
Monte Carlo Estimation

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

➢ Doesn’t always have a closed-form for arbitrary functions

➢ Suppose we have iid samples:

➢ Monte Carlo estimate of expected value, 

Samples must be independent!



Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at 

so far have assumed that the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know 

how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition

– If you have finally found a region of high probability, stick around 

for a bit, enjoy yourself, grab some more samples.



Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the 

Markov chain). 

• MCMC is often a good hammer for complex, high 

dimensional, problems. 

• Main downside is that it is not “plug-and-play”

– Doing well requires taking advantage to the structure of your problem

– MCMC tends to be expensive (but take heart---there may not be any 

other solution, and at least your problem is being solved). 

– If there are faster solutions, you can incorporate that (and MCMC 

becomes a way to improve/select these good guesses). 



Metropolis Algorithm



Metropolis Algorithm

If things get better, always accept. If 

they get worse, sometimes accept.

Always emit one or the other



Metropolis Algorithm



Metropolis Example

Green follows accepted proposals

Red are rejected moves.



Markov chain view



Markov Chain Monte Carlo (MCMC)

➢ Stochastic 1st order Markov process with transition kernel:

➢ Each       full N-dimensional state vector

➢ MCMC samples                                  not independent

➢ New superscript notation indicates dependence:

… …

Independent Dependent

Key Question: How many MCMC 

samples T are needed to draw L 

independent samples from p(x)?



Stationary Markov chains

• Recall that our goal is to have our Markov chain emit 

samples from our target distribution p(z).

• This implies that the distribution being sampled at time t+1 

would be the same as that of time t (stationary).

• If our stationary (target) distribution is p(), then if we 

imagine an ensemble of chains, they are in each state with 

(long-run) probability p().

– On average, a switch from s1 to s2 happens as often as going from 

s2 to s1, otherwise, the percentage of states would not be stable.



Markov Chain Monte Carlo (MCMC)

➢ Stochastic 1st order Markov process with transition kernel:

E.g. Let,

➢ Initial state distribution:

➢ Repeated transitions converge to target

True for any initial state distribution [ Source: Andrieu et al. ]

… …

z1

z2

z3

How can we formalize this?



Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same 

stationary state, regardless of starting distribution.

• Such chains are called ergodic, and the common stationary 

state is called the equilibrium state.

• Ergodic chains have a unique equilibrium.



When do our chains converge?

• Important theorem tells us that for finite state spaces* our 

chains converge to equilibrium under two relatively weak 

conditions.

– (1) Irreducible

• We can get from any state to any other state

– (2) Aperiodic

• The chain does not get trapped in cycles

• These are true for detailed balance (there exists a stationary 

state) with T>0 (you can get there).

– Detailed balance is sufficient, but not necessary for 

convergence—it is a stronger property than (1) & (2)

*Infinite or uncountable state spaces introduces additional complexities, 

but the main thrust is similar.



MCMC so far

• Under reasonable conditions (ergodicity) ensembles of chains over discretized 

states converge to an equilibrium state (stationary distribution)

• Easiest way to prove (or check) that this is the case is to show detailed balance 

and use T>0 (sufficient but not necessary)

• There is a nice analogy with powers of stochastic matrices, which converge to an 

operator based on the largest magnitude eigenvector (with |eigenvalue|=1)

• In theory, to use MCMC for sampling a distribution, we simply need to ensure 

that our target distribution is the equilibrium state.

• In practice we do not know even know if we have visited the best place yet. (The 

ensemble metaphor runs into trouble if you have a small number of chains 

compared to the number of states). 



MCMC Theory vs. Practice

• The time it takes to get reasonably close to equilibrium 

(where samples come from the target distribution) is called 

“burn in” time. 

– I.E., how long does it take to forget the starting state.

– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”. 

• What if we really want independent samples?

– In theory we can take every Nth sample (some theories about how 

long to wait exist, but it depends on the algorithm and 

distribution). 



MCMC for ML in practice

• We use MCMC for machine learning problems with very complex 

distributions over high dimensional spaces.

• Variables can be either discrete or continuous (often both)

• Despite the gloomy worst case scenario, MCMC is often a good 

way to find good solutions (either by MAP or integration).

– Key reason is that there is generally structure in our distributions.

– We need to exploit this knowledge in our proposal distributions. 

– Instead of getting hung up about whether you actually have convergence

• Enjoy that fact that what you are doing is principled and can improve any 

answer (with respect to your model) that you can get by other means

– Your model should be able to tell you which proposed solution are 

good.



Beyond the Metropolis Method

Metropolis requires the proposal to be symmetric,

This often results in a chain that takes a long time to converge 

to a stationary distribution (long burn in time)

Example The most common proposal (Gaussian),

exhibits random walk dynamics that are inefficient

Metropolis-Hastings relaxes this symmetry requirement…



Metropolis-Hastings MCMC method 



Metropolis-Hastings comments 

• Again it does not matter if we use unnormalized 

probabilities in the M-H acceptance ratio A(z,z’)

• It should be clear that the Metropolis method (where q() is 

symmetric) is a special case of M-H

• q(z’|z) can be anything, but you need to specify the reverse 

move q(z|z’), which can be tricky



MCMC So Far…

Metropolis Algorithm

• Sample RV from proposal  

• Proposal must be symmetric 

• Accept with probability 

Metropolis-Hastings Algorithm

• Proposal does not have to be symmetric

• Accept with probability

Both methods require choosing proposal, which can be hard



Combined samplers

Different samplers fail in different ways, so combine them…

…can also combine with Gibbs proposals



Mixing MCMC Kernels

Consider a set of MCMC kernels                      all having target 
distribution p(x) then the mixture:

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:
1. Sample

2. Sample  

Mixing weights

Can do this more generally….



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:



Simulated Annealing 

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting 

peaks, this can help. 



Simulated Annealing 

• Define a temperature T, and a cooling schedule (black 

magic part)

• Lower temperatures correspond to emphasized maximal 

peaks.

– Hence we exponentiate by (1/T).

• The terminology makes sense because the number of states 

accessible to a physical system decreases with temperature. 



Simulated Annealing 

(From Andrieu et al)

Basically M-H but we are annealing

target distribution with temperature T



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Simulated Annealing

Let annealing distribution at temp   be given by:

As            we have: 

Simulated Annealing (SA) for Global Optimization:
Annealing schedule

1. Sample       from MCMC kernel     with target 

2. Set        according to annealing schedule

SA for Convergence:                     Final temperature = 1

where



MCMC Summary

• Markov chain induced by MCMC transition kernel T(z,z’)

• Converges to stationary distribution iff chain is ergodic
• Chain is ergodic if it is irreducible (can get from any z to any z’) 

and aperiodic (doesn’t get trapped in cycles)

• Easier to prove detailed balance, which implies ergodicity

• Metropolis algorithm samples from symmetric proposal q(z’|z) 
and accepts sample z’ with probability,



MCMC Summary

• Metropolis-Hastings allows non-symmetric proposal q(z’|z) 
and accepts sample z’ with probability,

• Gibbs sampler on random vector                            
successively samples from complete conditionals,

• Gibbs is instance of M-H that always accepts



MCMC Summary

• Simulated annealing adjusts target distribution at each stage 
with temperature T

• For decreasing temperatures                    support of target 
approaches set of global maximizers

• Convenient to use for global maximization

• Can prove that this will find the global maximum in the limit (need to 
wait for the heat death of the universe, however…)

• For increasing temp ending at                   approaches p(x)

• Helps avoid getting stuck in local optima
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