

CSC535: Probabilistic Graphical Models

Probability Primer : Discrete Probability

Prof. Jason Pacheco

Administrative Items

Homework 1

- Out now on D2L
- 4 Problems, worth a total of 5 points on final grade
- Due next Wed, Jan 26 @ 11:59pm (1 week)

Assignment Submissions

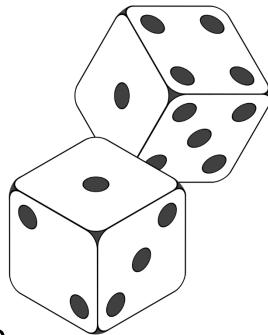
- All assignments will be via D2L
- I tried to use Gradescope and it doesn't easily support the style of assignment in this class (PDF Report + code)

Office Hours

- Fridays, 3-5pm (Zoom)
- Links available in D2L calendar

Outline

- Random Events and Probability
- Random Variables
- Fundamental Rules of Probability
- Moments and Dependence of Random Variables
- Useful Discrete Distributions


Outline

Random Events and Probability

- Random Variables
- Fundamental Rules of Probability
- Moments and Dependence of Random Variables
- Useful Discrete Distributions

Suppose we roll <u>two fair dice</u>...

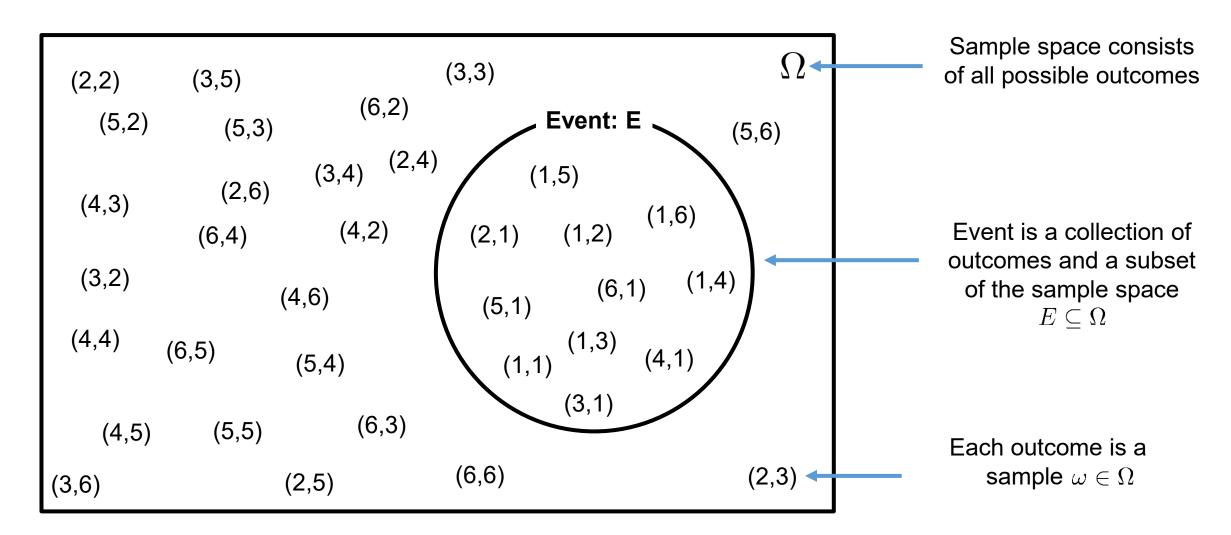
- > What are the possible outcomes?
- > What is the *probability* of rolling **even** numbers?
- > What is the *probability* of rolling **odd** numbers?

...probability theory gives a mathematical formalism to addressing such questions...

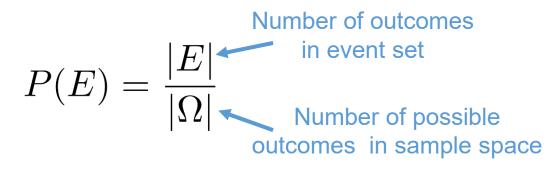
Definition An **experiment** or **trial** is any process that can be repeated with well-defined outcomes. It is *random* if more than one outcome is possible,

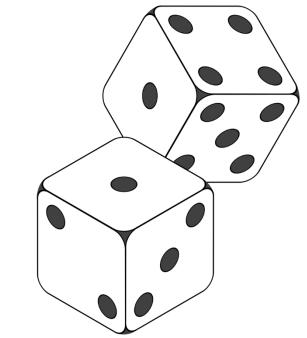
Example Roll two fair dice

Outcome


Definition An **outcome** is a possible result of an experiment or trial, and the collection of all possible outcomes is the **sample space** of the experiment,

Definition An **event** is a *set* of outcomes (a subset of the sample space),


Sample Space


Example Event Roll at least a single 1 {(1,1), (1,2), (1,3), ..., (1,6), ..., (6,1)}

Can formulate / visualize as sets of outcomes and events

Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:

This is the uniform probability distribution

Example Probability that we roll only even numbers,

$$E^{\text{even}} = \{(2, 2), (2, 4), \dots, (6, 4), (6, 6)\}$$
$$P(E^{\text{even}}) = \frac{|E^{\text{even}}|}{|\Omega|} = \frac{9}{36}$$

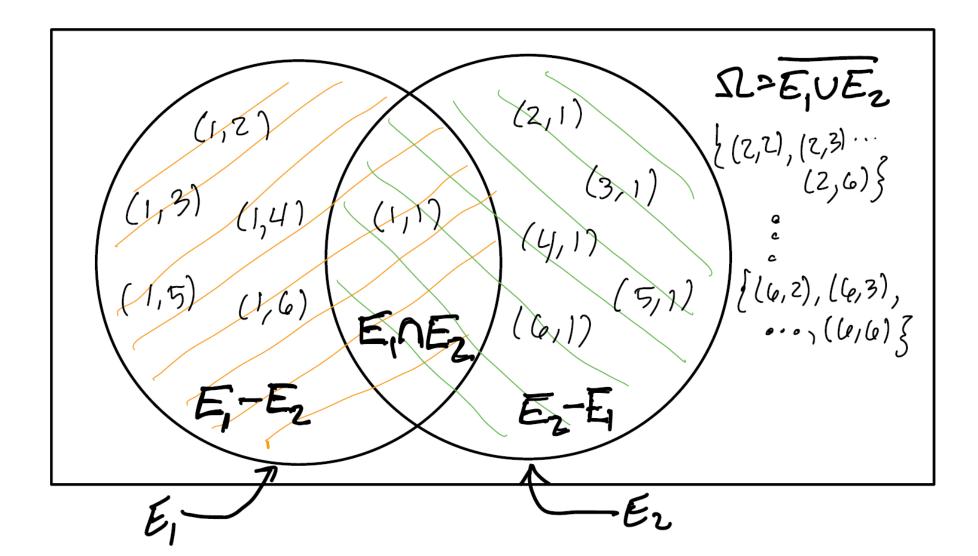
Example Probability that the sum of both dice is even,

$$E^{\text{sum even}} = \{(1,1), (1,3), (1,5), \dots, (2,2), (2,4), \dots\}$$
$$P(E^{\text{sum even}}) = \frac{|E^{\text{sum even}}|}{|\Omega|} = \frac{18}{36} = \frac{1}{2}$$

Example Probability that the sum of both dice is greater than 12,

$$E^{>12} = \emptyset$$

$$P(E^{>12}) = \frac{|E^{\text{sum even}}|}{|\Omega|} = 0$$


i.e. we can reason about the probability of <i>impossible outcomes

Events are <u>closed under set operations</u>

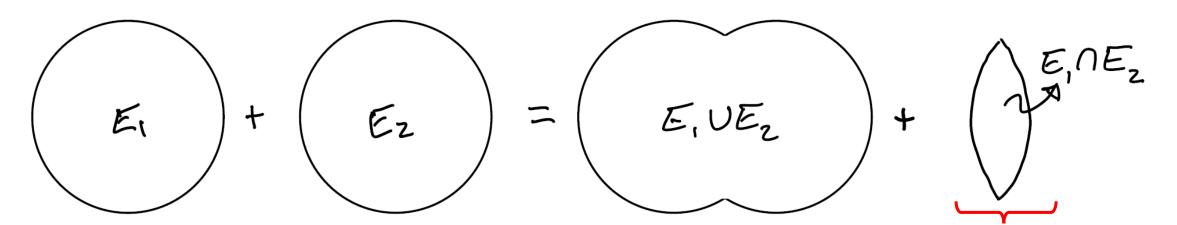
 $E_1: First \text{ die equals 1} \qquad E_2: Second \text{ die equals 1} \\ E_1 = \{(1,1), (1,2), \dots, (1,6)\} \qquad E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

Operation	Value	Interpretation
$E_1 \cup E_2$	$\left\{(1,1),(1,2),\ldots,(1,6),(2,1),\ldots,(6,1)\right\}$	Any die rolls 1
$E_1 \cap E_2$	$\{(1,1)\}$	Both dice roll 1
$E_1 - E_2$	$\{(1,2),(1,3),(1,4),(1,5),(1,6)\}$	First die rolls 1 only
$\overline{E_1 \cup E_2}$	$\{(2,2),(2,3),\ldots,(2,6),(3,2),\ldots,(6,6)\}$	No die rolls 1

Can interpret these operations as a Venn diagram...

Lemma: For <u>any</u> two events E_1 and E_2 ,

 $P(E_1 \cup E_2) = Pr(E_1) + P(E_2) - P(E_1 \cap E_2)$


Proof:

 $P(E_1) = P(E_1 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$ $P(E_2) = P(E_2 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$ $P(E_1 \cup E_2) = P(E_1 - (E_1 \cap E_2)) + P(E_2 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$

Lemma: For <u>any</u> two events E_1 and E_2 ,

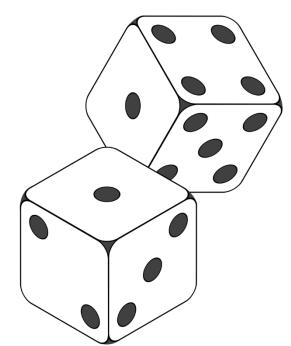
 $P(E_1 \cup E_2) = Pr(E_1) + P(E_2) - P(E_1 \cap E_2)$

Graphical Proof:

Subtract from both sides to avoid double counting

Outline

Random Events and Probability


- Random Variables
- Fundamental Rules of Probability
- Moments and Dependence of Random Variables
- Useful Discrete Distributions

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

<u>Option 1</u> Let E_i be event that the sum equals *i*

Two dice example:

 $E_2 = \{(1,1)\}$ $E_3 = \{(1,2), (2,1)\}$ $E_4 = \{(1,3), (2,2), (3,1)\}$

 $E_5 = \{(1,4), (2,3), (3,2), (4,1)\}$ $E_6 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$

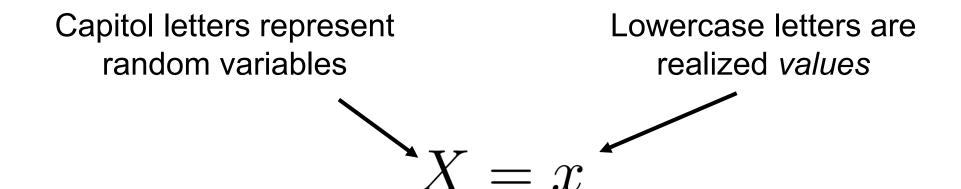
Enumerate all possible means of obtaining desired sum. Gets cumbersome for N>2 dice...

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

Option 2 Use a function of sample space...

Definition A random variable X is a <u>real-valued function</u> $X : \Omega \to \mathbb{R}$. We say X is a **discrete random variable** if it takes on only a finite or countably infinite number of values.


Example X is the sum of two dice with values,

$$X \in \{2, 3, 4, \dots, 12\}$$

Discrete vs. Continuous Probability

- Discrete RVs take on a finite or countably infinite set of values; continuous RVs take an uncountably infinite set of values
- Representing / interpreting / computing probabilities becomes more complicated in the continuous setting
- Thus, we will focus on discrete RVs for now... it will simplify presentation of the fundamental rules of probability and probability measures

Random Variables and Probability

X = x is the **event** that X takes the value x

Example Let X be the random variable (RV) representing the sum of two dice with values,

$$X \in \{2, 3, 4, \dots, 12\}$$

X=5 is the *event* that the dice sum to 5,

$$X = 5 \quad \Leftrightarrow \quad E^5 = \{(1,4), (2,3), (3,2), (4,1)\}$$

Random Variables and Probability

For *discrete* RVs X = x is an **event** with **probability mass function**:

$$p(X = x) = \sum_{\omega \in \Omega : X(\omega) = x} P(\omega)$$
All outcomes that cause the event X=x

Example Let X be the sum of two fair dice. The probability of rolling a sum of 6 is:

"fair" is code for "uniform distribution"

p(X = 6) = P((1,5)) + P((2,4)) + P((3,3)) + P((4,2)) + P((5,1))

$$=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{5}{36}$$

Probability Mass Function

A function p(X) is a **probability mass function (PMF)** of a discrete random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

$$p(X=x) \ge 0$$

(b) The sum over all values in the support is 1,

$$\sum_{x} p(X = x) = 1$$

Intuition Probability mass is conserved, just as in physical mass. Reducing probability mass of one event must increase probability mass of other events so that the definition holds...

Probability Mass Function

Example Let X be the outcome of a single fair die. It has the PMF,

$$p(X = x) = \frac{1}{36}$$
 for $x = 1, \dots, 6$ Uniform Distribution

Example We can often represent the PMF as a vector. Let S be an RV that is the *sum of two fair dice*. The PMF is then,

es
m
$$p(S) = \begin{pmatrix} p(S=2) \\ p(S=3) \\ p(S=4) \\ \vdots \\ p(S=12) \end{pmatrix} = \begin{pmatrix} 1/36 \\ 1/18 \\ 1/2 \\ \vdots \\ 1/36 \end{pmatrix}$$

Observe that S does <u>not</u> follow a uniform distribution **Functions of Random Variables**

<u>Any</u> function f(X) of a random variable X is also a random variable and it has a probability distribution

Example Let X_1 be an RV that represents the result of a fair die, and let X_2 be the result of another fair die. Then,

$$S = X_1 + X_2$$

Is an RV that is the sum of two fair dice with PMF p(S).

NOTE Even if we know the PMF p(X) and we know that the PMF p(f(X)) exists, it is not always easy to calculate!

PMF Notation

- We use *P*(*E*) for the probability distribution of events, but lowercase *p*(*X*) for PMF for reasons that will be clear later
- We use *p(X)* to refer to the probability mass *function* (i.e. a function of the RV *X*)
- We use *p*(*X*=*x*) to refer to the probability of the *event X*=*x*
- We will often use p(x) as shorthand for p(X=x)

Outline

Random Events and Probability

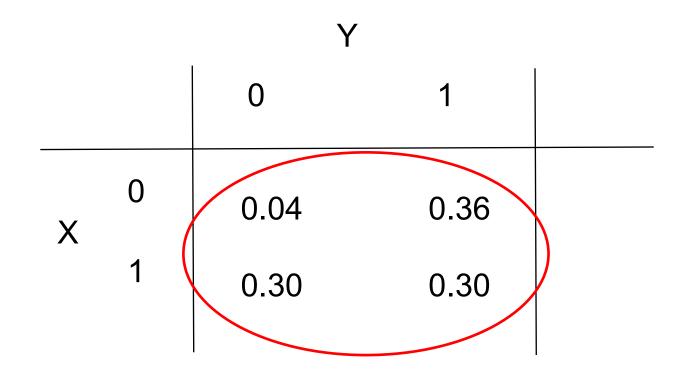
Random Variables

Fundamental Rules of Probability

Moments and Dependence of Random Variables

Useful Discrete Distributions

Definition Two (discrete) RVs X and Y have a *joint PMF* denoted by p(X, Y) and the probability of the event X=x and Y=y denoted by p(X = x, Y = y) where,

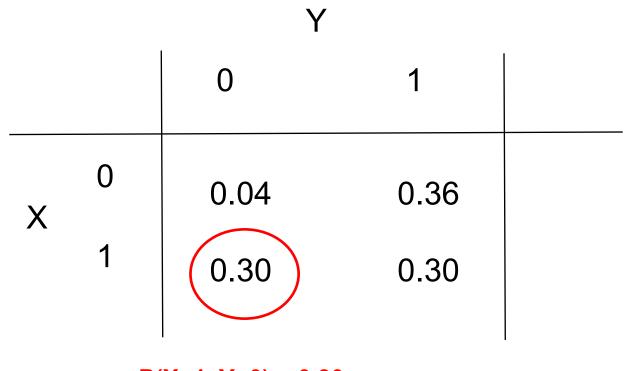

(a) It is nonnegative for all values in the support,

$$p(X = x, Y = y) \ge 0$$

(b) The sum over all values in the support is 1,


$$\sum_{x} \sum_{y} p(X = x, Y = y) = 1$$

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):



All values are nonnegative

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):

P(X=1, Y=0) = 0.30

Fundamental Rules of Probability

Given two RVs *X* and *Y* the **conditional distribution** is:

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_{x} p(X=x,Y)}$$

Multiply both sides by p(Y) to obtain the **probability chain rule**:

$$p(X,Y) = p(Y)p(X \mid Y)$$

For $N \operatorname{RVs} X_1, X_2, \ldots, X_N$:

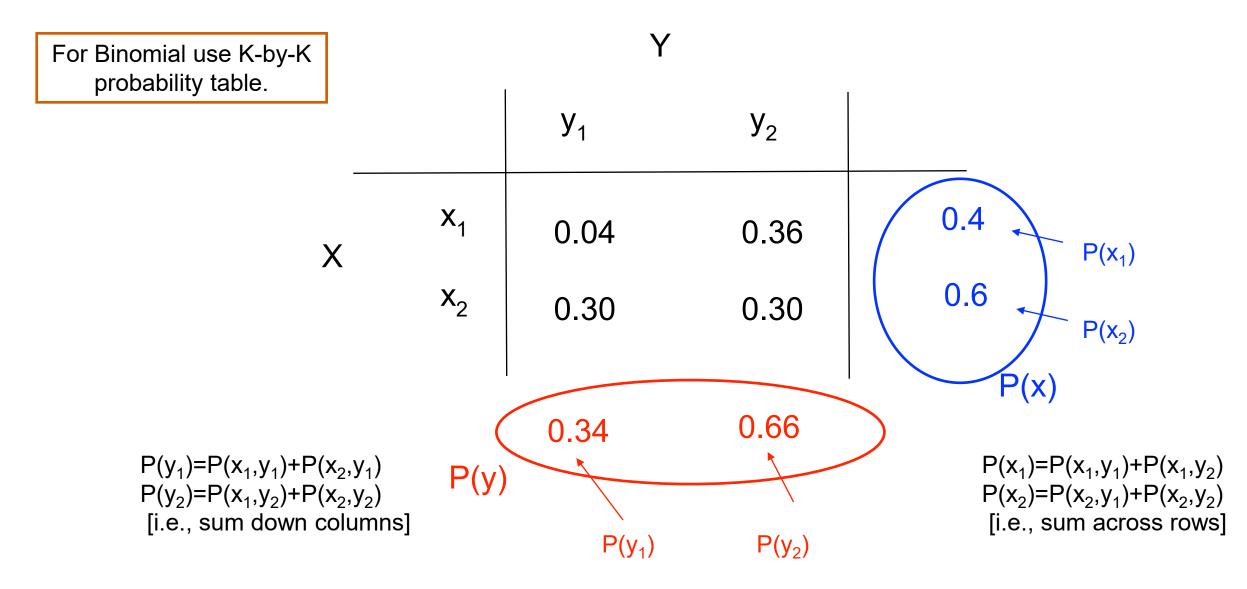
$$p(X_1, X_2, \dots, X_N) = p(X_1)p(X_2 \mid X_1) \dots p(X_N \mid X_{N-1}, \dots, X_1)$$

Chain rule valid
for any ordering
$$= p(X_1) \prod_{i=2}^N p(X_i \mid X_{i-1}, \dots, X_1)$$

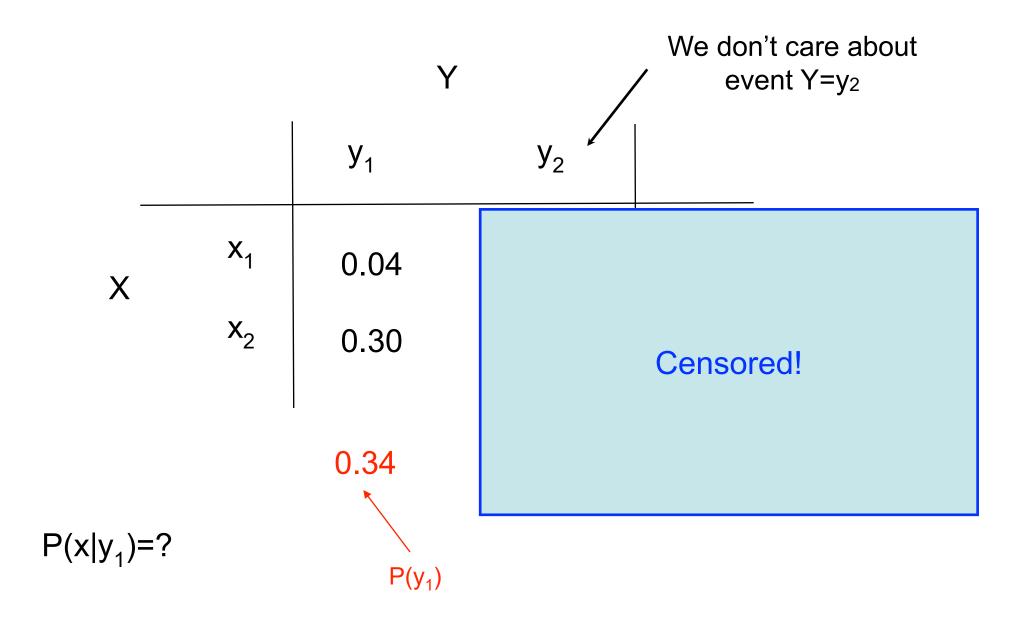
Fundamental Rules of Probability

Law of total probability

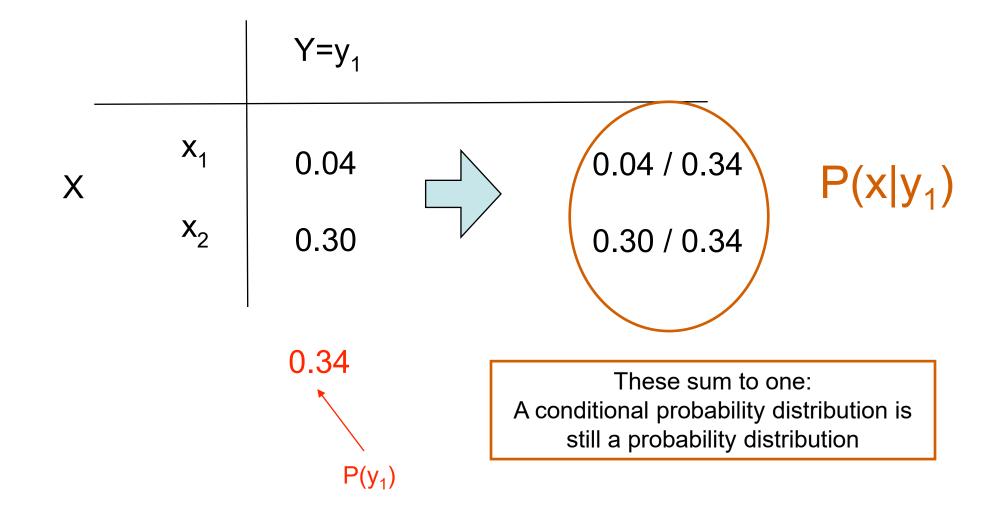
$$p(Y) = \sum_{x} p(Y, X = x)$$


$$\begin{array}{ll} \mathbf{Proof} & \sum_{x} p(Y,X=x) = \sum_{x} p(Y) p(X=x \mid Y) & \text{(chain rule)} \\ & = p(Y) \sum_{x} p(X=x \mid Y) & \text{(distributive property)} \\ & = p(Y) & \text{(axiom of probability)} \end{array}$$

Generalization for conditionals:


$$p(Y \mid Z) = \sum_{x} p(Y, X = x \mid Z)$$

Tabular Method


Let X, Y be binary RVs with the joint probability table

Tabular Method

Tabular Method

Administrative Items

- HW 1 Due Wednesday
- HW 2 Out Wednesday
- Special Office Hours Today
 - 4-5pm
 - Use Zoom link in D2L for normal (Friday) office hours

Intuition Check

<u>Question:</u> Roll two dice and let their outcomes be $X_1, X_2 \in \{1, ..., 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$p(X_1 \mid X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

Which of the following are true?

a)
$$p(X_1 = 1 | X_2 = 1) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_2 = 1) = p(X_1 = 1)$$

Outcome of die 2 doesn't affect die 1

c)
$$p(X_1 = 1 | X_2 = 1) < p(X_1 = 1)$$

Intuition Check

<u>Question:</u> Let $X_1 \in \{1, ..., 6\}$ be outcome of die 1, as before. Now let $X_3 \in \{2, 3, ..., 12\}$ be the sum of both dice. Which of the following are true?

a)
$$p(X_1 = 1 | X_3 = 3) > p(X_1 = 1)$$

b) $p(X_1 = 1 | X_3 = 3) = p(X_1 = 1)$
c) $p(X_1 = 1 | X_3 = 3) < p(X_1 = 1)$

Only 2 ways to get $X_3 = 3$, each with equal probability:

$$(X_1 = 1, X_2 = 2)$$
 or $(X_1 = 2, X_2 = 1)$

SO

$$p(X_1 = 1 \mid X_3 = 3) = \frac{1}{2} > \frac{1}{6} = p(X_1 = 1)$$

Outline

- Random Events and Probability
- Random Variables
- Fundamental Rules of Probability
- Moments and Dependence of Random Variables
- Useful Discrete Distributions

Independence of RVs

Definition Two random variables X and Y are <u>independent</u> if and only if,

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$

for all values x and y, and we say $X \perp Y$.

Definition RVs X_1, X_2, \ldots, X_N are <u>mutually independent</u> if and only if,

$$p(X_1 = x_1, \dots, X_N = x_N) = \prod_{i=1}^N p(X_i = x_i)$$

- > Independence is symmetric: $X \perp Y \Leftrightarrow Y \perp X$
- > Equivalent definition of independence: p(X | Y) = p(X)

Independence of RVs

Intuition...

Consider P(B|A) where you want to bet on *B* Should you pay to know A?

In general you would pay something for A if it changed your belief about B. In other words if,

 $P(B|A) \neq P(B)$

Independence of RVs

Definition Two random variables X and Y are <u>conditionally independent</u> given Z if and only if,

$$p(X = x, Y = y \mid Z = z) = p(X = x \mid Z = z)p(Y = y \mid Z = z)$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.

> N RVs conditionally independent, given Z, if and only if:

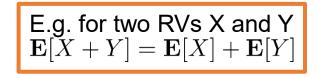
$$p(X_1, \dots, X_N \mid Z) = \prod_{i=1}^N p(X_i \mid Z)$$
 Shorthand notation Implies for all *x*, *y*, *z*

Equivalent def'n of conditional independence: $p(X \mid Y, Z) = p(X \mid Z)$ Symmetric: $X \perp Y \mid Z \Leftrightarrow Y \perp X \mid Z$

Definition The <u>expectation</u> of a discrete RV X, denoted by $\mathbf{E}[X]$, is:

$$\mathbf{E}[X] = \sum_x x \, p(X=x)$$
 Su value

Summation over all values in domain of X


Example Let *X* be the sum of two fair dice, then:

$$\mathbf{E}[X] = \frac{1}{36} \cdot 2 + \frac{1}{18} \cdot 3 + \dots + \frac{1}{36} \cdot 12 = 7$$

Theorem (Linearity of Expectations) For any finite collection of discrete $RVs X_1, X_2, \ldots, X_N$ with finite expectations,

Corollary For any constant c $\mathbf{E}[cX] = c\mathbf{E}[X]$

$$\mathbf{E}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbf{E}[X_i]$$

Law of Total Expectation *Let X and Y be discrete RVs with finite expectations, then:*

$$\mathbf{E}[X] = \mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]]$$
Proof
$$\mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]] = \mathbf{E}_{Y}\left[\sum_{x} x \cdot p(x \mid Y)\right]$$

$$= \sum_{y}\left[\sum_{x} x \cdot p(x \mid y)\right] \cdot p(y) \quad (\text{ Definition of expectation })$$

$$= \sum_{y}\sum_{x} x \cdot p(x, y) \quad (\text{ Probability chain rule })$$

$$= \sum_{x} x \sum_{y} \cdot p(x, y) \quad (\text{ Linearity of expectations })$$

$$= \sum_{x} x \cdot p(x) = \mathbf{E}[X] \quad (\text{ Law of total probability })$$

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Proof:
$$\mathbf{E}[XY] = \sum_{x} \sum_{y} (x \cdot y) p(X = x, Y = y)$$

 $= \sum_{x} \sum_{y} (x \cdot y) p(X = x) p(Y = y)$ (Independence)
 $= \left(\sum_{x} x \cdot p(X = x)\right) \left(\sum_{y} y \cdot p(Y = y)\right) = \mathbf{E}[X]\mathbf{E}[Y]$ (Linearity of Expectation)

Example Let $X_1, X_2 \in \{1, ..., 6\}$ be RVs representing the result of rolling two fair standard die. What is the mean of their product?

$$\mathbf{E}[X_1 X_2] = \mathbf{E}[X_1] \mathbf{E}[X_2] = 3.5^2 = 12 \cdot \frac{1}{4}$$

Definition The <u>conditional expectation</u> of a discrete RV X, given Y is:

$$\mathbf{E}[X \mid Y = y] = \sum_{x} x \, p(X = x \mid Y = y)$$

Example Roll two standard six-sided dice and let X be the result of the first die and let Y be the sum of both dice, then:

$$\mathbf{E}[X_1 \mid Y = 5] = \sum_{x=1}^{4} x \, p(X_1 = x \mid Y = 5)$$
$$= \sum_{x=1}^{4} x \frac{p(X_1 = x, Y = 5)}{p(Y = 5)} = \sum_{x=1}^{4} x \frac{1/36}{4/36} = \frac{5}{2}$$

Conditional expectation follows properties of expectation (linearity, etc.)

Definition The variance of a RV X is defined as,

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
 (X-units)²

The standard deviation is
$$\sigma[X] = \sqrt{\operatorname{Var}[X]}$$
. (X-units)

Lemma An equivalent form of variance is:

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$$

Proof Keep in mind that E[X] is a constant,

 $\mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2 - 2X\mathbf{E}[X] + \mathbf{E}[X]^2]$

 $= \mathbf{E}[X^2] - 2\mathbf{E}[X]\mathbf{E}[X] + \mathbf{E}[X]^2$

 $= \mathbf{E}[X^2] - \mathbf{E}[X]^2$

(Distributive property)

(Linearity of expectations)

(Algebra)

Definition The <u>covariance</u> of two RVsX and Y is defined as,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$$

Lemma For any two RVs X and Y,

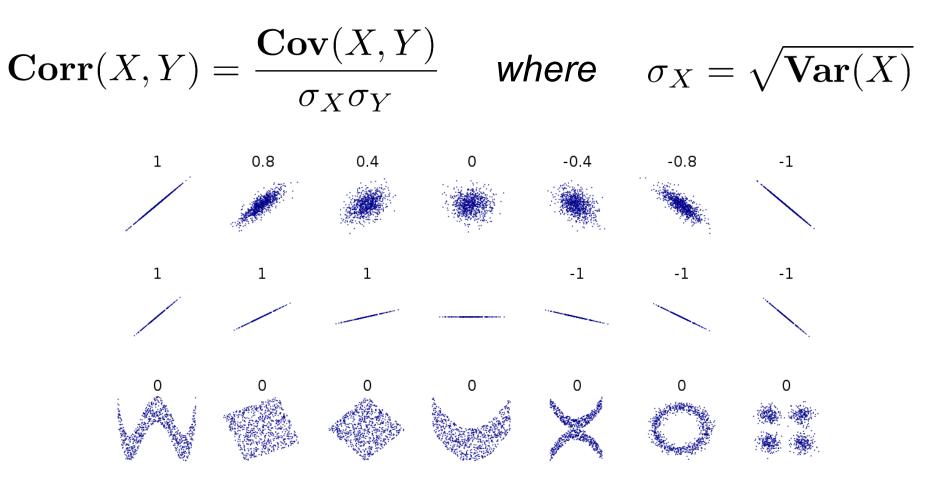
$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y)$$

e.g. variance is not a linear operator.

Proof $Var[X + Y] = E[(X + Y - E[X + Y])^2]$

 $\begin{array}{ll} \text{(Linearity of expectation)} & = \mathbf{E}[(X+Y-\mathbf{E}[X]-\mathbf{E}[Y])^2] \\ \text{(Distributive property)} & = \mathbf{E}[(X-\mathbf{E}[X])^2+(Y-\mathbf{E}[Y])^2+2(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Linearity of expectation)} & = \mathbf{E}[(X-\mathbf{E}[X])^2]+\mathbf{E}[(Y-\mathbf{E}[Y])^2]+2\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Definition of Var / Cov)} & = \mathbf{Var}[X]+\mathbf{Var}[Y]+2\mathbf{Cov}(X,Y) \end{array}$

Question: What is the variance of the sum of independent RVs $Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov(X_1, X_2)$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])(X_2 - \mathbf{E}[X_2])]$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])]\mathbf{E}[(X_2 - \mathbf{E}[X_2])]$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2 \left(\mathbf{E}[X_1] - \mathbf{E}[X_1] \right) \left(\mathbf{E}[X_2] - \mathbf{E}[X_2] \right)$ = Var $[X_1]$ + Var $[X_2]$ E.g. variance is a *linear*


operator for independent RVs

Theorem: If $X \perp Y$ then $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$

Corollary: If $X \perp Y$ then $\mathbf{Cov}(X, Y) = 0$

Correlation

Definition The correlation of two RVs X and Y is given by,

Like covariance, only expresses linear relationships!

Outline

- Random Events and Probability
- Random Variables
- Fundamental Rules of Probability
- Moments and Dependence of Random Variables
- Useful Discrete Distributions

Bernoulli *A.k.a.* the coinflip distribution on binary RVs $X \in \{0, 1\}$ $p(X) = \pi^X (1 - \pi)^{(1-X)}$

Where π is the probability of **success** (e.g. heads), and also the mean

 $\mathbf{E}[X] = \pi \cdot 1 + (1 - \pi) \cdot 0 = \pi$

Suppose we flip N independent coins X_1, X_2, \ldots, X_N , what is the distribution over their sum $Y = \sum_{i=1}^N X_i$

Num. "successes" out of N trials

Binomial Dist. p(Y = h)

Num. ways to obtain k successes out of N

$$k) = \binom{N}{k} \pi^k (1-\pi)^{N-k}$$

Binomial Mean: $\mathbf{E}[Y] = N \cdot \pi$ Sum of means for N indep. Bernoulli RVs

Question: How many flips until we observe a success?

Geometric *Distribution on number of independent draws of* $X \sim \text{Bernoulli}(\pi)$ *until success:*

$$p(Y=n)=(1-\pi)^{n-1}\pi$$
 $\mathbf{E}[Y]=rac{1}{\pi}$ $\left[egin{array}{c} \pi=1/2 \ \mathrm{takes} \ \mathrm{two \ flips \ on \ avg.} \end{array}
ight]$

E.g. for fair coin

e.g. there must be n-1 failures (tails) before a success (heads).

Question: How many more flips of we have already seen k failures?

$$p(Y = n + k \mid Y > k) = \frac{p(Y = n + k, Y > k)}{p(Y > k)} = \frac{p(Y = n + k)}{p(Y > k)}$$
$$= \frac{(1 - \pi)^{n + k - 1} \pi}{\sum_{i=k}^{\infty} (1 - \pi)^{i} \pi} = \frac{(1 - \pi)^{n + k - 1} \pi}{(1 - \pi)^{k}} = (1 - \pi)^{n - 1} \pi = p(Y = n)$$
For $0 < x < 1, \sum_{i=k}^{\infty} x^{i} = \frac{x^{k}}{(1 - x)}$ Corollary: $p(Y > k) = (1 - \pi)^{k - 1}$

Categorical *Distribution on integer-valued* $RVX \in \{1, ..., K\}$

$$p(X) = \prod_{k=1}^{K} \pi_k^{\mathbf{I}(X=k)}$$
 or $p(X) = \sum_{k=1}^{K} \mathbf{I}(X=k) \cdot \pi_k$

with parameter $p(X = k) = \pi_k$ and Kronecker delta:

$$\mathbf{I}(X=k) = \left\{ \begin{array}{ll} 1, & \text{If } X=k \\ 0, & \text{Otherwise} \end{array} \right.$$

Can also represent X as *one-hot* binary vector,

 $X \in \{0,1\}^K$ where $\sum_{k=1}^K X_k = 1$ then $p(X) = \prod_{k=1}^K \pi_k^{X_k}$

This representation is special case of the multinomial distribution

What if we count outcomes of *N* independent categorical RVs?

Multinomial Distribution on K-vector $X \in \{0, N\}^K$ of counts of N repeated trials $\sum_{k=1}^{K} X_k = N$ with PMF:

$$p(x_1,\ldots,x_K) = \binom{n}{x_1 x_2 \ldots x_K} \prod_{k=1}^K \pi_k^{x_k}$$

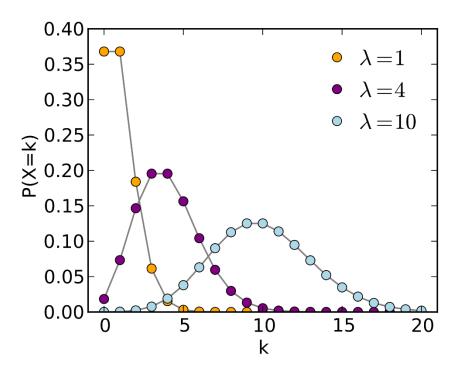
Number of ways to partition N objects into K groups:

$$\binom{n}{x_1 x_2 \dots x_K} = \frac{n!}{x_1! x_2! \dots x_K!}$$

Leading term ensures PMF is properly normalized:

$$\sum_{x_1} \sum_{x_2} \dots \sum_{x_K} p(x_1, x_2, \dots, x_K) = 1$$

A Poisson RV X with <u>rate</u> parameter λ has the following distribution: $p(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$ Mean and variance both scale with parameter $\mathbf{E}[X] = \mathbf{Var}[X] = \lambda$


Represents number of times an *event* occurs in an interval of time or space.

Ex. Probability of overflow floods in 100 years,

 $p(\text{koverflow floods in 100 yrs}) = \frac{e^{-1}1^k}{k!}$

Lemma (additive closure) The sum of a finite number of Poisson RVs is a Poisson RV.

 $X \sim \text{Poisson}(\lambda_1), \quad Y \sim \text{Poisson}(\lambda_2), \quad X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$

Avg. 1 overflow flood every 100 years,

makes setting rate parameter easy.

Recap

 \succ A random variable is a <u>function</u> of samples to real values: $X : \Omega \to \mathbb{R}$

x

 $\blacktriangleright X = x$ is an event with probability: $p(X = x) = \sum_{\omega \in \Omega : X(\omega) = x} P(\omega)$

> p(X) is a probability mass function (PMF) satisfying $p(X = x) \ge 0 \qquad \qquad \sum p(X = x) = 1$

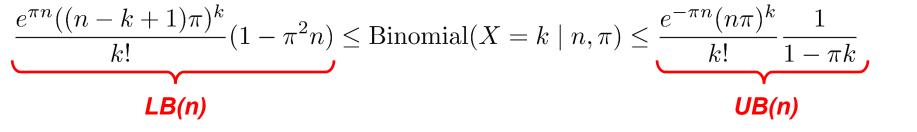
> Some fundamental rules of probability:

- ➤ Conditional: $p(X | Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_{x} p(X=x,Y)}$
- > Law of total probability: $p(Y) = \sum_{x} p(Y, X = x)$
- > Probability chain rule: p(X, Y) = p(Y)p(X | Y)

Recap

Independence of RVs:

- > Two RVs X & Y are <u>independent</u> iff: p(X | Y) = p(X)
- \succ Equivalently: p(X, Y) = p(X)p(Y)
- \succ X & Y are <u>conditionally independent</u> given Z iff: p(X | Y, Z) = p(X | Z)
- ► Equivalently: p(X, Y | Z) = p(X | Z)p(Y | Z)


Moments and Expected Value

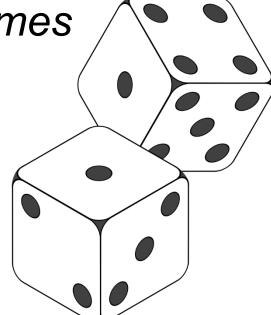
- > Expected value of a discrete RV: $\mathbf{E}[X] = \sum_{x} x p(X = x)$
- > Expectation is a linear operator $\mathbf{E}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbf{E}[X_i]$
- > Variance of a RV: $\mathbf{Var}[X] = \mathbf{E}[(X \mathbf{E}[X])^2]$
- Variance is not a linear operator (unless RVs are independent)

Theorem Let $X \sim \text{Binomial}(n, \pi(n))$ where $\pi(n)$ is a function of n and $\lim_{n \to \infty} n \cdot \pi(n) = \lambda$ for some constant λ . Then for any fixed k:

 $\lim_{n \to \infty} \operatorname{Binomial}(X \mid n, \pi(n)) = \operatorname{Poisson}(X \mid \lambda)$

Proof Sketch Use Taylor expansion of e^x and $(1 - \pi)^k \ge (1 - \pi k)$ to upper and lower bound Binomial probability as a function of n:

As $n \to \infty$ it must be that $\pi(n) \to 0$ so that $\lim_{n\to\infty} n \cdot \pi(n) = \lambda$ is constant. Then $1/(1 - \pi k) \to 1$ and $1 - \pi^2 n \to 1$. The difference $[(n - k + 1)\pi] - n\pi$ approaches 0. Therefore:


$$\lim_{n \to \infty} \text{LB}(n) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{ and } \quad \lim_{n \to \infty} \text{UB}(n) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{ Bounds converge so result holds.}$$

Random Events and Probability

A **sample space** Ω : set of all possible outcomes of the experiment.

Dice Example: All combinations of dice rolls,

 $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$

An event space *F* : Family of sets representing <u>allowable events</u>, where each set in *F* is a subset of the sample space Ω.

Dice Example: Event that we roll even numbers,

$$E = \{(2,2), (2,4), \dots, (6,4), (6,6)\} \in \mathcal{F}$$

Random Events and Probability

A probability function $P : \mathcal{F} \to \mathbf{R}$ satisfying:

- 1. For any event $E, 0 \le P(E) \le 1$
- **2.** $P(\Omega) = 1$ and $P(\emptyset) = 0$
- 3. For any *finite* or *countably infinite* sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$

Axioms of Probability
sequence of

$$E_1, E_2, E_3, \dots$$

(Fair) Dice Example: Probability that we roll <u>even numbers</u>, $P((2,2) \cup (2,4) \cup \ldots \cup (6,6)) = P((2,2)) + P((2,4)) + \ldots + P((6,6))$

9 Possible outcomes, each with equal probability of occurring

$$=\frac{1}{36}+\frac{1}{36}+\ldots+\frac{1}{36}=\frac{9}{36}$$

Random Events and Probability

Some rules regarding set of event space \mathcal{F} ...

- $\succ \mathcal{F}$ must include \emptyset and Ω
- $\succ \mathcal{F}$ is **closed** under set operations, if $E_1, E_2 \in \mathcal{F}$ then:
 - $E_1 \cup E_2 \in \mathcal{F}$
 - $E_1 \cap E_2 \in \mathcal{F}$
 - $\overline{E_1} = \Omega E_1 \in \mathcal{F}$