

CSC535: Probabilistic Graphical Models

Variational Inference

Prof. Jason Pacheco

Material adapted from: David Blei, NeurIPS 2016 Tutorial

Outline

- Variational Inference
- Mean Field Variational
- Stochastic Variational

Outline

- Variational Inference
- Mean Field Variational
- Stochastic Variational

Posterior Inference Review

Posterior on latent variable x given data y by Bayes' rule:

$$p(x \mid \mathcal{Y}) = \frac{p(x)p(\mathcal{Y} \mid x)}{p(\mathcal{Y})}$$

Marginal likelihood given by,

$$p(\mathcal{Y}) = \int p(x) p(\mathcal{Y} \mid x) dx$$

Posterior: belief over unknowns, given observed data (knowns)
 Marginal Likelihood: quality of model fit to the observed data

Posterior Inference Review

- Tree-structured discrete / Gaussian models can use sum-product BP
- > Posterior & marginal likelihood intractable in many practical cases
- Monte Carlo methods and MCMC
 - **PROs** Asymptotic guarantees, easy to implement for most models, more computation = higher accuracy
 - **CON**s Difficult to diagnose convergence, few non-asymptotic guarantees, slow

Loopy (sum-product) BP

- **PROs** Often yields good solutions quickly, easy to diagnose convergence
- CONs No computation/accuracy tradeoff, restricted to discrete/Gaussian models

Loopy BP is an instance of a wider class of variational methods

Variational Inference Preview

- Formulate statistical inference as an optimization problem
- > Maximize variational lower bound on marginal likelihood

$$\log p(\mathcal{Y}) \ge \max_{q \in \mathcal{Q}} \mathcal{L}(q)$$

Solution to RHS yields posterior approximation

$$q^* = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q) \approx p(x \mid \mathcal{Y})$$

Constraint set Q defines tractable family of approximating distributions
 Very often Q is an *exponential family*

Expectation Maximization (EM) Lower Bound

Recall EM lower bound of marginal likelihood

$$\log p(\mathcal{Y}) = \log \int p(x)p(\mathcal{Y} \mid x) \, dx$$

(Multiply by q(x)/q(x)=1)
$$= \log \int p(x)p(\mathcal{Y} \mid x) \left(rac{q(x)}{q(x)}
ight) \, dx$$

(Definition of Expected Value)
$$= \log \mathbf{E}_q \left[rac{p(x)p(\mathcal{Y} \mid x)}{q(x)}
ight]$$

(Jensen's Inequality)
$$\geq \mathbf{E}_q \left[\log \frac{p(x)p(\mathcal{Y} \mid x)}{q(x)} \right]$$

A Little Information Theory

• The *entropy* is a natural measure of the inherent uncertainty:

$$H(p) = -\int p(x)\log p(x) \, dx$$

- Interpretation Difficulty of compression of some random variable
- The *relative entropy* or *Kullback-Leibler (KL) divergence* is a non-negative, but asymmetric, "distance" between a given pair of probability distributions:

$$KL(p||q) = \int \log \frac{p(x)}{q(x)} dx \qquad KL(p||q) \ge 0$$

- The KL divergence equals zero if and only if p(x) = q(x) for all x.
- Interpretation The cost of compressing data from distribution p(x) with a code optimized for distribution q(x)

EM Lower Bound

$$\mathbf{E}_{q}\left[\log\frac{p(x)p(\mathcal{Y}\mid x)}{q(x)}\right] = \mathbf{E}_{q}\left[\log\frac{p(x)p(\mathcal{Y}\mid x)}{q(x)}\frac{p(\mathcal{Y})}{p(\mathcal{Y})}\right]$$
(Multiply by 1)

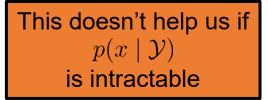
$$= \log p(\mathcal{Y}) - \operatorname{KL}(q(x) \| p(x \mid \mathcal{Y}))$$
 (Definition of KL)

Bound gap is the Kullback-Leibler divergence KL(q||p),

$$\mathrm{KL}(q(x) \| p(x \mid \mathcal{Y})) = \int q(x) \log \frac{q(x)}{p(x \mid \mathcal{Y})}$$

Solution to **E-step** is,

$$q^* = \arg\min_{q} \operatorname{KL}(q(x) || p(x | \mathcal{Y})) = p(x | \mathcal{Y})$$



Variational Lower Bound

Idea Restrict optimization to a set Q of analytic distributions

$$\log p(\mathcal{Y}) \ge \max_{q \in \mathcal{Q}} \mathcal{L}(q) \equiv \mathbf{E}_q \left[\log \frac{p(x)p(\mathcal{Y} \mid x)}{q(x)} \right]$$

▷ If posterior is in set $p(x \mid \mathcal{Y}) \in \mathcal{Q}$ then exact inference $q(x) = p(x \mid \mathcal{Y})$

 \blacktriangleright Otherwise, if $p(x \mid \mathcal{Y}) \notin \mathcal{Q}$ posterior is closest approximation in KL

$$q^* = \arg\min_{q \in \mathcal{Q}} \operatorname{KL}(q(x) \| p(x \mid \mathcal{Y}))$$

... and we recover strict lower bound on marginal likelihood with gap

$$\log p(\mathcal{Y}) - \mathcal{L}(q^*) = \mathrm{KL}(q^*(x) || p(x | \mathcal{Y}))$$

Variational Lower Bound

Two competing terms in variational bound...

$$\mathcal{L}(q) \equiv \mathbb{E}_{q} \left[\log \frac{p(x)p(\mathcal{Y} \mid x)}{q(x)} \right]$$
$$= \mathbb{E}_{q} [\log p(x, \mathcal{Y})] - \mathbb{E}_{q} [\log q(x)]$$
$$= \mathbb{E}_{q} [\log p(x, \mathcal{Y})] + H(q)$$
Average (negative) Energy Entropy

Encourages q(x) to "agree" with model p(x,y)

Encourages q(x) to have large uncertainty (good for generalization)

Relation to EM

EM is means for approximate *learning*, but we are using it to motivate approximate *inference*

EM lower bound takes same form as VI lower bound, but with different constraint sets

Connection with variational inference (VI) is in E-step, which performs inference with fixed parameters

Variational Inference

$$\log p(\mathcal{Y}) \ge \max_{q \in \mathcal{Q}} \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, \mathcal{Y})] + H(q)$$

Different sets Q yield different VI algorithms to optimize bound:

- > Mean Field Ignore posterior dependencies among variables
- Loopy BP Locally consistent marginals (exact for treestructured models)
- Expectation Propagation (EP) Locally consistent moments (equivalent to Loopy BP for tree-structure exponential families)

Differential Calculus

- > Typically, we optimize a function $\max_x f(x)$ w.r.t. a variable X
- > Use standard derivatives/gradients $\nabla_x f(x)$
- > Extrema given by zero-gradient conditions $\nabla_x f(x) = 0$

Calculus of Variations

- > Optimize a *functional* (function of a function): $\max_{q(x)} f(q(x))$
- Functional derivative characterizes change w.r.t. function q(x)
- Extrema given by Euler-Lagrange equation; analogous to zerogradient condition

In practice, we typically parameterize $q_{\mu}(x)$ and take standard gradients w.r.t. parameters μ

Summary: Variational Inference

1) Begin with intractable model posterior:

$$p(x \mid \mathcal{Y}) = \frac{p(x)p(\mathcal{Y} \mid x)}{p(\mathcal{Y})} \longleftarrow \begin{array}{c} \text{Marginal} \\ \text{Likelihood} \end{array}$$

2) Choose a family of approximating distributions Q that is tractable 3) Maximize variational lower bound on marginal likelihood: $\log p(Y) > \max \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, Y)] + H(q)$

$$= q [= 8 P (0) - q (q) - q [= 8 P (0), 0)] + = (q)$$

4) Maximizer is posterior approximation (in KL divergence)

$$q^* = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q) = \arg \min_{q \in \mathcal{Q}} \operatorname{KL}(q(x) \| p(x \mid \mathcal{Y})$$

Still need to show...

a) How to define approximating variational family ${\cal Q}$

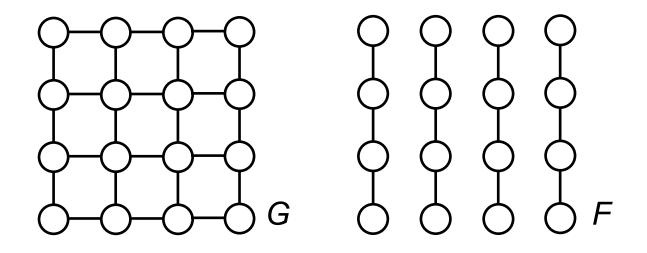
b) How to optimize lower bound

Outline

Variational Inference

- Mean Field Variational
- Stochastic Variational

Mean Field Variational Methods



Mean field assumes Markov with respect to sub-graph *F* of original graph *G*:

• Sub-graph picked so that entropy is "simple", and thus optimization tractable

Mean field provides lower bound on true log-normalizer:

• Optimize over smaller set where true objective can be evaluated

Mean field optimization has local optima:

• Constraint set of distributions Markov w.r.t. subgraph F is non-convex

Naïve Mean Field

Assume discrete pairwise MRF model in *exponential family* form:

Absorbed observations into potential functions

$$p(x \mid \mathcal{Y}) \propto \exp\left\{\sum_{(s,t)\in\mathcal{E}} \phi_{st}(x_s, x_t) + \sum_{s\in\mathcal{V}} \phi_s(x_s)\right\}$$

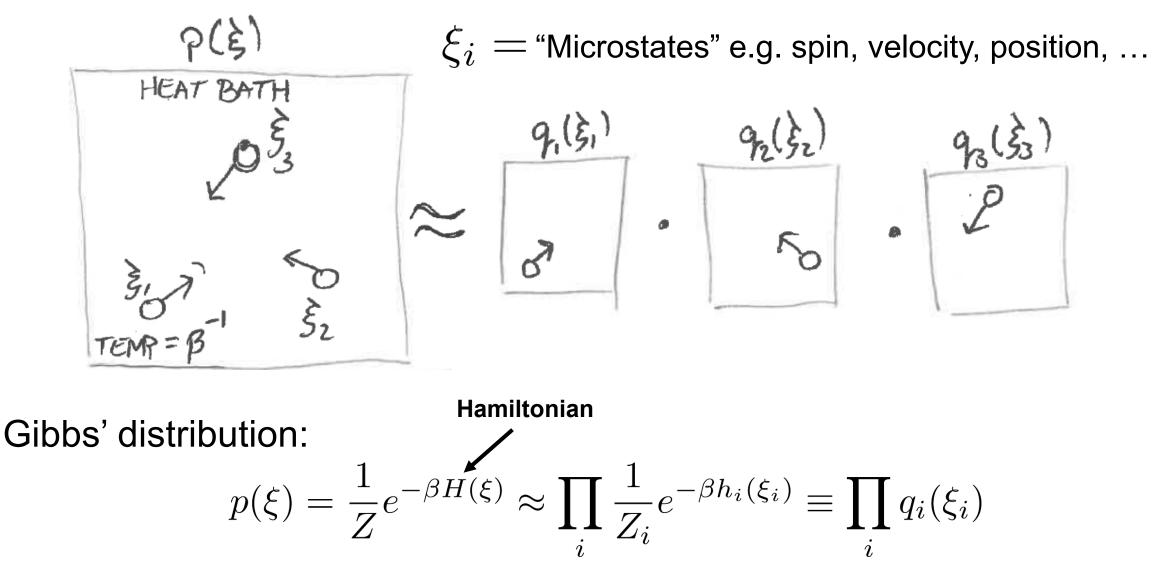
A *naïve mean field method* approximates distribution as fully factorized:

Free parameters to be optimized:

$$q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \qquad q_s(x_s = k) = \mu_{sk} \ge 0, \quad \sum_{k=1}^{K_s} \mu_{sk} = 1.$$

Why "Mean Field"?

Originates from the many body problem in statistical mechanics...



Mean Field Lower Bound

Write optimization in terms of parameters μ :

$$\max_{\mu \ge 0} \mathcal{L}(\mu) \equiv \mathbb{E}_{\mu}[\log p(x, \mathcal{Y})] + H(\mu)$$

subject to
$$\sum_{k=1}^{K_s} \mu_{sk} = 1 \ \forall s \in \mathcal{V}$$

For discrete pairwise MRF terms expand to:

$$H(\mu) = -\sum_{s \in \mathcal{V}} \sum_{k} \mu_{sk} \log \mu_{sk}$$
$$E(\mu) = \sum_{(s,t)\in\mathcal{E}} \sum_{k,\ell} \mu_{sk} \mu_{t\ell} \phi_{st}(k,\ell) + \sum_{s \in \mathcal{V}} \sum_{k} \mu_{sk} \phi_s(k)$$

Mean Field Algorithm : Pairwise MRF

- 1: Initialize parameters $\mu^{(0)}$, set i=0
- 2: While NOT converged
- 3: | i ← i+1
- 4: | For each node $s \in \mathcal{V}$ and value $k = 1, \ldots, K_s$
- 5: | | Update parameter μ_{sk} holding all others fixed

$$\mu_{sk}^{(i)} \propto \psi_s(k) \exp\left\{\sum_{t \in \Gamma(s)} \mathbb{E}_{\mu_t^{(i-1)}}[\phi_{st}(k, x_t)]\right\}$$

6: | Check if converged

Where we define: $\psi_s = \exp(\phi_s)$

Mean Field Updates : Pairwise MRF

$$\mathcal{L}(\mu) = \mathbb{E}_{\mu}[p(x)] + H(\mu) = \sum_{(s,t)\in\mathcal{E}} \sum_{k=1}^{K_s} \sum_{\ell=1}^{K_t} \mu_{sk} \mu_{t\ell} \phi(k,\ell) - \sum_{s\in\mathcal{V}} \sum_{k=1}^{K_s} \mu_{sk} \log \mu_{sk}$$

Updates via coordinate ascent on each parameter,

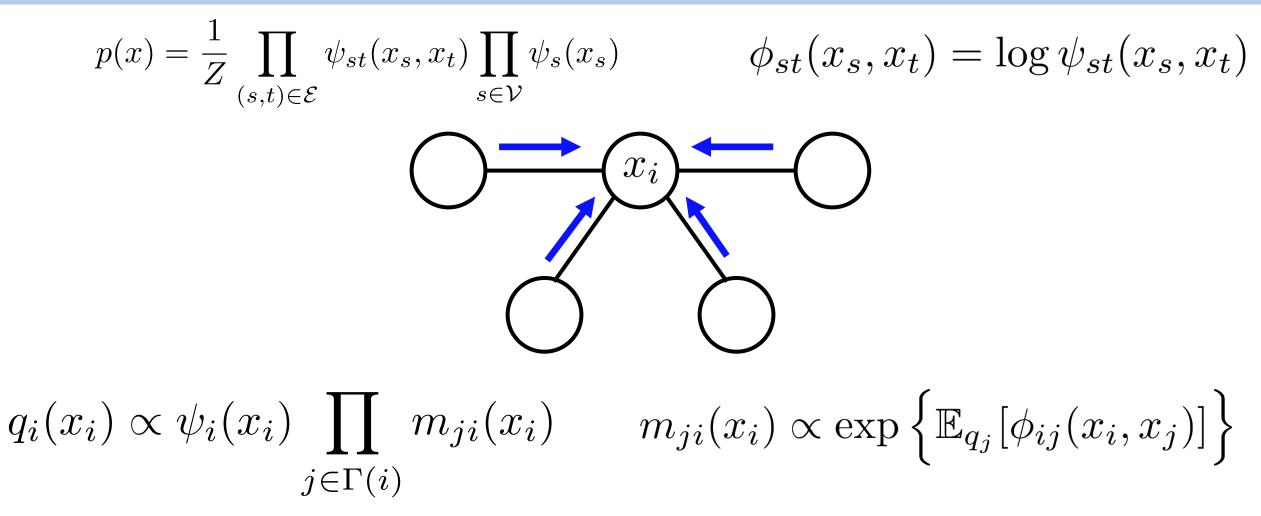
$$0 = \frac{\partial \mathcal{L}}{\partial \mu_{sk}} = \sum_{t \in \Gamma(s)} \sum_{\ell=1}^{K_t} \mu_{t\ell} \phi(k,\ell) + \phi_s(k) - \log \mu_{sk} - 1$$

$$\log \mu_{sk} = \sum_{t \in \Gamma(s)} \sum_{\ell=1}^{K_t} \mu_{t\ell} \phi(k,\ell) + \phi_s(k) - 1$$

$$\mu_{sk} \propto \psi_s(k) \exp\left\{\sum_{t \in \Gamma(s)} \mathbb{E}_{\mu_t}[\phi_{st}(k, x_t)]\right\}$$

Normalization enforced via Lagrange multiplier (I glossed over this)

Pairwise MRF Mean Field as Message Passing



- Compared to *belief propagation*, has identical formula for estimating marginals from messages, but a different message update equation
- If neighboring marginals degenerate to single state, recover Gibbs sampling message

General Mean Field Updates

- 1: Initialize mean field distributions $q_s(x_s)$
- 2: While NOT converged
- 3: | For each node $s \in \mathcal{V}$
- 4: | | Update marginal $q_s(x_s)$ holding all others fixed

 $q_s(x_s) \propto \exp\left\{\mathbb{E}_{q_{\setminus s}}[\log p(x, \mathcal{Y})]\right\}$

- 5: | Check if converged
- ➢ Here 𝔼_{q\s}[·] is expectation w.r.t. all marginals besides $q_s(x_s)$ ➢ Expectation only depends on variables in Markov blanket

Mean field variational lower bound,

$$\log p(\mathcal{Y}) \ge L(q) \equiv \mathbb{E}_q[\log \widetilde{p}(x)] + \sum_i H(q_i)$$

where we use shorthand $\widetilde{p}(x) \equiv p(x, \mathcal{Y})$

Notice joint entropy decomposes to sum of marginal entropies

$$H(q) = -\sum_{x} \prod_{i} q_i(x_i) \sum_{k} \log q_k(x_k) = \sum_{i} H(q_i)$$

To update q_j view bound as function of q_j and do coordinate ascent...

$$L(q_j) = \sum_{\mathbf{x}} \prod_i q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right]$$
$$= \sum_{\mathbf{x}_j} \sum_{\mathbf{x}_{-j}} q_j(\mathbf{x}_j) \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right]$$

$$\begin{split} L(q_j) &= \sum_{\mathbf{x}} \prod_i q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ &= \sum_{\mathbf{x}_j} \sum_{\mathbf{x}_{-j}} q_j(\mathbf{x}_j) \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ \text{Linearity of expectation} &= \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) \\ &- \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\sum_{k \neq j} \log q_k(\mathbf{x}_k) + q_j(\mathbf{x}_j) \right] \end{split}$$

$$\begin{split} L(q_j) &= \sum_{\mathbf{x}} \prod_i q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ &= \sum_{\mathbf{x}_j} \sum_{\mathbf{x}_{-j}} q_j(\mathbf{x}_j) \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ \text{Linearity of expectation} &= \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) \\ &\quad -\sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\sum_{k \neq j} \log q_k(\mathbf{x}_k) + q_j(\mathbf{x}_j) \right] \\ \text{Group terms not} \\ \text{Involving } \mathbf{q}_j \text{ to const.} &= \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log f_j(\mathbf{x}_j) - \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log q_j(\mathbf{x}_j) + \text{const.} \\ \text{Where,} \quad \log f_j(\mathbf{x}_j) &\triangleq \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) = \mathbb{E}_{-q_j} \left[\log \tilde{p}(\mathbf{x}) \right] \end{split}$$

Thus we have,

$$L(q_j) = \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log f_j(\mathbf{x}_j) - \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log q_j(\mathbf{x}_j) + \text{const}$$

Where,

$$\log f_j(\mathbf{x}_j) \triangleq \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) = \mathbb{E}_{-q_j} \left[\log \tilde{p}(\mathbf{x}) \right]$$

Observing that by definition of the Kullback-Leibler divergence we have,

$$L(q_j) = -\mathbb{KL}\left(q_j || f_j\right)$$

Which we maximize by setting $q_j = f_j$ as,

$$q_j(\mathbf{x}_j) = \frac{1}{Z_j} \exp\left(\mathbb{E}_{-q_j}\left[\log \tilde{p}(\mathbf{x})\right]\right)$$

Recall: $\operatorname{KL}(q \| f) = \mathbb{E}_q \left[\log \frac{q(x)}{f(x)} \right]$

Conditionally Conjugate Models

The coordinate update does not have a closed form for all models...

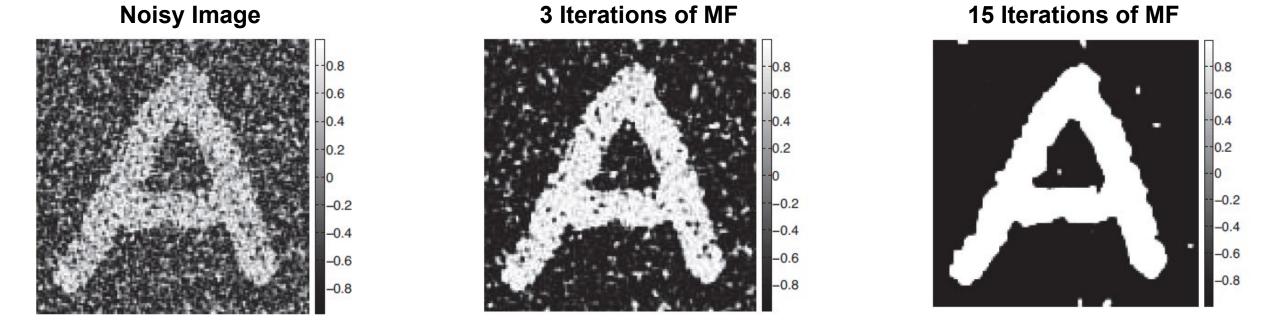
$$q_j(\mathbf{x}_j) = \frac{1}{Z_j} \exp\left(\mathbb{E}_{-q_j}\left[\log \tilde{p}(\mathbf{x})\right]\right)$$

One case where things work out nice is *conditionally conjugate* models

$$\widetilde{p}(x) = \widetilde{p}_j(x_j)\widetilde{p}_{-j}(x_{-j} \mid x_j) \propto \widetilde{p}_j(x_j \mid x_{-j})$$

- > In conditionally conjugate models $\tilde{p}_j(x_j)$ is the same distribution family as the complete conditional $\tilde{p}_j(x_j | x_{-j})$
- Similar, but stronger, condition to Gibbs sampler
- In Gibbs sampler the complete conditionals must be easy to sample, not necessarily conjugate

Example: Image Denoising



Model is pairwise MRF on binary variables $x_i \in \{0, 1\}$ (a.k.a. "Ising" model)

$$p(\mathbf{x}) = \frac{1}{Z_0} \exp(-E_0(\mathbf{x})) \qquad p(\mathbf{y}|\mathbf{x}) = \prod_i p(\mathbf{y}_i|x_i) = \sum_i \exp(-L_i(x_i))$$

Where, $E_0(\mathbf{x}) = -\sum_{i=1}^D \sum_{j \in \mathrm{nbr}_i} W_{ij} x_i x_j$

Source: K. Murphy

Example: Image Denoising

Naïve mean field assumption—fully factorized variational approximation, $q(\mathbf{x}) = \prod_i q(x_i, \mu_i) \xrightarrow{\text{MF probability param for node i}}$

Write out unnormalized log-joint probability,

$$\log \tilde{p}(\mathbf{x}) = x_i \sum_{j \in \mathrm{nbr}_i} W_{ij} x_j + L_i(x_i) + \mathrm{const}$$

Expectation w.r.t. neighbors of x_i (e.g. Markov blanket),

$$\mathbb{E}_{q_{-i}}\left[\log \widetilde{p}(x)\right] = x_i \sum_{j \in \mathrm{nbr}_i} W_{ij} \mu_j + L_i(x_i)$$

Update for q_i is exponentiated expectation w.r.t. Markov blanket,

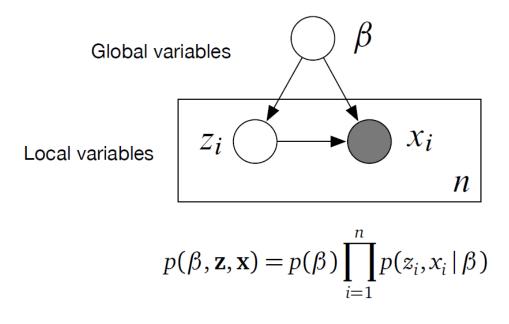
$$q_i(x_i) \propto \exp\left(x_i \sum_{j \in \mathrm{nbr}_i} W_{ij} \mu_j + L_i(x_i)\right)$$
 Average of neighboring states

Source: K. Murphy

Outline

- Variational Inference
- Mean Field Variational
- Stochastic Variational

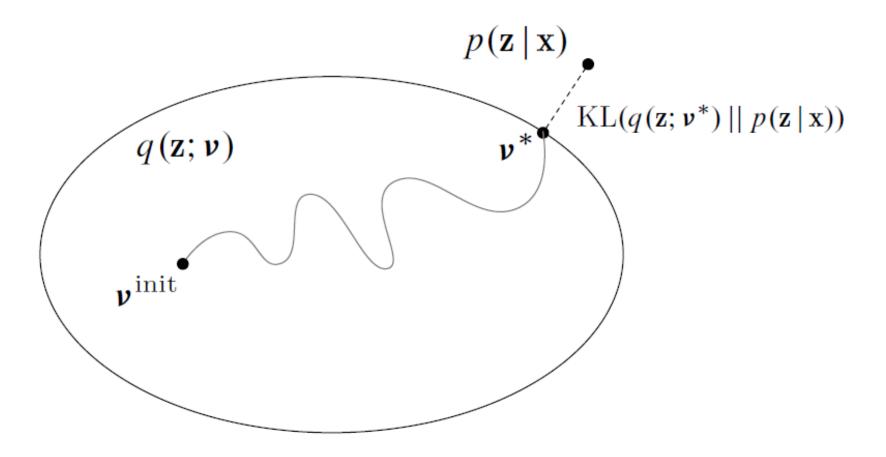
A Generic Class of Directed Models



- Bayesian mixture models
- Time series & sequence models (HMMs, Linear dynamical systems)
- Matrix factorization (factor analysis, PCA, CCA)

- Multilevel regression (linear, probit, Poisson)
- Stochastic block models
- Mixed-membership models (Linear discriminant analysis)

Variational Approximation



Minimize KL between $q(\beta, \mathbf{z}; \nu)$ and posterior $p(\beta, \mathbf{z} \mid \mathbf{x})$.

[Source: David Blei]

Variational Lower Bound – ELBO

$$\mathcal{L}(\nu) = \mathbb{E}_{q_{\nu}}[\log p(\beta, \mathbf{z}, \mathbf{x})] - \mathbb{E}_{q_{\nu}}[\log q(\beta, \mathbf{z}; \nu)]$$

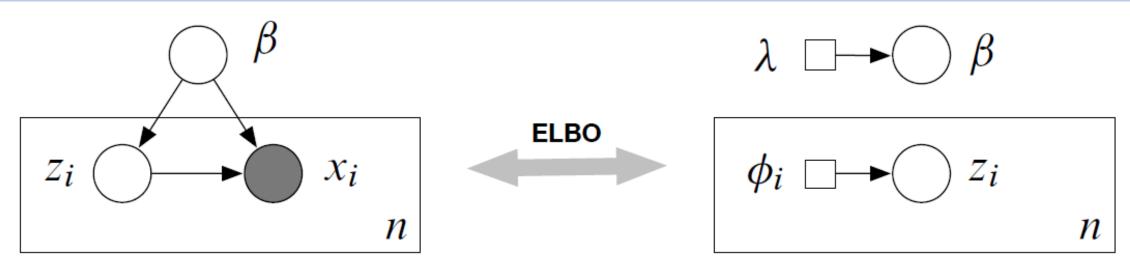
KL is intractable; VI optimizes evidence lower bound (ELBO)
 Lower bounds log p(x) – marginal likelihood, or *evidence* Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

The ELBO trades off two terms

- \succ The first term prefers q(.) to place mass on the MAP estimate
- Second term encourages q(.) to be *diffuse* (maximize entropy)

The ELBO is non-convex

Mean Field for Generic Directed Model



PGM of Mean Field Approximation

Recall: mean field family is *fully factorized*

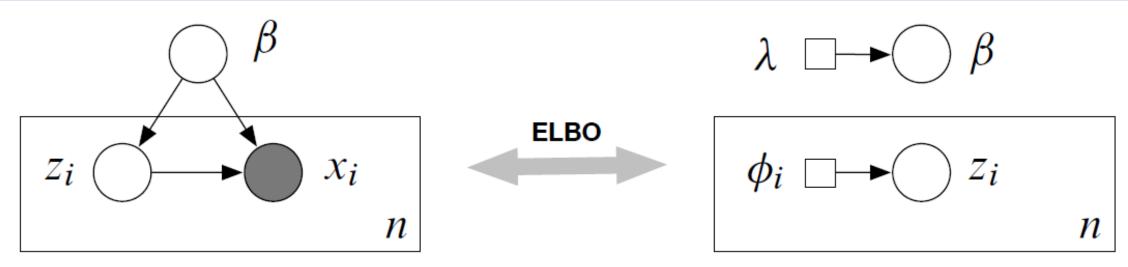
$$q(\beta, \mathbf{z}; \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i)$$
Variational Parameters

Conditional conjugacy: Each factor is the same expfam as complete conditional

$$p(\beta | \mathbf{z}, \mathbf{x}) = h(\beta) \exp\{\eta_g(\mathbf{z}, \mathbf{x})^\top \beta - a(\eta_g(\mathbf{z}, \mathbf{x}))\}$$
$$q(\beta; \lambda) = h(\beta) \exp\{\lambda^\top \beta - a(\lambda)\}.$$

[Source: David Blei]

Mean Field for Generic Directed Model



PGM of Mean Field Approximation

Recall: mean field family is *fully factorized*

$$q(\beta, \mathbf{z}; \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i)$$
Variational Parameters

n

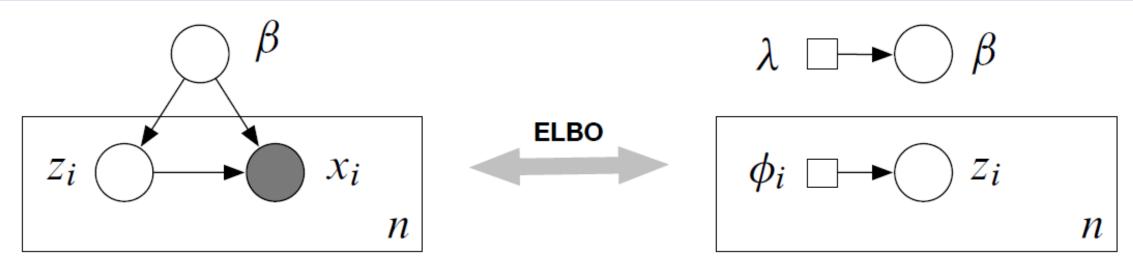
Global parameter ensure conjugacy to (z,x):

$$\eta_g(\mathbf{z}, \mathbf{x}) = \alpha + \sum_{i=1}^n t(z_i, x_i),$$

where α is prior hyperparameter and t(.) are sufficient stats for $[z_i, x_i]$

[Source: David Blei]

Mean Field for Generic Directed Model



PGM of Mean Field Approximation

Optimize ELBO,

$$\mathcal{L}(\lambda,\phi) = \mathbb{E}_q[\log p(\beta,\mathbf{z},\mathbf{x})] - \mathbb{E}_q[\log q(\beta,\mathbf{z})] \longleftarrow \text{ decomposition of } \mathbf{z}$$

Don't forget... entropy decomposes as sum over individual entropies

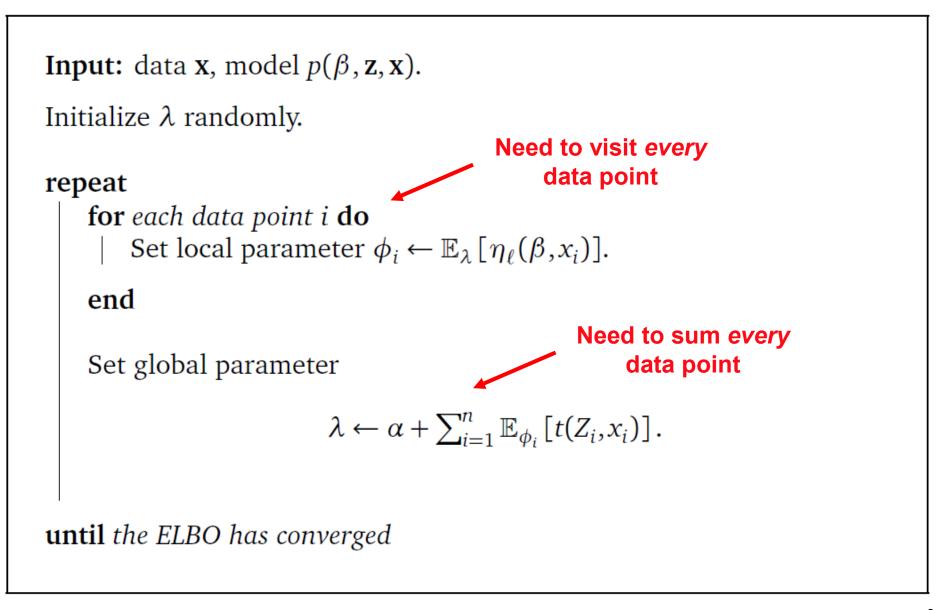
By gradient ascent,

$$\lambda^* = \mathbb{E}_{\phi} \left[\eta_g(\mathbf{z}, \mathbf{x}) \right]; \, \phi_i^* = \mathbb{E}_{\lambda} \left[\eta_\ell(\beta, x_i) \right]$$

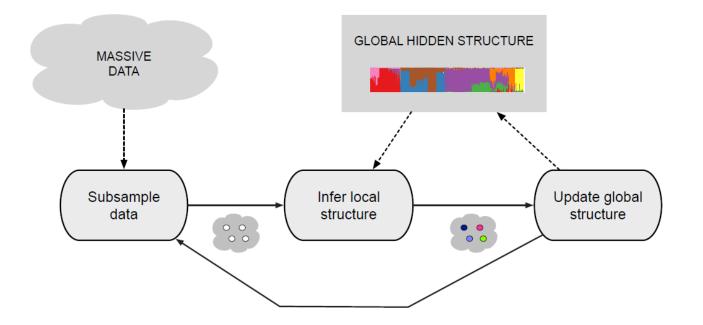
Iteratively update each parameter, holding others fixed

- Obvious relationship with Gibbs sampling
- Remember, ELBO is not convex

Coordinate Ascent Mean Field for Generic Model



Stochastic (Mean Field) Variational Inference



Classical mean field VI is inefficient for large data

- Do some local computation for each data point
- Aggregate computations to re-estimate global structure
- Repeat

Idea visit random subsets of data to estimate gradient updates on full dataset

Stochastic Gradient Ascent/Descent

A STOCHASTIC APPROXIMATION METHOD¹

By Herbert Robbins and Sutton Monro

University of North Carolina

1. Summary. Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is assumed to be a monotone function of x but is unknown to the experimenter, and it is desired to find the solution $x = \theta$ of the equation $M(x) = \alpha$, where α is a given constant. We give a method for making successive experiments at levels x_1, x_2, \cdots in such a way that x_n will tend to θ in probability.

- Use cheaper noisy gradient estimates [Robbins and Monro, 1951]
- Guaranteed to converge to local optimum [Bottou, 1996]

Popular in modern machine learning (e.g. DNN learning)

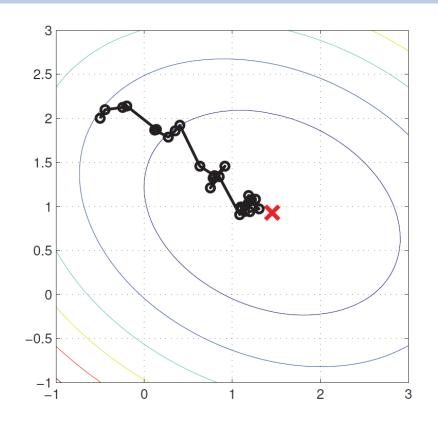
Stochastic Gradient Ascent/Descent

Stochastic gradients update:

$$\nu_{t+1} = \nu_t + \rho_t \hat{\nabla}_{\nu} \mathcal{L}(\nu_t)$$

Gradient estimator must be unbiased

$$\mathbb{E}[\hat{\nabla}_{\nu}\mathcal{L}(\nu)] = \nabla_{\nu}\mathcal{L}(\nu)$$



> Sequence of step sizes ρ_t must follow Robbins-Monro conditions

$$\sum_{t=0}^{\infty} \rho_t = \infty, \qquad \sum_{t=0}^{\infty} \rho_t^2 < \infty$$

Stochastic Variational Inference

• The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

$$\nabla_{\lambda}^{\mathrm{nat}} \mathscr{L}(\lambda) = \left(\alpha + \sum_{i=1}^{n} \mathbb{E}_{\phi_{i}^{*}}[t(Z_{i}, x_{i})] \right) - \lambda.$$

• Construct a noisy natural gradient,

$$j \sim \text{Uniform}(1, \dots, n)$$
$$\hat{\nabla}^{\text{nat}}_{\lambda} \mathscr{L}(\lambda) = \alpha + n \mathbb{E}_{\phi_j^*}[t(Z_j, x_j)] - \lambda.$$

- This is a good noisy gradient.
 - □ Its expectation is the exact gradient (*unbiased*).
 - □ It only depends on optimized parameters of one data point (*cheap*).

Stochastic Variational Inference

```
Input: data x, model p(\beta, \mathbf{z}, \mathbf{x}).
```

```
Initialize \lambda randomly. Set \rho_t appropriately.
```

```
repeat
```

Sample $j \sim \text{Unif}(1, \ldots, n)$.

Set local parameter $\phi \leftarrow \mathbb{E}_{\lambda} [\eta_{\ell}(\beta, x_j)].$

Set intermediate global parameter

 $\hat{\lambda} = \alpha + n \mathbb{E}_{\phi}[t(Z_j, x_j)].$

Set global parameter

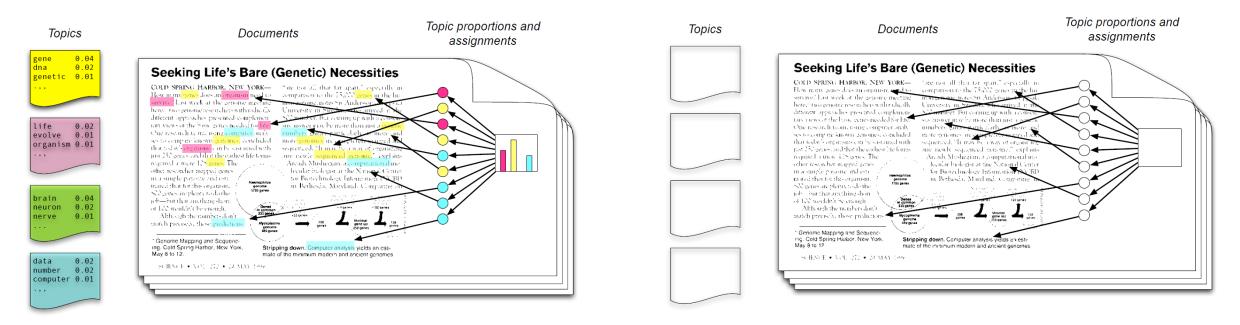
$$\lambda = (1 - \rho_t)\lambda + \rho_t \hat{\lambda}.$$

until forever

Topic Models

Topic models discover hidden thematic structure in large collections of documents

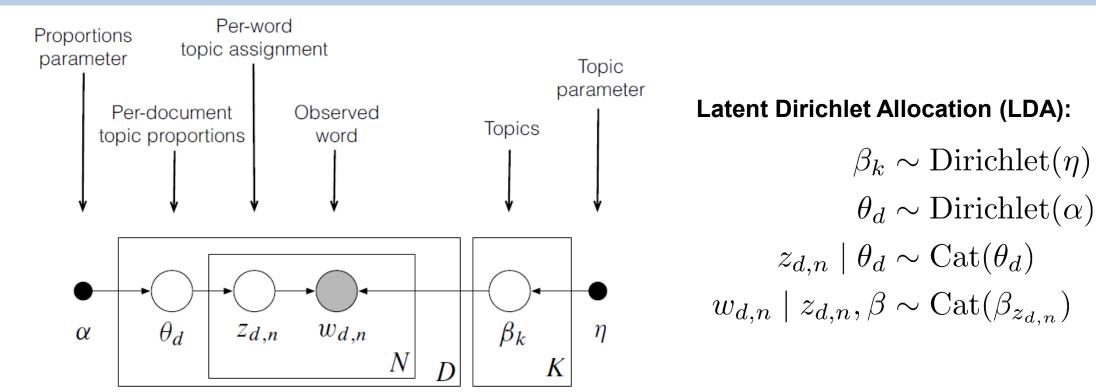
Topic Models



- Each *topic* is a distribution over words (vocabulary)
- Each *document* is a mixture of corpus-wide topics
- Each *word* is drawn from one of the topics (they are distributions)
- But we only observe documents; everything else is hidden (unsupervised learning problem)
- Need to calculate posterior (for millions of documents; billions of latent variables):

P(topics, proportions, assignments | documents)

Example: Latent Dirichlet Allocation

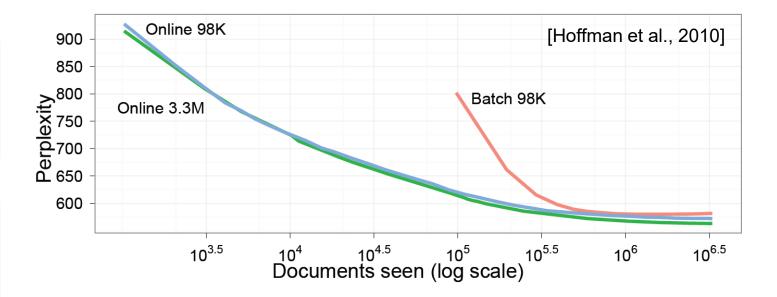


- Assumes words are exchangeable ("bag-of-words" model)
- Reduces parameters while still yielding useful insights
- Complete conditionals are closed-form (we can do mean field)

Example: Latent Dirichlet Allocation

1	2	3	4	5
Game Season Team Coach Play Points Games Giants Second Players	Life Know School Street Man Family Says House Children Night	Film Movie Show Life Television Films Director Man Story Says	Book Life Books Novel Story Man Author House War Children	Wine Street Hotel House Room Night Place Restaurant Park Garden
6	7	8	9	10
Bush Campaign Clinton Republican House Party Democratic Political Democrats Senator	Building Street Square Housing House Buildings Development Space Percent Real	Won Team Second Race Round Cup Open Game Play Win	Yankees Game Mets Season Run League Baseball Team Games Hit	Government War Military Officials Iraq Forces Iraqi Army Troops Soldiers
0	12	13	14	15
Children School Women Family Parents Child Life Says Help Mother	Stock Percent Companies Fund Market Bank Investors Funds Financial Business	Church War Life Black Political Catholic Government Jewish Pope	Art Museum Show Gallery Works Artists Street Artist Paintings Exhibition	Police Yesterday Man Officer Officers Case Found Charged Street Shot

Topics found in 1.8M articles from the New York Times



- Stochastic VI (online) shows faster learning as compared to standard (batch) updates
- Similar learning rate when dataset increased from 98K to 3.3M documents
- Perplexity measures posterior uncertainty (lower is better)

Perplexity =
$$2^{H(p)} = 2^{-\sum_{x} p(x) \log p(x)}$$

[Source: David Blei]

Summary: Variational Inference

1) Begin with intractable model posterior:

$$p(x \mid \mathcal{Y}) = \frac{p(x)p(\mathcal{Y} \mid x)}{p(\mathcal{Y})} \longleftarrow \begin{array}{c} \text{Marginal} \\ \text{Likelihood} \end{array}$$

2) Choose a family of approximating distributions Q that is tractable3) Maximize variational lower bound on marginal likelihood:

$$\log p(\mathcal{Y}) \ge \max_{q \in \mathcal{Q}} \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, \mathcal{Y})] + H(q)$$

4) Maximizer is posterior approximation (in KL divergence)

$$q^* = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q) = \arg \min_{q \in \mathcal{Q}} \operatorname{KL}(q(x) \| p(x \mid \mathcal{Y}))$$

$$\stackrel{p(z \mid x)}{\underset{q(z; \nu)}{}_{q(z; \nu)}}$$

$$\stackrel{p(z \mid x)}{\underset{p(x \mid \mu) \in \mathbb{Z}}{}_{\text{KL}(q(z; \nu^*) \| p(z \mid x))}}$$

$$\stackrel{p(z \mid x)}{\underset{p(x \mid \mu) \in \mathbb{Z}}{}_{\text{KL}(q(z; \nu^*) \| p(z \mid x))}}$$

Summary: Mean Field VI

Mean field family assumes fully factorized approximating distribution

$$q(x) = \prod_{s \in \mathcal{V}} q_s(x_s)$$

Mean field algorithm performs coordinate ascent on lower bound

$$q_s(x_s) \propto \exp\left\{\mathbb{E}_{q_{\setminus s}}[\log p(x, \mathcal{Y})]\right\}$$

Coordinate ascent updates require complete conditionals to be conjugate

Similar, but stricter, assumption to Gibbs sampling

> MF update takes specific form depending on model p(.), e.g. pairwise MRF:

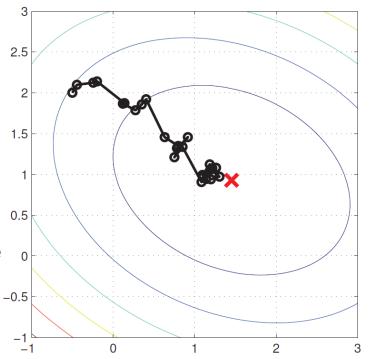
$$\mu_{sk}^{(i)} \propto \psi_s(k) \exp\left\{\sum_{t \in \Gamma(s)} \mathbb{E}_{\mu_t^{(i-1)}}[\phi_{st}(k, x_t)]\right\}$$

Summary: Stochastic (Mean Field) VI

MF coordinate ascent updates require visiting all data

- Doesn't scale to large datasets
- Stochastic VI updates using stochastic gradient ascent
 - Randomly subsample dataset
 - Compute stochastic estimate of full gradient based on subsample
 - > Stochastic gradient step on variational parameters (ν here):

$$\nu_{t+1} = \nu_t + \rho_t \hat{\nabla}_{\nu} \mathcal{L}(\nu_t)$$



Step sizes must decrease over time while satisfying Robbins-Monro conditions

$$\sum_{t=0}^{\infty} \rho_t = \infty, \qquad \sum_{t=0}^{\infty} \rho_t^2 < \infty$$

Often call standard MF "batch" since updates based on full data