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Posterior Inference Review

Posterior on latent variable    given data     by Bayes’ rule:

 Posterior: belief over unknowns, given observed data (knowns)

Marginal likelihood given by,

 Marginal Likelihood: quality of model fit to the observed data



Posterior Inference Review

 Tree-structured discrete / Gaussian models can use sum-product BP
 Posterior & marginal likelihood intractable in many practical cases

Monte Carlo methods and MCMC
• PROs Asymptotic guarantees, easy to implement for most models, more 

computation = higher accuracy
• CONs Difficult to diagnose convergence, few non-asymptotic guarantees, slow

Loopy (sum-product) BP
• PROs Often yields good solutions quickly, easy to diagnose convergence
• CONs No computation/accuracy tradeoff, restricted to discrete/Gaussian 

models

Loopy BP is an instance of a wider class of variational methods



Variational Inference Preview

 Formulate statistical inference as an optimization problem
 Maximize variational lower bound on marginal likelihood

 Solution to RHS yields posterior approximation

 Constraint set     defines tractable family of approximating distributions
 Very often     is an exponential family



Expectation Maximization (EM) Lower Bound

Recall EM lower bound of marginal likelihood

( Multiply by q(x)/q(x)=1 )

( Definition of Expected Value )

( Jensen’s Inequality )



A Little Information Theory

• The entropy is a natural measure of the inherent uncertainty:

• Interpretation Difficulty of compression of some random variable

• The relative entropy or Kullback-Leibler (KL) divergence is a non-negative, but 
asymmetric, “distance” between a given pair of probability distributions:

• The KL divergence equals zero if and only if                         for all x.
• Interpretation The cost of compressing data from distribution p(x) with a code 

optimized for distribution q(x)



EM Lower Bound

Bound gap is the Kullback-Leibler divergence KL(q||p),

( Multiply by 1 )

( Definition of KL )

Solution to E-step is,
This doesn’t help us if

is intractable



 If posterior is in set then exact inference

Variational Lower Bound

Idea Restrict optimization to a set     of analytic distributions

 Otherwise, if                      posterior is closest approximation in KL

… and we recover strict lower bound on marginal likelihood with gap



Variational Lower Bound

Average (negative) Energy
Encourages q(x) to “agree” 

with model p(x,y)

Entropy
Encourages q(x) to have 

large uncertainty (good for 
generalization)

Two competing terms in variational bound…



Relation to EM

 EM is means for approximate learning, but we are using it to 
motivate approximate inference

 EM lower bound takes same form as VI lower bound, but with 
different constraint sets

 Connection with variational inference (VI) is in E-step, which 
performs inference with fixed parameters



Variational Inference

Different sets     yield different VI algorithms to optimize bound:

 Mean Field Ignore posterior dependencies among variables
 Loopy BP Locally consistent marginals (exact for tree-

structured models)
 Expectation Propagation (EP) Locally consistent moments

(equivalent to Loopy BP for tree-structure exponential families)



Why is it called “variational”?

Differential Calculus
 Typically, we optimize a function                  w.r.t. a variable X
 Use standard derivatives/gradients 
 Extrema given by zero-gradient conditions

Calculus of Variations
 Optimize a functional (function of a function): 
 Functional derivative characterizes change w.r.t. function q(x)
 Extrema given by Euler-Lagrange equation; analogous to zero-

gradient condition

In practice, we typically parameterize          and take standard gradients 
w.r.t. parameters    



Summary: Variational Inference

3) Maximize variational lower bound on marginal likelihood:

4) Maximizer is posterior approximation (in KL divergence)

1) Begin with intractable model posterior:

Marginal
Likelihood

2) Choose a family of approximating distributions     that is tractable

Still need to show…
a) How to define approximating variational family

b) How to optimize lower bound
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Mean Field Variational Methods

G F

Mean field assumes Markov with respect to sub-graph F of original graph G:
• Sub-graph picked so that entropy is “simple”, and thus optimization tractable

Mean field provides lower bound on true log-normalizer:
• Optimize over smaller set where true objective can be evaluated

Mean field optimization has local optima:
• Constraint set of distributions Markov w.r.t. subgraph F is non-convex



Naïve Mean Field
Assume discrete pairwise MRF model in exponential family form:

A naïve mean field method approximates distribution as fully factorized: 

Free parameters to be optimized:

Absorbed observations
into potential functions



Why “Mean Field”?

Originates from the many body problem in statistical mechanics…

Hamiltonian
Gibbs’ distribution:

“Microstates” e.g. spin, velocity, position, …



Mean Field Lower Bound

Write optimization in terms of parameters   :

For discrete pairwise MRF terms expand to:



Mean Field Algorithm : Pairwise MRF

1: Initialize parameters        , set i=0
2: While NOT converged
3: |   i i+1
4: |   For each node            and value   
5: |   |   Update parameter        holding all others fixed

|   |
|   |
|   |

6: |   Check if converged

Where we define: 



Mean Field Updates : Pairwise MRF

Updates via coordinate ascent on each parameter,

Normalization enforced
via Lagrange multiplier

(I glossed over this)



Pairwise MRF Mean Field as Message Passing

• Compared to belief propagation, has identical formula for estimating marginals
from messages, but a different message update equation

• If neighboring marginals degenerate to single state, recover Gibbs sampling message



General Mean Field Updates

1: Initialize mean field distributions
2: While NOT converged
3: |   For each node
4: |   |   Update marginal             holding all others fixed

|   |
|   |

5: |   Check if converged

 Here            is expectation w.r.t. all marginals besides
 Expectation only depends on variables in Markov blanket



Derivation of General Mean Field Updates

Mean field variational lower bound,

where we use shorthand

To update     view bound as function of     and do coordinate ascent…

Notice joint entropy decomposes to sum of marginal entropies



Derivation of General Mean Field Updates

Linearity of expectation

Group terms not
Involving qj to const.

Where,
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Derivation of General Mean Field Updates

Thus we have,

Where,

Observing that by definition of the Kullback-Leibler divergence we have,

Which we maximize by setting qj=fj as,

Recall:



Conditionally Conjugate Models

The coordinate update does not have a closed form for all models…

One case where things work out nice is conditionally conjugate models

 In conditionally conjugate models         is the same distribution family as the 
complete conditional
 Similar, but stronger, condition to Gibbs sampler
 In Gibbs sampler the complete conditionals must be easy to sample, not 

necessarily conjugate



Example: Image Denoising

Model is pairwise MRF on binary variables                  (a.k.a. “Ising” model)

Noisy Image 3 Iterations of MF 15 Iterations of MF

Source: K. Murphy

Where,



Example: Image Denoising

Source: K. Murphy

Naïve mean field assumption—fully factorized variational approximation,
MF probability param for node i

Write out unnormalized log-joint probability,

Expectation w.r.t. neighbors of xi (e.g. Markov blanket),

Update for    is exponentiated expectation w.r.t. Markov blanket,

Average of
neighboring states
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A Generic Class of Directed Models

 Bayesian mixture models

 Time series & sequence models
(HMMs, Linear dynamical systems)

 Matrix factorization
(factor analysis, PCA, CCA)

 Multilevel regression 
(linear, probit, Poisson)

 Stochastic block models

 Mixed-membership models
(Linear discriminant analysis)

[ Source: David Blei ]



Variational Approximation

Minimize KL between               and posterior                 .

[ Source: David Blei ]



Variational Lower Bound – ELBO

 KL is intractable; VI optimizes evidence lower bound (ELBO)
 Lower bounds log p(x) – marginal likelihood, or evidence
 Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

 The ELBO trades off two terms
 The first term prefers q(.) to place mass on the MAP estimate
 Second term encourages q(.) to be diffuse (maximize entropy)

 The ELBO is non-convex

[ Source: David Blei ]



Mean Field for Generic Directed Model

Recall: mean field family is fully factorized

Conditional conjugacy: Each factor is the same expfam as complete conditional 

PGM of Mean Field Approximation

Variational Parameters

[ Source: David Blei ]



Mean Field for Generic Directed Model

Recall: mean field family is fully factorized

Global parameter ensure conjugacy to (z,x):

PGM of Mean Field Approximation

Variational Parameters

where    is prior hyperparameter and t(.) are sufficient stats for [zi,xi]
[ Source: David Blei ]



Mean Field for Generic Directed Model

Optimize ELBO,

By gradient ascent,

PGM of Mean Field Approximation

Iteratively update each parameter, holding others fixed
• Obvious relationship with Gibbs sampling
• Remember, ELBO is not convex

Don’t forget… entropy
decomposes as sum

over individual entropies 

[ Source: David Blei ]



Coordinate Ascent Mean Field for Generic Model

Need to visit every
data point

Need to sum every
data point

[ Source: David Blei ]



Stochastic (Mean Field) Variational Inference

Classical mean field VI is inefficient for large data
• Do some local computation for each data point
• Aggregate computations to re-estimate global structure
• Repeat

Idea visit random subsets of data to estimate gradient updates on full dataset
[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

 Use cheaper noisy gradient estimates [Robbins and Monro, 1951]

 Guaranteed to converge to local optimum [Bottou, 1996]

 Popular in modern machine learning (e.g. DNN learning)
[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

 Stochastic gradients update:

 Gradient estimator must be unbiased

 Sequence of step sizes     must follow Robbins-Monro conditions

[ Source: David Blei ]



Stochastic Variational Inference

[ Source: David Blei ]



Stochastic Variational Inference

[ Source: David Blei ]



Topic Models

Topic models discover hidden thematic structure in large 
collections of documents

[ Source: David Blei ]



Topic Models

• Each topic is a distribution over words (vocabulary)
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of the topics (they are distributions)

• But we only observe documents; everything else is hidden (unsupervised learning problem)
• Need to calculate posterior (for millions of documents; billions of latent variables):

P(topics, proportions, assignments | documents)
[ Source: David Blei ]



Example: Latent Dirichlet Allocation

• Assumes words are exchangeable (“bag-of-words” model)
• Reduces parameters while still yielding useful insights
• Complete conditionals are closed-form (we can do mean field)

Latent Dirichlet Allocation (LDA):

[ Source: David Blei ]



Example: Latent Dirichlet Allocation

[Hoffman et al., 2010]

• Stochastic VI (online) shows faster learning as compared to 
standard (batch) updates

• Similar learning rate when dataset increased from 98K to 3.3M 
documents

• Perplexity measures posterior uncertainty (lower is better)

[ Source: David Blei ]



Summary: Variational Inference

3) Maximize variational lower bound on marginal likelihood:

4) Maximizer is posterior approximation (in KL divergence)

1) Begin with intractable model posterior:

Marginal
Likelihood

2) Choose a family of approximating distributions     that is tractable

Different approximating families    lead to different 
forms of optimizing variational bound



Summary: Mean Field VI
 Mean field family assumes fully factorized approximating distribution

 Mean field algorithm performs coordinate ascent on lower bound

 Coordinate ascent updates require complete conditionals to be conjugate
 Similar, but stricter, assumption to Gibbs sampling

 MF update takes specific form depending on model  p(.), e.g. pairwise MRF:



Summary: Stochastic (Mean Field) VI

 MF coordinate ascent updates require visiting all data
 Doesn’t scale to large datasets

 Stochastic VI updates using stochastic gradient ascent
 Randomly subsample dataset
 Compute stochastic estimate of full gradient based on subsample
 Stochastic gradient step on variational parameters (    here):

 Step sizes must decrease over time while satisfying Robbins-Monro conditions

 Often call standard MF “batch” since updates based on full data
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