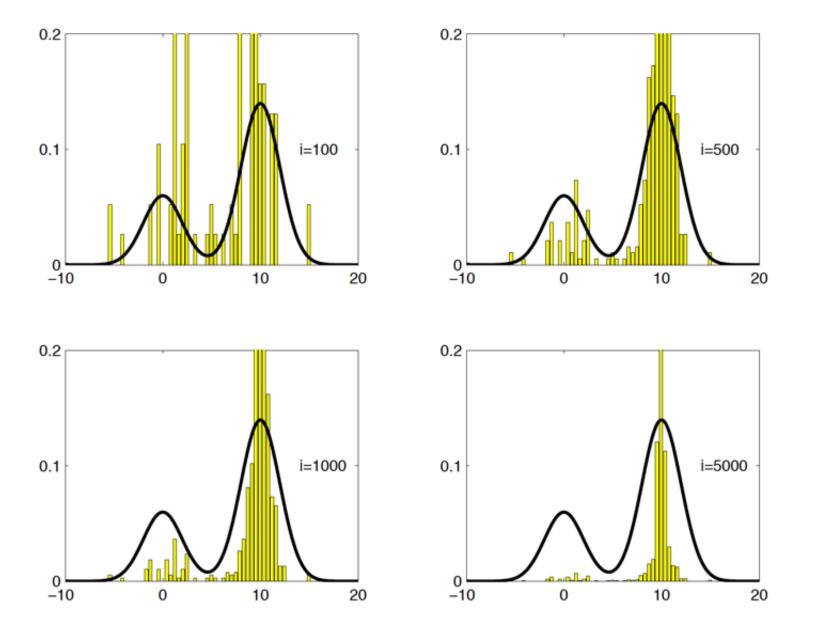








(From Andrieu et al)



(From Andrieu et al)

Let annealing distribution at temp τ be given by:

$$p_{\tau}(x) \propto (f(x))^{1/\tau}$$

As $\tau \to 0$ we have:

$$\lim_{\tau \to 0} p_{\tau}(x) = \delta(x^*) \qquad \text{where} \qquad x^* = \arg\max_x f(x)$$

SA for Global Optimization:

Annealing schedule $\tau_0 \ge \ldots \ge \tau_t \ge \ldots \ge 0$

- 1. Sample $x^{(t)}$ from MCMC kernel T_t with target $p_{\tau_t}(x)$
- 2. Set T_{t+1} according to annealing schedule

SA for Convergence: $\tau_0 \ge \cdots \ge 1$ Final temperature = 1