
CSC535: Probabilistic Graphical Models 

Probabilistic Graphical Models

Prof. Jason Pacheco



Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models



Graphical Models

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models
[Source: Erik Sudderth, PhD Thesis]



Outline

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



Outline

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent 
a probability distribution

Probability Model:
Graphical Model:

Conditional distribution on each RV is dependent on its parent 
nodes in the graph



Directed Graphical Models

Directed models are generative models…

…tells how data are generated (called ancestral sampling)

Step 1 Sample root node (prior):

Step 2 Sample children, given sample of parent (likelihood):

c

x2x1

The graph and the formula say exactly the same thing.
(The graph has very specific semantics.)



Inference

Denote observed data with shaded nodes,
c

x2x1

Infer latent variable C via Bayes’ rule:

• This is (obviously) a simple example
• Models and inference task can get really complicated
• But the fundamental concepts and approach are the same



Chain Rule of Probability

Recall the probability chain rule says that we can decompose 
any joint distribution as a product of conditionals….

Valid for any ordering of the random variables…

For a collection of N RVs and any permutation   : 



Conditional Independence

Recall two RVs     and    are conditionally 
independent given     (or                   ) iff:

Idea Apply chain rule with ordering that 
exploits conditional independencies to 

simplify the terms

Ex. Suppose                     and                     then:
Can visualize conditional 

dependencies using directed 
acyclic graph (DAG)



General Directed Graphs

Def. A directed graph is a graph with edges               (arcs) 
connecting parent vertex           to a child vertex           

Def. Parents of vertex          are given by the 
set of nodes with arcs pointing to   ,

Children of          are given by the set,

Ancestors are parents-of-parents.  
Descendants are children-of-children.



Directed PGM = Bayes Network

Model factors are normalized conditional distributions:

Directed acyclic graph (DAG) specifies 
factorized form of joint probability:

Parents of node s

Locally normalized factors yield globally 
normalized joint probability



Shading & Plate Notation
Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj
D

Plates denote 
replication of 
random variables

Question Does anybody know the 
name for this model?

Features X are 
conditionally 
independent, 

given Y

Naïve Bayes



Inference
Interpret inference as inverting arrows in the graphical model

Y

Xj
D

Naïve
Bayes

Generative 
Model

Y

X

Posterior 
Model

Posterior Marginal
Likelihood



Bayes nets are easily simulated via ancestral sampling…

Sample all nodes with no parents, then children, etc., to 
terminals.  Can sample nodes at same level in parallel.

Example: Gaussian Mixture Model

Probability Model Bayes Net Joint Sample



a

What is the joint factorization?



p(a,b,c) = p(a)p(b)p(c)

a



a

Are a and b independent (          )?

p(a,b,c) = p(a)p(b)p(c)



p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies



Three interesting cases

Tail-to-tail

Head-to-tail

Head-to-head



Three interesting cases

For each case, consider two questions:  



Case one (tail-to-tail) 



Case one (tail-to-tail)

Intuition c generates, both, a and b.  Knowing a tells you something about c (via 
Bayes rule p(c|a) ) which in turn generates b…information is exchanged 

Can prove by counterexample (HW problem)



Case one where c is observed



Case one where c is observed



Case one (tail-to-tail) summary

Tail-to-tail case
With no conditioning = no independence
With conditioning = independence 



Case two (head-to-tail)



Case two (head-to-tail)

If you know a, that informs you about c, which informs you about b.



Case two (head-to-tail)



Case two (head-to-tail)



Homework Question



Case two where c is observed



Case two where c is observed



Case two where c is observed



Case two where c is observed



Case two where c is observed

✓



Case two (head-to-tail) summary

Head-to-tail case
With no conditioning = no independence
With conditioning = independence 

(Same as tail-to-tail case!)



a b

c

Case three (head-to-head)

Are a and b independent (         )?



p(a,b,c) = p(a)p(b)p(c|a,b)

a b

c

Are a and b conditionally independent (                )?



a b

c

Are a and b conditionally independent (                )?

Attempt at 
algebraic 

proof.

Unless the algebra 
reduces to something 

obviously false, we 
typically look for a 
counter example 



a b

c

a b

c

Phenomenon in Bayes networks known 
as explaining away

Both latent variables must explain same 
observed data so become dependent

Object Pose

Image



Markov Properties

How can we be sure a PGM is correct for a distribution p(x)?

Probability Model:
Graphical Model:

It must satisfy all of the conditional independencies of p(x), then 
we say p(x) is Markov with respect to the graph.



To test if                  imagine rolling a “ball” from X towards Z  

Bayes Ball Algorithm

[Images: Michael I Jordan (unpublished)]

The ball follows rules defined by the 
canonical 3-node subgraphs we’ve discussed

The ball passes freely 
from X-to-Z, we say it 
does not block so: Reading:

Murphy Sec. 10.5



To test if                  imagine rolling a “ball” from X towards Z  

Bayes Ball Algorithm

The ball follows rules defined by the 
canonical 3-node subgraphs we’ve discussed

The ball is blocked so:

[Images: Michael I Jordan (unpublished)]



To test if                          roll ball from every node in       …

Directed Separation (d-Separation)

If any ball reaches any 
node in       then      

Otherwise:

Tests for property of directed separation (d-separation): if       
separates / blocks      from       then     .



Administrative Items

• HW2 Due Tonight

• HW3 Out Tonight 
• Due Wednesday, 2/16
• Bayesian inference and Bayes Nets
• 4 Questions
• 6 Points



Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-Tail

Blocks

Doesn’t
Block Blocks

Blocks

Doesn’t
Block

Doesn’t
Block



Markov Blanket

Question Is X conditionally independent 
of all other nodes in graph given its 
parents and children?

Pa(X)

Ch(X)



Markov Blanket

Question Is X conditionally independent 
of all other nodes in graph given its 
parents and children?

Pa(X)

Ch(X)

Answer No.  It still depends on co-
parents.

CoPa(X)

WHY?



Markov Blanket

Question Is X conditionally independent 
of all other nodes in graph given its 
parents and children?

Answer No.  It still depends on co-
parents.

WHY?

Head-to-head conditional dependence 
from explaining away property

We refer to this conditioning set as the Markov Blanket of X…



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x) 
that is Markov w.r.t. Bayes Net with 
graph                  has a Markov blanket
given by:

For any                     :

Markov blanket used to simplify inference and distribute computation 
(e.g. Gibbs sampler, variational inference, etc.)



Outline

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



Directed PGM = Bayes Network

Model factors are normalized conditional distributions:

Parents of node s

Locally normalized factors yield globally 
normalized joint probability

Often difficult to specify joint in terms of product of normalized 
probabilities…



Markov Random Field

Specify joint as product of unnormalized functions…

Global normalization constant

• More general class of models than Bayes Nets
• Any Bayes Net easily convertes to MRF by dropping local normalizers
• MRFBayes Net not straighfortward

Functions model how variables interact

Potential functions and are non-negative and 
their product is normalizable…they are not 
unnormalized probabilities!



Factorized Probability Distributions

A probability distribution over RVs                           can be 
written as a product of factors,

Where:
• a collection of subsets of indices
• are nonnegative factors (or potential functions)
• the normalizing constant (or partition function)



Undirected Graphical Models

A graph is a set of vertices    and edges    .  An edge                 
connects two vertices             .

In undirected models edges are specified 
irrespective of node ordering so that,

Distributions are typically specified with 
unknown normalization (easier to specify),



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Complete Graph



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Clique



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Pairwise MRF

A minimal factorization is one where all 
factors are maximal cliques (not a strict 
subset of any other clique) in the MRF



Example

Interaction potential between each pair of nodes
is exponentiated quadratic,

Joint probability is proportional to product,

Question What named distribution is p(x)?

Answer Multivariate Gaussian
Can easily read off 

inverse covariance…



Example: Image Denoising

Problem Given observed image corrupted by i.i.d.
noise, infer “clean” denoised image.  

[ Source: Bishop, C. PRML ]

Noisy Image Latent Image



Example: Image Denoising

Model Assume binary image with latent pixels                                 
and observed                  .

[ Source: Bishop, C. PRML ]

Observed pixels randomly flipped i.i.d.,
Eta parameter controls noise

Neighboring pixels should appear similar,
Beta parameter controls smoothness

Full MRF (in “energy” form):
Often specify MRF in “energy” or

negative log-probability form (minimize
energy  maximize probability)



Normalizing MRFs

Joint probability of image denoising model,

Normalization (a.k.a. partition function) for N pixel image:

O(2N) terms

Normalization not always 
possible in closed-form : i.e. need 
to sum over all possible N-pixel 

images

Often ignore Z and specify MRFs up to proportionality…



Simulation

Top-Level
Nodes

Children

Descendants

Bayes Nets Straightforward simulation 
via ancestral sampling successively 
samples from conditionals:

so

Undirected Graphs Sampling not as straightforward…
• Lack locally normalized conditionals to sample from
• Lack partial ordering of nodes 

We will return to this when
we discuss Markov chain

Monte Carlo



We say      and      are independent
or               if:

Conditional Independence (Undirected)

We say they are conditionally
independent or                       if:

[ Source: Michael I. Jordan]

Conditional independence
in undirected graphical models
is defined by separating sets

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .



Global & Local Markov Properties

• Set B separates A from C if all paths from A to C pass through B
• By definition, distribution is Markov if and only if for any B separating A and C:

Global Markov Property

Local Markov Property
• Given its neighbors, each node is independent of all other variables

• This local Markov property is a special case of the global Markov property
[Source: Erik Sudderth]

Markov blanket only includes
immediate neighbors (we needed

co-parents in Bayes nets)



Hammersley-Clifford Theorem

Global Markov Property
(Graph Separation Implies Independence)

Joint Factorization
(Potential Function for Each Clique)



Pairwise Markov Random Field

Likelihood Prior

Restricted class of MRFs
• 2-node factor exists for every edge
• Explicit factorization of joint distribution
• High-order factors not always easily 

decomposed into pairwise terms

Unknown
Variables

Observations

Often easier to specify and do inference on pairwise model



Example: Image Segmentation
[Source: Kundu, A. et al., CVPR16]

L2 Likelihood:

Pairwise MRF energy:

Low energy configurations = High probability

MAP (minimum energy) configuration = Piecewise constant regions

Don’t need
to know log-
partition to

specify model

Potts model:

Don’t need to specify
normalized conditionals

as in Bayes Nets



Transformations of Undirected Models

[Source: Erik Sudderth]

Conditioning: Drop all edges on path through C

Marginalization: Join all nodes that have path through C



Factor Graphs

A hypergraph where a hyperedge is a subset 
of vertices          .

Factor node for each product term in the joint 
factorization:

where                            the set of variables in 
factor f.  For example:           

Graphical model makes
factorization explicit



Example: Low Density Parity Check Codes

Factor Graph Representation

Noisy 
Channel

Transmitted Code Received Code

Decoder

[Source: David MacKay]

Problem Setup
• A code t is transmitted over a noisy 
• Received code r is corrupted by noise
• Estimate the most probable code that 

was sent t* (maximum a posteriori)



Example: Low Density Parity Check Codes

• Valid codes have zero parity:
• Chanel noise model arbitrary, e.g. flip bits w/    probability:

Sparse Parity Check MatrixFactor Graph Representation

n-th bit [Source: David MacKay]



Recap: Directed Models

• Distribution factorized as product of conditionals via chain rule

• Choose ordering where terms simplify due to conditional independence
Eg. Suppose                     and                     then:

• Directed graph encodes factorized distribution via conditional 
independence properties

Tail-to-tail

Head-to-tail

Head-to-head

• Test independence using canonical subgraphs:

• Straightforward simulation via 
ancestral sampling



Recap: Undirected Model

• Easier to specify models compared to Bayes nets since:
• Factors do not need to be normalized conditional probabilities
• May specify up to unknown normalization constant

• Joint factorization as nonnegative factors (potentials) over subsets:

• Easier to verify Markov independence via separating sets

• Factorization ambiguous in MRFs, but explicit in
factor graphs (factor graphs generally preferred)

• Simulation is not easy in general.  Can’t do 
ancestral sampling. 


	CSC535: Probabilistic Graphical Models 
	Graphical Models
	Graphical Models
	Outline
	Outline
	From Probabilities to Pictures
	Directed Graphical Models
	Inference
	Chain Rule of Probability
	Conditional Independence
	General Directed Graphs
	Directed PGM = Bayes Network
	Shading & Plate Notation
	Inference
	Example: Gaussian Mixture Model
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Three interesting cases
	Three interesting cases
	Case one (tail-to-tail) 
	Case one (tail-to-tail)
	Case one where c is observed
	Case one where c is observed
	Case one (tail-to-tail) summary
	Case two (head-to-tail)
	Case two (head-to-tail)
	Case two (head-to-tail)
	Case two (head-to-tail)
	Slide Number 32
	Case two where c is observed
	Case two where c is observed
	Case two where c is observed
	Case two where c is observed
	Case two where c is observed
	Case two (head-to-tail) summary
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Markov Properties
	Bayes Ball Algorithm
	Bayes Ball Algorithm
	Directed Separation (d-Separation)
	Administrative Items
	Bayes Ball Algorithm
	Markov Blanket
	Markov Blanket
	Markov Blanket
	Markov Blanket
	Outline
	Directed PGM = Bayes Network
	Markov Random Field
	Factorized Probability Distributions
	Undirected Graphical Models
	Markov Random Fields (MRFs)
	Markov Random Fields (MRFs)
	Markov Random Fields (MRFs)
	Example
	Example: Image Denoising
	Example: Image Denoising
	Normalizing MRFs
	Simulation
	Conditional Independence (Undirected)
	Global & Local Markov Properties
	Hammersley-Clifford Theorem
	Pairwise Markov Random Field
	Example: Image Segmentation
	Transformations of Undirected Models
	Factor Graphs
	Example: Low Density Parity Check Codes
	Example: Low Density Parity Check Codes
	Recap: Directed Models
	Recap: Undirected Model

