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Sequential data has order, and the order matters. 

What has happened, informs what will happen.

Sequential data is everywhere. 

Examples:
spoken  language (word production)
written language (sentence level statistics)
weather
human movement
stock market data
genomes

Sequential data



Graphical models for such data?

The complexity of the representation seems to increase 
with time. 

Observations over time tend to depend on the past.

We can simply life by assuming that the distant past does 
not matter. 

If we assume that history does not matter other than the immediate 
previous entity, we have a first order Markov model.

If what happens now depends on two previous entities, we have a 
second order Markov model.  

Sequential data



First order

Second order

Zeroth order

Markov chains



First order

Second order

Zeroth order

Markov chains

Notice that this plan has arrows from data-this
complicates model specification



Hidden Markov Model (HMM)

Intuition Temporal extension of mixture model
• Data clusters into hidden “states” Z at each time
• Hidden state encodes important part of history
• Markov chain models transitions among clusters

Introducing latent state simplifies modeling data likelihood…



Markovian assumptions

The basic HMM is like a mixture model, with the mixture component being used for 
the current observations depends on the last previous component.

Observation likelihood                    models how data from a component are generated 
(things are easy if you know the cluster)



State Transition Diagram
(Not a PGM)

Transition Dynamics
<—next state —>

current 
state

Ajk : Probability of going 
from state j=4 to state 

k=3



Our HMM will be a pure* generative model, so we 
need to know how to start. 

Starting state

*By pure, I mean that we can do ancestral sampling, i.e., a Bayes net.



HMM parameter summary



Data distribution from an HMM

= ?



Data distribution from an HMM



Data distribution from an HMM



Transition probability to another state is 5% (from Bishop—the short visits in green 
seem a bit anomalous). 

Data distribution from an HMM

Gaussian likelihood model p(xn|zn)



Example: Matching slides to video frames



Our state sequence 
corresponds to what 
slide is being shown.

Matching slides to video frames

We assume that only the jump 
matters. IE, going from slide 
6 to 8 has the same chance of 
going from 10 to 12. 



Our state sequence 
corresponds to what 
slide is being shown.

Matching slides to video frames

Image matching likelihood



1. Given unlabeled* data, what is the HMM (parameter learning).

2. Given an HMM and observed data, what is the probability distribution of 
states for each time point (zn in our notation).

3. Given an HMM and observed data, what is the most probable state 
sequence?

*We could have data with labels (annotated) which means this step becomes 
trivial, much like training naive Bayes versus fitting a GMM using EM. This is 

what we did in the matching slides to video project.

Classic HMM computational problems



1. Given unlabeled* data, what is the HMM (parameter learning).

2. Given an HMM and observed data, what is the probability distribution of 
states for each time point (zn in our notation).

3. Given an HMM and observed data, what is the most probable state 
sequence?

Classic HMM computational problems

#2 and #3 seem similar, but to understand the difference consider a three state 
system about doing HW problems A, B, and C in order, with B being very easy. So 
you will spend most of your time in state A and C. State B may be the least likely 
state for every time point. But the most likely state sequence must include it.



Classic HMM computational problems

1. Given unlabeled data, what is the HMM (learning).
This is a missing value problem, which we can tackle using EM, but 

we will need to solve #2 as sub-problem.

2. Given an HMM and data, what is the probability
distribution of states for each time point (zn in our notation).

These are marginals in a Bayes net, and so we use the sum-product 
algorithm (in HMM often called alpha-beta or forwards backwards).

3. Given an HMM and data, what is the most likely state 
sequence?

This is a maximal configuration of a Bayes net, and so we use max-
sum (in HMM this is Viterbi). 



Classic HMM computational problems

1. Given unlabeled data, what is the HMM (learning).
This is a missing value problem, which we can tackle using EM, but 

we will need to solve #2 as sub-problem.

2. Given an HMM and data, what is the probability
distribution of states for each time point (zn in our notation).

These are marginals in a Bayes net, and so we use the sum-product 
algorithm (in HMM often called alpha-beta or forwards backwards).

3. Given an HMM and data, what is the most likely state 
sequence?

This is a maximal configuration of a Bayes net, and so we use max-
sum (in HMM this is Viterbi). 



Learning HMM Parameters

Learn These E.g. via maximum likelihood:

Problem Don’t know latent states

Observations e.g. training data

Need to compute marginal likelihood:

Natural approach is to use Expectation Maximization



If we know the state distributions, and the successive state pair 
distributions (needed for the transition matrix, A), for each 
training sequence, we can compute the parameters.

If we know the parameters, we can compute the state distributions, 
for each training sequence (this is HMM computation problem #2, 
which we need to solve as a subproblem if we use EM).

Blue text highlights differences from the mixture model for one sequence. 

Learning the HMM with EM (sketch)

Green text reminds us that we need a bit of book-keeping when we train 
on multiple sequences. 



★ At each step, our objective function increases unless it is 
at a local maximum. It is important to check this is 
happening for debugging! 

Recall the General EM algorithm



HMM complete data likelihood (one sequence)



HMM complete data likelihood (one sequence)

Remember our “indicator variable” notation. Z is a particular assignment 
of the missing values (i.e., which cluster the HMM was in at each time. For 
each time point, n, one of the values of zn is one, and the others are zero. 
So, it “selects” the factor for the particular state at that time.  



HMM complete data likelihood (one sequence)

(complete data log-likelihood)



HMM complete data likelihood (E training sequences)

(complete data log likelihood)



Learning the HMM with EM (sketch)

In the simple clustering case (e.g., GMM), the E step 
was simple. For HMM it is a bit more involved.

The M step works a lot like the GMM, except we need 
to deal with successive states. Consider the M step first. 



E-Step for HMM

Provides two distributions (responsibilities)…

The degree each state explains each data 
point (analogous to GMM responsibilities).

The degree that the combination 
of a state, and a previous one 
explain two data points.

Q: How can we compute one / two stage-marginals in HMM?



Forward-Backward Algorithm

…

Forward message:

Forward message:



Forward-Backward Algorithm

…

Node Responsibility (a.k.a. marginal):

Two-Node Responsibility (a.k.a. pairwise marginal):



M-Step for HMM

Recall the complete data log-likelihood:



Expected complete data log-likelihood:

M-Step for HMM

Recall the complete data log-likelihood:



Much like the GMM. Taking the partial 
derivative for πk kills second and third terms.

M-Step for HMM



M-Step for HMM



✓Given data, what is the HMM (learning).

Given an HMM, what is the distribution over the state
variables. Also, how likely are the observations, given the 
model. 

Given an HMM, what is the most probable state sequence
for some data?

✓

Classic HMM computational problems



Forward direction is like sum-product, except
Factor nodes take the max over logs instead of sum
Variable nodes use sum of logs instead of product
We remember incoming variable values* that give max

Backwards direction is simply backtracking on (*).

Recall max-sum

Viterbi algorithm (special case of max-sum)



Recall sum-product for HMM



Left to right messages for max-sum

By analogy we get max sum



Squares represent being in 
each of the three states at a 
given time.

We store the log of the 
probability of the maximal 
likely way to get there.

And the particular previous 
state that gave the max 
(orange)



Consider all possible paths to each of the K states for time n. 

The message encodes the probabilities for the maximum 
probability path for each of the K states.

I.E., for a given time, for each state k, it records is the probability 
of being there by via the maximal probably sequence.

That value is (recursively defined by) 

Story for the preceding picture



The incoming message is the vector of probabilities for the maximum 
probability path for each of the K states at the previous time.

For each state k
Consider getting there 
from each previous state k’ 

Story (continued)

This gives the maximal probability way to be in each of K states, k, 
at time n. 



Story (continued)

For Viterbi, we remember the previous state, k’, leading to the max 
for each k. (This is simpler than the general case because no 
branches).

Once we know the end state of the maximal probability path, we 
can find the maximal probability path by back-tracking. 

You might also recognize this as dynamic programming (think 
minimum cost path).



Intuitive understanding



Intuitive understanding

If this is the end, we now 
know the max, and what 
the ending state is. 



The max path is 
dark (but we only 
know it when we 
get to the end).

To find the path, we 
need to chase the 
back pointers.

Intuitive understanding

Suppose the max 
is attained at k=3.



Classic HMM computational problems

✓Given data, what is the HMM (learning).

Given an HMM, what is the distribution over the state
variables. Also, how likely are the observations, given 
the model. 

Given an HMM, what is the most probable state 
sequence for some data?

✓
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Dynamical System

Human Pose Tracking Stock Market Prediction Visual Object Tracking

Models of latent states evolving over time/space

Move away from discrete HMM states to continuous ones…



Probabilistic Principal Component Analysis (PPCA)

[ Source: M. I. Jordan ]

x1 x2

…

xN

y1 y2 yN

x

Latent: Data:

Data are exchangeable linear Gaussian 
projections of latent quantities

Typically p<q for dimension reduction



Gaussian Linear Dynamical System (LDS)

x1 x2 …

y1 y2

xT

yT

2D Tracking

State X
Observation Y

Temporal extension of probabilistic PCA…

Data are time-dependent and non-exchangeable



Linear State-Space Model

Consider the state vector:

: Position : Velocitywhere 

where and 

Differential equations for constant velocity dynamics:

Linear Gaussian state-space model

State-space notation
Linear regression model



Simple Linear Gaussian Dynamics

Random Walk
(Brownian Motion)

Constant Velocity
(a.k.a. zero acceleration)

Acceleration can be included in higher-order models as well



Dynamical System Inference

Compute              at each time t

Filtering Smoothing
Define shorthand notation: 

Compute full posterior marginal
at each time t



Linear Gaussian Inference

x

y

Linear Gaussian PGM Suppose we have jointly Gaussian model,

Key quantities of inference:
• Marginal:
• Posterior:  

Gaussians closed under marginalization / conditioning

Both are Gaussian distributions!

Marginal

Posterior

Where, and



Linear Gaussian Inference

Deriving marginal and posterior Gaussian is straightforward
• …but takes too long in lecture… (See Murphy Sec. 4.3)
• Those who did HW2 Extra Credit have seen this already!

Basic Approach
• Marginal and Posterior are closed-form Gaussians
• Use final formulas as building blocks for linear dynamical systems



Gaussian Linear Dynamical System (LDS) Inference

At time t assume we have posterior,

xt+1xt

yt+1yt

Gaussian LDS

… …
Key inference steps
1) Predict state at next time

shorthand

Data only up to
previous time

2) Update posterior with measurement
Data at time t+1

All distributions remain Gaussian because of closure properties



Gaussian LDS Prediction

Suppose we have a Gaussian posterior at time t-1:

Forward prediction at time t:

where

Integrates to 1

Same form as marginal likelihood on previous slide



Gaussian LDS Filtering

• Forward prediction at time t:

where                         and 

• Posterior at time t is also Gaussian:
State Prediction Predicted Covariance

Filter Covariance:
Filter Mean:

Gain Matrix:
Can be derived from

Gaussian conditional formulas 
and Woodbury matrix identity



Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

Prediction Step:

State Prediction:

Covariance Prediction: 



Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction Step:

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

State Prediction:

Covariance Prediction: 

What algorithm does 
this look like?



Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction Step:

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

State Prediction:

Covariance Prediction: 

What algorithm does 
this look like?

Sum-Product BP



Canonical Parameterization

Gaussian Parameterization

Mean Parameterization:

where

Also called natural parameters and information parameters 
in some texts…



Gaussian Belief Propagation

Computing marginal mean and covariance from messages:



Gaussian Belief Propagation

Computing marginal mean and covariance from messages:

 Compute message mean & covar as algebraic function of 
incoming message mean & covar (generalizes Kalman)

 For tree of N nodes of dimension d, cost is O(Nd3)



Learning : Gaussian LDS

x1 x2 …

y1 y2

xT

yT

Probability Model

Learning Model Parameters
Given observations                         across all 
timesteps, maximize log-marginal likelihood:

Problem We do not know the latent states
. How to find maximum 

likelihood estimates?
Kalman Filter



Learning : Gaussian LDS

The Kalman filter exactly marginalizes latent state, e.g. at time t=1:

( Law of total Probability )

( LDS Model )

( Gaussian Marginal )

For 2 timesteps we have:
( Probability Chain Rule )

Just did this Let’s compute this



Learning : Gaussian LDS

Conditional likelihood at time t=2:

We can compute these integrals using Gaussian formulas

(  Chain rule and                      )

(  LDS Model )

Surprise, p(y2 | y1) is Gaussian

Kalman filter distribution at time t=1 (Gaussian)



Learning : Gaussian LDS

Using probability chain rule we can write log-marginal likelihood as,

Where                         and

• Every term is Gaussian
• We can compute every term in closed-form using Kalman updates
• Directly maximizing above w.r.t. parameters is cumbersome in this form

Using Expectation Maximization turns is much easier



Expectation Maximization : Gaussian LDS
Recall the EM lower bound of the log-marginal likelihood:

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence



EM : Gaussian LDS
E-Step Compute expected complete data log-likelihood,

Expectation taken w.r.t. posterior 



EM : Gaussian LDS

M-Step Update estimate of the parameters,

• E-step + algebra = expected complete data log-like likelihood
• Solve for zero-gradient conditions of parameters,

• We won’t go through calculations here (they are somewhat tedious)



LDS Summary

where 

Linear dynamical system,

Linear Gaussian Dynamics Linear Gaussian Observation

State-space representation same as linear regression,

Exact posterior inference via Kalman filter
• Recursively pass marginal moments
• Two steps: prediction, measurement update
• Forward pass filtering, backward pass smoothing

Kalman is special case of Gaussian sum-product BP



Outline

• Sequence Models

• Linear Dynamical Systems

• LDS Extensions



Nonlinear Dynamical System

Pendulum with mass m=1,pole length L=1:

Nonlinear dynamics / measurement:



Linearizing a Nonlinear Function

Suppose that we have a nonlinear function:

Linear approximation discards higher-order derivatives:

Taylor series representation
• Choose any evaluation point
• Represent via successive derivatives, evaluated at  

Infinite series holds with equality

Approximation error grows
with distance from 



Linearizing Vector-Valued Functions

• Let                        be vector-valued function
• Linear approximation about a is given by:

• is the Jacobian matrix of partial derivatives (evaluated at a)

• Partial derivatives of each output dim w.r.t each input dim
• First dim. Matches function output, second dim. Input

• All partials will be evaluated at chosen point a
• Thus function is approximation about the point a



Nonlinear Dynamical System

Filter equations lack a closed-form:
Prediction:

Measurement Update: 

Idea Linearize f(.) and h(.) about a point m:

where is Jacobian matrix of partials

1st Order Taylor
expansion



Extended Kalman Filter

1. Linearize f(.) and h(.) about filter mean
2. Assume linear Gaussian model
3. Do standard Kalman updates

Example Linearization of pendulum model



EKF Update Equations

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain:

Prediction Step:
State Prediction:

Covariance Prediction: 



Extended Kalman Filter

PROS:
• Easy to implement – updates analogous to standard Kalman
• Computationally efficient
• Known theoretical stability results

CONS:
• Linearity assumption poor for highly nonlinear models
• Requires model differentiability
• Jacobian matrices can be hard to calculate & implement

Unscented Kalman filter (UKF) typically more accurate in practice



Other Nonlinear Filtering Options
Key issue is approximating integrals: 

Dynamics Filter at t-1

Option 1 : Use Gaussian quadrature  Unscented Kalman Filter (UKF)
• Approximates integral using deterministic control points
• Tends to be more accurate than EKF

Option 2 : Sample-based approximation  Particle Filter (PF)
• Draw samples from filter
• Monte Carlo approximation of integral using samples, 

We will cover this…



Dynamic Bayesian Networks

• Multivariate latent state (e.g.            )
• Dynamics for each component within and across time
• Sometimes used as catch-all term for dynamical systems

…

t=1 t=2 t=3 t=…

3D latent 
state x

Caution: DBN terminology 
is somewhat vague and 
overloaded (e.g. Deep 

Belief Net)  



Switching Linear Dynamical System

…

…

Discrete switching state:
With stochastic 
transition matrix

Switching state selects linear dynamics:
[ Video: Isard & Blake, ICCV 1998. ]

(e.g. Linear Gaussian )

Colors indicate 3 writing modes

Discrete Switching
State

Continuous
State



Switching Linear Dynamical System

We can do sum-product for HMM and LDS, 
so maybe we can do it for SLDS…

…

…

Forward message,

 Message is Gaussian mixture over K states (for some K)
 But incoming message is also a Gaussian mixture
 Number of components (K) grows exponentially with time t

Integrates to Gaussian for
each possible state zt-1

One way is to use sample-
based methods (Particle Filter)



Summary

• Linear dynamical system is time-extension of PCA,

• Exact inference via Kalman filtering,

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction step updates 
moments of predictive 
distribution 

Measurement step 
updates filter distribution 
with newest measumrent

• Kalman filter is special case of Gaussian belief propagation
Messages represented as 

Gaussian natural 
parameters



Summary

• Nonlinear state-space models allow more complex dynamics,

Approximate Kalman filter 
inference via linearization 

(Extended Kalman Filter) or 
Gaussian quadrature 

(Unscented Kalman Filter)

• Switching state-space model represents discrete & continuous states,

…

…Exact inference intractable due to 
exponential growth in message 

parameters
Both nonlinear and SSMs can be 

addressed using sample-based methods 
(e.g. Particle Filtering) as we will see
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