
CSC535: Probabilistic Graphical Models

Dynamical Systems

Prof. Jason Pacheco
(Some material from Prof. Kobus Barnard)

Outline

• Sequence Models / Hidden Markov Models

• Linear Dynamical Systems

• LDS Extensions

Outline

• Sequence Models

• Linear Dynamical Systems

• LDS Extensions

Sequential data has order, and the order matters.

What has happened, informs what will happen.

Sequential data is everywhere.

Examples:
spoken language (word production)
written language (sentence level statistics)
weather
human movement
stock market data
genomes

Sequential data

Graphical models for such data?

The complexity of the representation seems to increase
with time.

Observations over time tend to depend on the past.

We can simply life by assuming that the distant past does
not matter.

If we assume that history does not matter other than the immediate
previous entity, we have a first order Markov model.

If what happens now depends on two previous entities, we have a
second order Markov model.

Sequential data

First order

Second order

Zeroth order

Markov chains

First order

Second order

Zeroth order

Markov chains

Notice that this plan has arrows from data-this
complicates model specification

Hidden Markov Model (HMM)

Intuition Temporal extension of mixture model
• Data clusters into hidden “states” Z at each time
• Hidden state encodes important part of history
• Markov chain models transitions among clusters

Introducing latent state simplifies modeling data likelihood…

Markovian assumptions

The basic HMM is like a mixture model, with the mixture component being used for
the current observations depends on the last previous component.

Observation likelihood models how data from a component are generated
(things are easy if you know the cluster)

State Transition Diagram
(Not a PGM)

Transition Dynamics
<—next state —>

current
state

Ajk : Probability of going
from state j=4 to state

k=3

Our HMM will be a pure* generative model, so we
need to know how to start.

Starting state

*By pure, I mean that we can do ancestral sampling, i.e., a Bayes net.

HMM parameter summary

Data distribution from an HMM

= ?

Data distribution from an HMM

Data distribution from an HMM

Transition probability to another state is 5% (from Bishop—the short visits in green
seem a bit anomalous).

Data distribution from an HMM

Gaussian likelihood model p(xn|zn)

Example: Matching slides to video frames

Our state sequence
corresponds to what
slide is being shown.

Matching slides to video frames

We assume that only the jump
matters. IE, going from slide
6 to 8 has the same chance of
going from 10 to 12.

Our state sequence
corresponds to what
slide is being shown.

Matching slides to video frames

Image matching likelihood

1. Given unlabeled* data, what is the HMM (parameter learning).

2. Given an HMM and observed data, what is the probability distribution of
states for each time point (zn in our notation).

3. Given an HMM and observed data, what is the most probable state
sequence?

*We could have data with labels (annotated) which means this step becomes
trivial, much like training naive Bayes versus fitting a GMM using EM. This is

what we did in the matching slides to video project.

Classic HMM computational problems

1. Given unlabeled* data, what is the HMM (parameter learning).

2. Given an HMM and observed data, what is the probability distribution of
states for each time point (zn in our notation).

3. Given an HMM and observed data, what is the most probable state
sequence?

Classic HMM computational problems

#2 and #3 seem similar, but to understand the difference consider a three state
system about doing HW problems A, B, and C in order, with B being very easy. So
you will spend most of your time in state A and C. State B may be the least likely
state for every time point. But the most likely state sequence must include it.

Classic HMM computational problems

1. Given unlabeled data, what is the HMM (learning).
This is a missing value problem, which we can tackle using EM, but

we will need to solve #2 as sub-problem.

2. Given an HMM and data, what is the probability
distribution of states for each time point (zn in our notation).

These are marginals in a Bayes net, and so we use the sum-product
algorithm (in HMM often called alpha-beta or forwards backwards).

3. Given an HMM and data, what is the most likely state
sequence?

This is a maximal configuration of a Bayes net, and so we use max-
sum (in HMM this is Viterbi).

Classic HMM computational problems

1. Given unlabeled data, what is the HMM (learning).
This is a missing value problem, which we can tackle using EM, but

we will need to solve #2 as sub-problem.

2. Given an HMM and data, what is the probability
distribution of states for each time point (zn in our notation).

These are marginals in a Bayes net, and so we use the sum-product
algorithm (in HMM often called alpha-beta or forwards backwards).

3. Given an HMM and data, what is the most likely state
sequence?

This is a maximal configuration of a Bayes net, and so we use max-
sum (in HMM this is Viterbi).

Learning HMM Parameters

Learn These E.g. via maximum likelihood:

Problem Don’t know latent states

Observations e.g. training data

Need to compute marginal likelihood:

Natural approach is to use Expectation Maximization

If we know the state distributions, and the successive state pair
distributions (needed for the transition matrix, A), for each
training sequence, we can compute the parameters.

If we know the parameters, we can compute the state distributions,
for each training sequence (this is HMM computation problem #2,
which we need to solve as a subproblem if we use EM).

Blue text highlights differences from the mixture model for one sequence.

Learning the HMM with EM (sketch)

Green text reminds us that we need a bit of book-keeping when we train
on multiple sequences.

★ At each step, our objective function increases unless it is
at a local maximum. It is important to check this is
happening for debugging!

Recall the General EM algorithm

HMM complete data likelihood (one sequence)

HMM complete data likelihood (one sequence)

Remember our “indicator variable” notation. Z is a particular assignment
of the missing values (i.e., which cluster the HMM was in at each time. For
each time point, n, one of the values of zn is one, and the others are zero.
So, it “selects” the factor for the particular state at that time.

HMM complete data likelihood (one sequence)

(complete data log-likelihood)

HMM complete data likelihood (E training sequences)

(complete data log likelihood)

Learning the HMM with EM (sketch)

In the simple clustering case (e.g., GMM), the E step
was simple. For HMM it is a bit more involved.

The M step works a lot like the GMM, except we need
to deal with successive states. Consider the M step first.

E-Step for HMM

Provides two distributions (responsibilities)…

The degree each state explains each data
point (analogous to GMM responsibilities).

The degree that the combination
of a state, and a previous one
explain two data points.

Q: How can we compute one / two stage-marginals in HMM?

Forward-Backward Algorithm

…

Forward message:

Forward message:

Forward-Backward Algorithm

…

Node Responsibility (a.k.a. marginal):

Two-Node Responsibility (a.k.a. pairwise marginal):

M-Step for HMM

Recall the complete data log-likelihood:

Expected complete data log-likelihood:

M-Step for HMM

Recall the complete data log-likelihood:

Much like the GMM. Taking the partial
derivative for πk kills second and third terms.

M-Step for HMM

M-Step for HMM

✓Given data, what is the HMM (learning).

Given an HMM, what is the distribution over the state
variables. Also, how likely are the observations, given the
model.

Given an HMM, what is the most probable state sequence
for some data?

✓

Classic HMM computational problems

Forward direction is like sum-product, except
Factor nodes take the max over logs instead of sum
Variable nodes use sum of logs instead of product
We remember incoming variable values* that give max

Backwards direction is simply backtracking on (*).

Recall max-sum

Viterbi algorithm (special case of max-sum)

Recall sum-product for HMM

Left to right messages for max-sum

By analogy we get max sum

Squares represent being in
each of the three states at a
given time.

We store the log of the
probability of the maximal
likely way to get there.

And the particular previous
state that gave the max
(orange)

Consider all possible paths to each of the K states for time n.

The message encodes the probabilities for the maximum
probability path for each of the K states.

I.E., for a given time, for each state k, it records is the probability
of being there by via the maximal probably sequence.

That value is (recursively defined by)

Story for the preceding picture

The incoming message is the vector of probabilities for the maximum
probability path for each of the K states at the previous time.

For each state k
Consider getting there
from each previous state k’

Story (continued)

This gives the maximal probability way to be in each of K states, k,
at time n.

Story (continued)

For Viterbi, we remember the previous state, k’, leading to the max
for each k. (This is simpler than the general case because no
branches).

Once we know the end state of the maximal probability path, we
can find the maximal probability path by back-tracking.

You might also recognize this as dynamic programming (think
minimum cost path).

Intuitive understanding

Intuitive understanding

If this is the end, we now
know the max, and what
the ending state is.

The max path is
dark (but we only
know it when we
get to the end).

To find the path, we
need to chase the
back pointers.

Intuitive understanding

Suppose the max
is attained at k=3.

Classic HMM computational problems

✓Given data, what is the HMM (learning).

Given an HMM, what is the distribution over the state
variables. Also, how likely are the observations, given
the model.

Given an HMM, what is the most probable state
sequence for some data?

✓

Outline

• Sequence Models

• Linear Dynamical Systems

• LDS Extensions

Dynamical System

Human Pose Tracking Stock Market Prediction Visual Object Tracking

Models of latent states evolving over time/space

Move away from discrete HMM states to continuous ones…

Probabilistic Principal Component Analysis (PPCA)

[Source: M. I. Jordan]

x1 x2

…

xN

y1 y2 yN

x

Latent: Data:

Data are exchangeable linear Gaussian
projections of latent quantities

Typically p<q for dimension reduction

Gaussian Linear Dynamical System (LDS)

x1 x2 …

y1 y2

xT

yT

2D Tracking

State X
Observation Y

Temporal extension of probabilistic PCA…

Data are time-dependent and non-exchangeable

Linear State-Space Model

Consider the state vector:

: Position : Velocitywhere

where and

Differential equations for constant velocity dynamics:

Linear Gaussian state-space model

State-space notation
Linear regression model

Simple Linear Gaussian Dynamics

Random Walk
(Brownian Motion)

Constant Velocity
(a.k.a. zero acceleration)

Acceleration can be included in higher-order models as well

Dynamical System Inference

Compute at each time t

Filtering Smoothing
Define shorthand notation:

Compute full posterior marginal
at each time t

Linear Gaussian Inference

x

y

Linear Gaussian PGM Suppose we have jointly Gaussian model,

Key quantities of inference:
• Marginal:
• Posterior:

Gaussians closed under marginalization / conditioning

Both are Gaussian distributions!

Marginal

Posterior

Where, and

Linear Gaussian Inference

Deriving marginal and posterior Gaussian is straightforward
• …but takes too long in lecture… (See Murphy Sec. 4.3)
• Those who did HW2 Extra Credit have seen this already!

Basic Approach
• Marginal and Posterior are closed-form Gaussians
• Use final formulas as building blocks for linear dynamical systems

Gaussian Linear Dynamical System (LDS) Inference

At time t assume we have posterior,

xt+1xt

yt+1yt

Gaussian LDS

… …
Key inference steps
1) Predict state at next time

shorthand

Data only up to
previous time

2) Update posterior with measurement
Data at time t+1

All distributions remain Gaussian because of closure properties

Gaussian LDS Prediction

Suppose we have a Gaussian posterior at time t-1:

Forward prediction at time t:

where

Integrates to 1

Same form as marginal likelihood on previous slide

Gaussian LDS Filtering

• Forward prediction at time t:

where and

• Posterior at time t is also Gaussian:
State Prediction Predicted Covariance

Filter Covariance:
Filter Mean:

Gain Matrix:
Can be derived from

Gaussian conditional formulas
and Woodbury matrix identity

Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

Prediction Step:

State Prediction:

Covariance Prediction:

Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction Step:

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

State Prediction:

Covariance Prediction:

What algorithm does
this look like?

Kalman Filter

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction Step:

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain Matrix:

State Prediction:

Covariance Prediction:

What algorithm does
this look like?

Sum-Product BP

Canonical Parameterization

Gaussian Parameterization

Mean Parameterization:

where

Also called natural parameters and information parameters
in some texts…

Gaussian Belief Propagation

Computing marginal mean and covariance from messages:

Gaussian Belief Propagation

Computing marginal mean and covariance from messages:

 Compute message mean & covar as algebraic function of
incoming message mean & covar (generalizes Kalman)

 For tree of N nodes of dimension d, cost is O(Nd3)

Learning : Gaussian LDS

x1 x2 …

y1 y2

xT

yT

Probability Model

Learning Model Parameters
Given observations across all
timesteps, maximize log-marginal likelihood:

Problem We do not know the latent states
. How to find maximum

likelihood estimates?
Kalman Filter

Learning : Gaussian LDS

The Kalman filter exactly marginalizes latent state, e.g. at time t=1:

(Law of total Probability)

(LDS Model)

(Gaussian Marginal)

For 2 timesteps we have:
(Probability Chain Rule)

Just did this Let’s compute this

Learning : Gaussian LDS

Conditional likelihood at time t=2:

We can compute these integrals using Gaussian formulas

(Chain rule and)

(LDS Model)

Surprise, p(y2 | y1) is Gaussian

Kalman filter distribution at time t=1 (Gaussian)

Learning : Gaussian LDS

Using probability chain rule we can write log-marginal likelihood as,

Where and

• Every term is Gaussian
• We can compute every term in closed-form using Kalman updates
• Directly maximizing above w.r.t. parameters is cumbersome in this form

Using Expectation Maximization turns is much easier

Expectation Maximization : Gaussian LDS
Recall the EM lower bound of the log-marginal likelihood:

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

EM : Gaussian LDS
E-Step Compute expected complete data log-likelihood,

Expectation taken w.r.t. posterior

EM : Gaussian LDS

M-Step Update estimate of the parameters,

• E-step + algebra = expected complete data log-like likelihood
• Solve for zero-gradient conditions of parameters,

• We won’t go through calculations here (they are somewhat tedious)

LDS Summary

where

Linear dynamical system,

Linear Gaussian Dynamics Linear Gaussian Observation

State-space representation same as linear regression,

Exact posterior inference via Kalman filter
• Recursively pass marginal moments
• Two steps: prediction, measurement update
• Forward pass filtering, backward pass smoothing

Kalman is special case of Gaussian sum-product BP

Outline

• Sequence Models

• Linear Dynamical Systems

• LDS Extensions

Nonlinear Dynamical System

Pendulum with mass m=1,pole length L=1:

Nonlinear dynamics / measurement:

Linearizing a Nonlinear Function

Suppose that we have a nonlinear function:

Linear approximation discards higher-order derivatives:

Taylor series representation
• Choose any evaluation point
• Represent via successive derivatives, evaluated at

Infinite series holds with equality

Approximation error grows
with distance from

Linearizing Vector-Valued Functions

• Let be vector-valued function
• Linear approximation about a is given by:

• is the Jacobian matrix of partial derivatives (evaluated at a)

• Partial derivatives of each output dim w.r.t each input dim
• First dim. Matches function output, second dim. Input

• All partials will be evaluated at chosen point a
• Thus function is approximation about the point a

Nonlinear Dynamical System

Filter equations lack a closed-form:
Prediction:

Measurement Update:

Idea Linearize f(.) and h(.) about a point m:

where is Jacobian matrix of partials

1st Order Taylor
expansion

Extended Kalman Filter

1. Linearize f(.) and h(.) about filter mean
2. Assume linear Gaussian model
3. Do standard Kalman updates

Example Linearization of pendulum model

EKF Update Equations

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Measurement Update Step:

Filter Covariance:
Filter Mean:

Gain:

Prediction Step:
State Prediction:

Covariance Prediction:

Extended Kalman Filter

PROS:
• Easy to implement – updates analogous to standard Kalman
• Computationally efficient
• Known theoretical stability results

CONS:
• Linearity assumption poor for highly nonlinear models
• Requires model differentiability
• Jacobian matrices can be hard to calculate & implement

Unscented Kalman filter (UKF) typically more accurate in practice

Other Nonlinear Filtering Options
Key issue is approximating integrals:

Dynamics Filter at t-1

Option 1 : Use Gaussian quadrature Unscented Kalman Filter (UKF)
• Approximates integral using deterministic control points
• Tends to be more accurate than EKF

Option 2 : Sample-based approximation Particle Filter (PF)
• Draw samples from filter
• Monte Carlo approximation of integral using samples,

We will cover this…

Dynamic Bayesian Networks

• Multivariate latent state (e.g.)
• Dynamics for each component within and across time
• Sometimes used as catch-all term for dynamical systems

…

t=1 t=2 t=3 t=…

3D latent
state x

Caution: DBN terminology
is somewhat vague and
overloaded (e.g. Deep

Belief Net)

Switching Linear Dynamical System

…

…

Discrete switching state:
With stochastic
transition matrix

Switching state selects linear dynamics:
[Video: Isard & Blake, ICCV 1998.]

(e.g. Linear Gaussian)

Colors indicate 3 writing modes

Discrete Switching
State

Continuous
State

Switching Linear Dynamical System

We can do sum-product for HMM and LDS,
so maybe we can do it for SLDS…

…

…

Forward message,

 Message is Gaussian mixture over K states (for some K)
 But incoming message is also a Gaussian mixture
 Number of components (K) grows exponentially with time t

Integrates to Gaussian for
each possible state zt-1

One way is to use sample-
based methods (Particle Filter)

Summary

• Linear dynamical system is time-extension of PCA,

• Exact inference via Kalman filtering,

xt-1 xt…

yt-1

xt-1 xt…

ytyt-1

Prediction step updates
moments of predictive
distribution

Measurement step
updates filter distribution
with newest measumrent

• Kalman filter is special case of Gaussian belief propagation
Messages represented as

Gaussian natural
parameters

Summary

• Nonlinear state-space models allow more complex dynamics,

Approximate Kalman filter
inference via linearization

(Extended Kalman Filter) or
Gaussian quadrature

(Unscented Kalman Filter)

• Switching state-space model represents discrete & continuous states,

…

…Exact inference intractable due to
exponential growth in message

parameters
Both nonlinear and SSMs can be

addressed using sample-based methods
(e.g. Particle Filtering) as we will see

	CSC535: Probabilistic Graphical Models
	Outline
	Outline
	Sequential data
	Sequential data
	Markov chains
	Markov chains
	Hidden Markov Model (HMM)
	Markovian assumptions
	Transition Dynamics
	Starting state
	HMM parameter summary
	Data distribution from an HMM
	Data distribution from an HMM
	Data distribution from an HMM
	Data distribution from an HMM
	Example: Matching slides to video frames
	Matching slides to video frames
	Matching slides to video frames
	Classic HMM computational problems
	Classic HMM computational problems
	Classic HMM computational problems
	Classic HMM computational problems
	Learning HMM Parameters
	Learning the HMM with EM (sketch)
	Recall the General EM algorithm
	HMM complete data likelihood (one sequence)
	HMM complete data likelihood (one sequence)
	HMM complete data likelihood (one sequence)
	HMM complete data likelihood (E training sequences)
	Learning the HMM with EM (sketch)
	E-Step for HMM
	Forward-Backward Algorithm
	Forward-Backward Algorithm
	M-Step for HMM
	M-Step for HMM
	M-Step for HMM
	M-Step for HMM
	Classic HMM computational problems
	Viterbi algorithm (special case of max-sum)
	Recall sum-product for HMM
	By analogy we get max sum
	Slide Number 49
	Story for the preceding picture
	Story (continued)
	Story (continued)
	Intuitive understanding
	Intuitive understanding
	Intuitive understanding
	Classic HMM computational problems
	Outline
	Dynamical System
	Probabilistic Principal Component Analysis (PPCA)
	Gaussian Linear Dynamical System (LDS)
	Linear State-Space Model
	Simple Linear Gaussian Dynamics
	Dynamical System Inference
	Linear Gaussian Inference
	Linear Gaussian Inference
	Gaussian Linear Dynamical System (LDS) Inference
	Gaussian LDS Prediction
	Gaussian LDS Filtering
	Kalman Filter
	Kalman Filter
	Kalman Filter
	Gaussian Parameterization
	Gaussian Belief Propagation
	Gaussian Belief Propagation
	Learning : Gaussian LDS
	Learning : Gaussian LDS
	Learning : Gaussian LDS
	Learning : Gaussian LDS
	Expectation Maximization : Gaussian LDS
	EM : Gaussian LDS
	EM : Gaussian LDS
	LDS Summary
	Outline
	Nonlinear Dynamical System
	Linearizing a Nonlinear Function
	Linearizing Vector-Valued Functions
	Nonlinear Dynamical System
	Extended Kalman Filter
	EKF Update Equations
	Extended Kalman Filter
	Other Nonlinear Filtering Options
	Dynamic Bayesian Networks
	Switching Linear Dynamical System
	Switching Linear Dynamical System
	Summary
	Summary

