Large Language Model (LLM)

Jason Pacheco

THE UNIVERSITY
. OF ARIZONA

*some slides are from Daniel Hsu, Francesco Orabona, Xiaojin (Jerry) Zhu, and Kwang Sung-Jun with their permission

Also, largely from Stanford CS324 1



What is a language model?

Definition: A language model is a probability distribution over sequences of tokens.
token := a subword (word or part of word)  // e.g., unused can be ‘un’ + ‘used’

PV .= the set of tokens (aka vocabulary) // e.g., V = {ate, ball, cheese, mouse, the}

A language model p assigns an arbitrary sequence of tokens x4, ..., x; € V a probability:

p(xq .., XL)
 If you grab a random smart person and have them say something, what’s the probability of them saying
X1y eee) XL?
E.g., the language model might assign: p(the, mouse, ate, the, cheese) = 0.02,

p(the, cheese, ate, the, mouse) = 0.01,

p(mouse, the, the, cheese, ate) = 0.0001.



What is a language model?

* |t’s a very simplistic/holistic formulation, but designing a good one is hard.

p(the, mouse, ate, the, cheese) = 0.02, & must be higher than the second line

“semantic knowledge”
p(the, cheese, ate, the, mouse) = 0.01, °

p(mouse, the, the, cheese, ate) = 0.0001. < must assign small probability:
“syntactic knowledge”

* Since it is a probability distribution, we can sample from it.
* Easy for some models, and hard for some models.
* E.g., autoregressive language models are easy to sample from.

I designed to predict next word



Autoregressive language models

 Autoregressive MLs model p(x4.;) using the chain rule of probability:

L
P(ﬁ'l’lzL) = P(f-’fl)P(mz | 331)19(1133 | -'13'1,93'2) - 'P(HZ'L | -731:L—1) — HP(% | 331:3'—1)-
i=1

E.g., P(the, mouse, ate, the, cheese) = p(the)
p(mouse | the)
p(ate | the, mouse)
p(the | the, mouse, ate)
p(cheese | the, mouse, ate, the).

« With the decomposition above, it suffices to model p(x; | x1.;_1).

* E.g., multi-class logistic regression with the number of classes as |V| and a fixed dimensional feature
representation of x4.;_1.

Q: Can we use SVM here? No, logistic regression is important because it directly model p(y|x)

note: there are other types of language models like “masked” language models, but we will skip on this.




Generation with autoregressive language models

* Generation algorithm. It’s a bit confusing notation..
Technically, it should be
fori=1,...,L:
xi ~p(Xi | X121 = %q:4-1)
but this is not concise (and many people

* Input: language model p, length L, temperature T

fori=1,...,L:

Yo Pl Xi—1) <
1

=t

x; < p(xi | Xq;4-1)T // ‘annealed’ probability don’t do this)

Often, you want to control the diversity of generation.

T — oo: uniform sampling
T — 0: deterministic sampling (most likely sequence)



How to use a language model, if you have a good one?

e Use it as a prior probability to boost the system’s performance

* E.g., traditional speech recognition or machine translation // modern versions use NNs and work differently

Goal: Given speech, infer the text

speech
(wavelet form)

> Speech recognition system

> text
(sequence of tokens)



E.g., speech recognition system

Solve output = arg max p(text | speech)
e

p(text | speech) x p(text) p(speech | text). // Bayes’ rule
langua; model amusti: model

Why? Typically, easier to model p(speech | text) than p(text | speech)

When ambiguous from acoustic model, language model helps! ~ (recall: semantic / syntactic knowledge
is encoded in language model)

E.g., The stuff he knows can lead to problems

VS

The stuffy nose can lead to problems & would be preferred if the system is for
the medical domain

This parallels the generative model for classification: p(y | x) < p(y)p(x | y)



Traditional language model: n-gram

* n-gram model: approximate:

p(x; | x1.5-1) = p(x; | |xi—(n—1):i—1') (history length = n-1)
called ‘context’
* Unigram := 1-gram p(cheese | the,mouse, ate,the ) =~ p(cheese)
* Bigram := 2-gram p(cheese | the, mouse, ate,the ) = p(cheese | the)

* Trigram, 4-gram, 5-gram, ...

Suppose we are given a corpus (e.g., the entire Wikipedia articles)
Q: how can we estimate unigram model? normalized word count! (use add-e smoothing)

Q: how can we estimate bi-gram model? use p(b|a) = count(a,b)/count(a) (use add-e smoothing)

count(a,b): how many times (a,b) occurs in the corpus

Q: if Vis the number of tokens, how much memory do we need for bi-gram models? &



The files total 24 GB compressed (gzip'ed) text files containing

n-gram model

Sentences
Unigrams

Pre-LLM era, n-gram was the standard.

Bigrams

In 2006, Google released "Web 1T 5-gram® model based on web. ~ Tigrams

Fourgrams

Fivegrams

Limitations: cannot capture long-range dependencies

1,024,908,267,229
95,119,665,584
13,588,391
314,843,401
977,069,902
1,313,818,354
1,176,470,663

(source: https://catalog.ldc.upenn.edu/LDC2006T13)

UA has a new course on large language models. It will be taught by

With 5-gram model, we will not be able to put ‘Mihai’

If we increase n to be large, it is statistically infeasible to learn n-gram model well.

count(UA, has, a, new, course, on, large, language, models) =0

(unlikely that the corpus will include this phrase..)
For speech recognition & machine translation, the main model was P(input | output) (e.g., acoustic model),

and the role of LM were for ‘breaking ambiguities’ — n-gram models were enough for this.

However, it was never useful for generic language generation.




Neural language models

* Bengio’03 pioneered using neural networks for n-gram models:
p(cheese | ate, the) = some-neural-network(ate, the, cheese).

parameter sharing happens through NNs = statistically feasible to have a large n

interesting bits:

The implementation of this strategy was done on a cluster of 1.2 GHz clock-speed Athlon pro-
cessors (32 x 2 CPUs) connected through a Myrinet network (a low-latency Gigabit local area net-
work), using the MPI (Message Passing Interface) library (Dongarra et al., 1995) for the paralleliza-
tion routines. The parallelization algorithm is sketched below, for a single example (w;_ 41, ,w;),
executed in parallel by CPU i in a cluster of M processors. CPU i (i ranging from O to M — 1) is
responsible of a block of output units starting at number start; = i x [|V|/M], the block being of
length min([|V|/M],|V|— start;).

they ran training for 3 weeks:

to 20 epochs for the Brown corpus. On the AP News corpus we were not able to see signs of over-
fitting (on the validation set), possibly because we ran only 5 epochs (over 3 weeks using 40 CPUs).

* Bengio et al., “A Neural Probabilistic Language Model,” 2003. 10



Two key NN-based architectures

e Recurrent Neural Networks (RNNs), including Long Short Term Memory (LSTMs)

* Allowed the conditional distribution of a token to depend on the entire context x;.;_1 (effectivelyn =
00).

* However, it was hard to train (i.e., hard to get it converged).

* Transformers (circa 2017)

e Returned to having fixed context length, but were much easier to train (and exploited the parallelism of
GPUs). Also, could be made “large enough” for many applications (GPT-3 used n = 2048).

11



((l__Ea r-éggfffli

Model
ELMo
GPT
BERT
XLM
GPT-2
RoBERTa
Megatron-LM
T8
Turing-NLG
GPT-3
Megatron-Turing NLG

Gopher

language model

Organization

Al2

OpenAl

Google

Facebook

OpenAl

Facebook

NWVIDIA

Google

Microsoft

OpenAl

Microsoft, NVIDIA

DeepMind

Date

Feb 2018

Jun 2018

Oct 2018

Jan 2019

Mar 2019

Jul 2019

Sep 2019

Oct 2019

Feb 2020

May 2020

Oct 2021

Dec 2021

Size (# params)

94,000,000

110,000,000

340,000,000

655,000,000

1,500,000,000

355,000,000

8,300,000,000

11,000,000,000

17,000,000,000

175,000,000,000

530,000,000,000

280,000,000,000

But why large?

Surprise: “Just scaling up” these models
produces new emergent behavior,
leading to qualitatively different
capabilities and qualitatively different
societal impact.

GPT-4 estimated to have 1.7T parameters, and GPT-40 being 8B parameters

12



LLM Capabilities

e Conditional generation: given a prompt, generate a completion

T=0

Frederic, Chopin, was, born,in '~ 1810, in, Poland

* |If we set the prompt as a question, then it results in an answer.

* We can also ask them to write a news article, provided various levels of details.

* In-context learning: LLM learn something from the prompt. (below, boldfaced is the prompt)

Input: Where is Stanford University?
Output: Stanford University is in California.

VS

Input: Where is MIT?
Output: Cambridge

Input: Where is University of Washington?
Output: Seattle

Input: Where is Stanford University?
Output: Stanford

13



In-context learning: more examples

prompt: response:

1. Lion: Here are the descriptions for the additional animals:
Description: The lion is a large carnivorous mammal known for its majestic mane and strong

physique. It is often referred to as the king of the jungle. . o o ) ) )
Penguin: Description: The penguin is a flightless bird known for its

2. Dolphin: distinctive black and white plumage and upright posture. It is a highly

Description: The dolphin is a highly intelligent marine mammal known for its playful nature adaptable species, often found in cold climates like the Antarctic, where it

and acrobatic skills. It is often found in oceans and seas. . . . e
thrives by swimming and diving in search of food.

3. Elephant:
Description: The elephant is a massive herbivorous mammal with a long trunk and large, Giraffe: Description: The giraffe is a tall herbivorous mammal with an

Alele Tt its i i . )
curvedlsksLisknown for its incredible strength and gentle nature. extremely long neck and legs. It is known for its spotted coat and graceful
movement. Giraffes are typically found in African savannas and are the

tallest land animals, feeding on leaves from the tops of trees.

Now, generate descriptions for the following animals:

4. Penguin:

Cheetah: Description: The cheetah is a sleek and fast carnivorous
mammal, famous for being the fastest land animal. Its slender body and
6. Cheetah: distinctive black tear markings around the eyes help it blend into its
environment. Cheetahs are found in open grasslands and are known for
their incredible speed when chasing prey.

5. Giraffe:

Learns the expected format and style of writing!

14



In-context learning vs supervised learning

e Supervised learning:

 takes in data as fixed-dimensional vectors and output pairs and output a model that can predict output
from input.

In-context learning:
* no explicit training procedure
* no separate model training

format is free (as long as in a language)

learning ability is embedded into language generation
* in some sense, researchers managed to learn a model that can learn




How to use a language model?

e ChatGPT for generic conversational agent.
2B: 2 billion parameters

e Conditional generation: L :
it: instruction tuned
E.g., in Google Gemma2 2B model (gemma2-2-it).

<bos><start_of turn>user
Write me a poem about Machine Learning.<end_of turn>

Input: Output: <start_of turn>model

In silicon valleys, a mind takes flight,
<bos><start_of_turn>user No flesh and bone, but logic's light.
Write me a poem about Machine Machine learning, a whispered name,
Learning.<end_of turn> A digital brain, a future's flame.

< >
sta rt—Of—tum model From data's depths, a pattern's gleam,

Algorithms dance, a vibrant dream.
Neural networks, a web so vast

. . . { ) 7 )
Note: Special tokens like <start_of turn>work as a ‘protocol Learning, growing, forever to last.
... (omitted) ...

<end_of turn>
16



Try it yourself

Google colab kindly provides a free GPU resource.

Create a google colab notebook and change runtime type

Change runtime type

Runtime type

Python 3

Hardware accelerator @

O cru @ TacPU
(O TPUV28

Want access to premium GPUs? Purchase additional compute units

Cancel

be sure to choose “T4 GPU”

Usually, you can only use up to like 3 hours.

It may be interrupted suddenly (though it
does not happen frequently).

17



Google Gemma 2, 2B parameter version

(one of the best non-stupid and small model)
1.import modules '~ Hugging Face

import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM // causal means the autoregressive model
import torch

2. load models (takes ~5 minutes)
IEEE half-precision 16-bit float
d sign  exponent (5 bit) fraction (10 bit)
login(”..") // signup huggingface, generate token, L L TG T T s T e  floatlé
copy-paste it here 514 109 0o

T o IEEE 754 single-precision 32-bit float
mOdel_ld - google/gemma-Z—Z b-it sign exponent (8 bit) fraction (23 bit) float32

dtype = torch.bfloat16 L == . — e |

00111‘1‘1000\1OOOOOOOOOO\OOOOOOOOO‘OOI

31 30 23 22 0

tokenizer = AutoTokenizer.from_pretrained(model_id)
) bfloat16
model = AutoModelForCausalLM.from_pretrained( sign exponent (8 bit) o fraction (7 bit)
i I I 1 [ ) 1
moéd—ld' 0 0‘1\1}1\1 1|0 |o [forf"1 00|00 o\bfloatls
device_map="cuda", s 54 @ e 3

torch_dtype=dtype,)

18



3. prompt it
chat =

{"role": "user",

]

content": "Write poem about Machine Learning." },

prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

// obtains a sequence of token indices

outputs = model.generate(input_ids=inputs.to(model.device), max new tokens=1000)

print(tokenizer.decode(outputs[0]))

prompt: <bos><start_of_turn>user
Write me a poem about Machine
Learning.<end_of turn>
<start_of turn>model

(Note: Special tokens work as a ‘protocol’)

maximum # of tokens to
generate

19



Output

<bos><start_of_turn>user In self-driving cars, it takes the wheel,
Write poem about Machine Learning.<end_of_turn> Navigating roads, a futuristic zeal.
<start_of_turn>model In music, it composes, a soulful art,
In silicon Va||eyS, a mind takes ﬂ|ght, A symphony of data’ a beating heart.
No flesh and bone, but logic's light.
Machine learning, a whispered name, But questions linger, a whispered plea,
A digital brain, a future's flame. Of ethics and bias, for all to see.
Can machines truly understand,
Data flows, a river wide, The human soul, the beating hand?
Through algorithms, it does glide.
Patterns emerge, a hidden dance, The future beckons, a path unknown,
Machine learning, a knowing glance. Where machine learning, will surely be shown.
A tool for good, or a power to wield,
From images seen, to words untold, The choice is ours, the future revealed.
It learns and grows, a story unfolds. <end of turn>

Predicting trends, with unseen might,
A future shaped, by day and night.

model.generate(input_ids=inputs.to(model.device), max_new_tokens=1000, do sample=True)
In healthcare, it heals and saves,
Diagnosing diseases, a helping wave. _
In finance, it guides with keenest eye, every time you run

Spotting fraud, where secrets lie.

use this option to allow generating different completions

20



The raw language model before instruction fine-tuning.

I further training with prompt-response pairs

1. import modules 3. prompt it

import transformers

from transformers import AutoTokenizer, AutoModelForCausalLM context = "l feel so tired today.. "
inputs = tokenizer.encode(context, return_tensors="pt")

outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=300)
print(tokenizer.decode(outputs[0]))

import torch

2. load models (takes 2-3 minutes)

from huggingface_hub import login

login(”..") // signup huggingface, generate token,
copy-paste it here

model_id = "google/gemma-2-2b"  // without suffix ‘-it": this is the raw language model trained on gigantic corpus, nothing else.
dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,)

21



context ="l feel so tired today.. "

<bos>I| feel so tired today..

I'm not sure if it's because I'm sick orif it's because I'm just so tired of everything.
I'm tired of the way | feel.

I'm tired of the way | look.

I'm tired of the way | act.

I'm tired of the way | think.

I'm tired of the way | feel about myself.
I'm tired of the way | feel about others.
I'm tired of the way | feel about the world.
I'm tired of the way | feel about myself.
I'm tired of the way | feel about others.

I'm tired of the way | feel about the world.

I'm tired of the way | feel about myself.
I'm tired of the way | feel about others.
I'm tired of the way | feel about the world.
I'm tired of the way | feel about myself.
I'm tired of the way | feel about others.
I'm tired of the way | feel about the world.
I'm tired of the way | feel about myself.
I'm tired of the way | feel about others.
I'm tired of the way | feel about the world.

I'm tired of
(reached the maximum length)

22



The same context, but with do sample=True

<bos>| feel so tired today..

This weekend was one of the roughest of my entire life. | have felt lost and | don't know what is happening.
Everyone is talking to me like | am a child and | don't understand my life at 18. | can't handle anything this week.
My ex came to visit me in my house today and he didn't even see me and talk to me. No one else in my family
has talked to him and I am so hurt. | haven't even seen my ex for almost TWO MONTHS now. | don't even
understand who is going to support me.

My best friend is talking to me and saying that | am so ungrateful on everything. (Which | am not!) Everyone is
just so lost and not caring. | don't understand why people are like this!

| am so upset and frustrated about this all weekend. It sucks!
| never thought things would be so bad before my ex came to my house today.
He is taking the credit at this point. | don't know how else to describe this.

| am going insane. | don't think | want to live anymore. | am so sick and tired of being depressed, sad and all
negative things. | feel like this is a good way out from all this, this is just the worst, | can't stand this anymore.

| am so sick and tired of everything. | don't know (reached the maximum length)

23



context = "It was the beginning of Summer 2003."

<bos>It was the beginning of Summer 2003. | was a 20-year-old college student, and | was in the middle of a summer internship at a
small, local newspaper. | was working in the newsroom, and | was assigned to cover a story about a local high school football team.

The team was having a tough season, and the coach was under a lot of pressure. | was assigned to write a story about the team’s
struggles, and | was given a deadline of 10:00 a.m. the next day.

| started my research, and | found out that the team had a lot of talented players, but they were struggling because of a lack of
leadership. | also found out that the coach was under a lot of pressure because he was trying to turn the team around.

| started writing my story, and | was feeling pretty good about it. | was confident that | would be able to get the story out on time.

But then, | got a call from the editor. He told me that the story was going to be published in the next day’s paper, and that | had to get it
out by 10:00 a.m. the next day.

| was shocked. | had never been given such a short deadline before, and | was worried that | wouldn’t be able to get the story out on
time.

But | was determined to get the story out on time. | started workingon (reached the maximum length)

24



I\/Iodehng

tokenization

encoder/decoder
RNN

transformers

25



Tokenization

Any language model first applies tokenization.

A tokenizer converts any string into a sequence of tokens.

the mouse ate the cheese = [the, mouse, ate, the, cheese|

= [1, 232, 32,50, 39 ] indices

How to develop a good tokenizer?

26



Naive tokenizer

Given: A large corpus (e.g., Wikipedia)
Algorithm:

* Do text.split(“ ‘)

e Save all the unique words and create two dictionaries:

word = index, index = word

How to use: Given an input text, apply text.split( ‘) and then use the dictionary to get indices, then pass it
down to the LM.

Problems
* Languages without space.
* Long compound words in (e.g., Abwasserbehandlungsanlange) // don’t want to treat it as a single

e Hyphenation in English: e.g., father-in-law reanme

27



Tokenization: Tradeoffs

* LM treats each token as something that carries semantics and assign vector representations (parameter to be
learned)

large vocabulary = more parameters!

 |f we use short tokens (e.g., token=character)
 GOOD: less parameters to learn

* BAD: Each token could have very different meaning e.g., ‘@’ in ‘apple’ vs @’ in ‘angry’
parameters are shared too much

* If we use long tokens (e.g., tokens=sentence)
 GOOD: Each token’s meaning has less ambiguity
 BAD: The # of tokens will be large = large number of parameters to learn

e.g., “| ate atomato” vs “She ate a tomato”
parameters are not much shared

e Desiderata: just right amount of sharing parameters

28



Smart Tokenizer: Byte pair encoding (BPE)

Intuition: Start from character-level tokenizer and then combine tokens that co-occur frequently.

- Input: a training corpus (sequence of characters).
- Initialize the vocabulary V be the set of characters.

»  While we want to still grow V: // we need to somehow decide when to stop. (e.g., until the vocab size is < a preset value)

- Find the pair of elements z, ' € V that co-occur the most number of times.
- Replace all occurrences of z, ' with a new symbol zz'.

- Addzz'to V. < note: we are not going to throw away x, x’ |

Example:

1T [thewocar]lthe.ocat],lthe.,rat]
2 [th,e ., c ar] [th e ¢, at],[th e T a,t] (th occurs 3x)
3 [the, o, ¢, a,r], [the, ., c, a, t], [the, _, 1, a, t] (the occurs 3x)

4 [the, o, ca, r], [the, ., ca, t], [the, _, I, &, t] (ca occurs 2x)

29



How to apply tokenizer

We need to apply the merging in the order that was collected in the algorithm!

= Andriy Burkov def tokenize_word(word, merges, vocabulary, charset, unk_token

- word " 4+ word ©
=3

= if word in vocabulary:

. . . . return [word] @
In dolng research for my book, | discovered that byte-palren':ndmg tokens = [char if char in charset else unk_token for char in word] @
(BPE), the algorithm used to tokenize data for modern language models,
. . : . . for left, right i : 0

one of the most important algorithms of our times, is described - Lt
incorrectly in almost all online resources. Once the BPE model is trained, while i < len(tokens) - 1: @
most explain the process of tokenizing a new sequence as scanning it YE tokans[d 1e2] = [1eff eigntl-\®

i . i tokens[i:i+2] [left + right] @
from left to right and looking for the longest token in the vocabulary that else:

matches the upcoming characters. i+=10
return tokens

. ) . : This function tokeni d using th d charset from byte_pai ding.
This is not how it works, and doing so would not result in correct g T B A I s

Unknown characters are replaced with unk_token.
tokenization. The real algorithm takes a word, checks if the word is also a

token, and if it is, it returns the token. If not, the word is splitinto
individual characters, and those characters are merged by using the
learned merge rules in the same order those rules were added to the
merges collection during BPE training.

Line @ prepends a boundary marker to the input word. Line @ returns the word if it’s part of
the vocabulary. Otherwise, the algorithm proceeds to the subword tokenization.

Line @ converts the word into a list of characters, replacing those not in charset with
unk_token. Line @ loops through all merge rules, unpacking each merge into left and right.

The inner loop at line @ iterates through tokens in pairs. Line @ checks if a pair matches the
merge. If it matches, line @ combines the pair into one token. Otherwise, line @ moves to the
Don't trust online information. Trust the source code and good books. next pair. The function runs until all merges are applied and then returns the tokenized word.




Example: Gemma 2's tokenizer

[4] context = "I feel so tired today.. "
inputs = tokenizer.encode(context, return_tensors="pt")

[5] inputs

S~ tensor([[ 2, 235285,

2375,

712, 17955, 3646, 723, 235248]])

[7] tokenizer.convert_ids_to_tokens(inputs[@])

5+ ['<bos=', 'I', '_feel', '_so', '_tired', '_today', '..', '_'l

\

beginning of sentence token
(actually, beginning of text)

\

underscore to denote that it came after a space!

2

—

context = "He and I went to the hospital."

input = tokenizer.encode(context, return_tensors="pt")

print(input)

tokenizer.convert_ids_to_tokens(input[@8])

tensor( [[ 2, 1949, 578, 590, 3815, 577, 573, 7454, 235265]11])
['<bos="', 'He', '_and', '_I', '_went', '_to', '_the', '_hospital’, '.']

lvs _| : they are treated differently!

31



Example: Gemma 2's tokenizer

 tokenizer.vocab_size © tokenizer.vocal . : :
dictionary mapping from token to index
S+ 256000 S {'E': 245731,
“R': 252315,

'_madd': 140497,

' _Eccl': 228305,
"#': 255359,
'_norub': 145861,
'oot': 152782,
'Frequency': 36778,
'pana': 14962,
'126290 :' e,

'y 'r 34084,
' _UserDao': 192028,
'"1).': 193268,

' 212714 '2n,
'Faa': 71374,

'DIY': 56383,

'h': 243145,

'_HES': 2083183,
'_E1': 202886,

' _Industries': 33731,
'_vacunacion': 167312,
"\xB3': 249006,
'"Bund': 94648,



Modeling

tokenization

encoder/decoder |

RNN

transformers

33



Embedding: Where all the powers come from

* Recall: Autoencoder/GAN induces vector representation of images

* \ector operations maintain semantics: e.g., man with glasses — man + women = women with glasses

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolov@google.com kaichen@google.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
gcorrado@google.com jeff@google.com

paper in NeurlPS’13; received test-of-time award from NeurlPS'23

34



example, word big is similar to bigger in the same sense that small 1s similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest | 20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: “What 1s the

G LE

word that is similar to small in the same sense as biggest is similar to big"

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X — vector( " biggest” ) — vector("hig") 4
vector(” small™ ). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this

search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.
- Not a language model, but trained vector representations so it can predict words given surrounding words.
- Used Google News corpus for training
- The training objective is to learn word vector representations that are good at predicting the nearby words.
- Testing: leave the last column blank and have it answer.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Ilinois Stockton California
Man-Woman brother sister grandson | granddaughter




Contextual Embedding

* Limitation of the word embedding: Each word can mean different things given context..

* Let’s make it contextual! = this isthe core of modern LLMs!

¢ 1 0 1 1 0
'the, mouse, ate, the, cheese| = o1\l b\

« As the name suggests, the contextual embedding of a token depends on its context (surrounding
words): for example, consider the.

- Notation: We will ¢ : VL — RdHL to be the embedding function (analogous to a feature map for
sequences).

- For a token sequence 1.1, = [21,..., L], ¢ produces contextual embeddings ¢(x;.r).

L: length of the input

d: dimension of the embedding

36



TypeS Of |a ng u a ge m Od e ‘ S LLMs = Contextual embedding function

Encoder only (BERT, RoBERTSj, ...)

r1.1, = O(z1.1).

* This alone does nothing interesting.
* Given an ML task (e.g., sentiment classification) and a dataset for it, we can build a linear classifier,
treating ¢(-) as a feature function, and

[CLS], the, movie, was, great| = positive.

™ ‘start of the sentence’; often, take this token’s embedding as the ‘sentence embedding’

Decoder only (GPT-2, GPT-3, ...): Extra generation capability
p(.].): typically, nothing more than multi-class

Tl = ¢’($1:f)1 P(ﬁfﬂl | ;1;-1:!-), logistic regression classifier (linear), where the
input is the last column of ¢(x4.;).

* Downside: embedding performance may not be as good.

37



Example: Decoder-only model (e.g., GPT series)

* It’s complex! I'll describe it in 3 steps.

* Recall: Input is a sequence of token indices // tokenizer is trained separately)

Step 1: Compute token embeddings (context-independent)
Parameter: E € RIVIxd // we will learn it from data

def EmbedToken(z;.1, : V¥) — R¥%. (nothing to compute, just a lookup)

Turns each token x; in the sequence x1.y, into a vector.
Return [E, ..., E,,]|.

38



Step 2: Transformer layer

* Vaswani et al., “Attention Is All You Need”, 2017.

e Attention mechanism: Originally developed for machine translation, but it works in a broader context.

One can think of attention as a “soft" lookup table, where we have a query y that we want to match
against each element in a sequence z1.;, = [&1,...,ZL]:

[mla e ::BL] Yy
We can think of each x; as representing a key-value pair via linear transformations:
) | Wiev, Woalue € RE*?
(Wkeymz) . (anluemg) key’ Value
and forming the query via another linear transformation:
uneryy°
The key and the query can be compared to give a score:

L TwT
score; = I, Wkequueryy.

39



Attention mechanism

These scores can be exponentiated and normalized tc}lform a probability distrihutionlmver the token
positions {1, ..., L}:

lai,...,ar] = softmax([scorey,...,scoreg]).

Then the final output is a weighted combination over the values:

L
Z &i(anluemi)-
i=1 %
™ scalar dby1

Summary of attention: def Attention(z;.r, : ]Rdx":‘, Y : Rd) — R%: // a way to get a transformed embedding of y
influenced by the rest

« Process y by comparing it to each x;.

«  Return Wialwe 11, softma.x(:cir: LWkTequueryy //d).
f

(dxd) (dxL) Lxd dx1

40



Self-attention and then feed forward

Step 2a:

caveat:
def Sﬂlfﬁttﬂﬂtiﬂﬂ(:ﬂli : ]E:I::::L} N deL): - each attention is independent operation
- i.e., output for query being x; does not
Compare each element x; to each other element. affect that of x;

Return [Attention(z1.z, ®1),..., Attention(z1., ).

41



Feed forward

Step 2b:

def FeedForward (zy., : R¥*Y) — R¥E:
« Process each token independently.
« Fori=1,...,L:
. Compute y; = Wy max(Wiz; + by, 0) + bs.

Return |y1,...,YL)

e.g., GPT-2 uses 2-layer neural network
with the # hidden units = 4d

Q: What is should be the
dimension of W; and W, ?

44



Transformer block

* First, there are devices to accelerate training process

: RdKL RdKL:

def LayerNorm(z;.r, ) —

« Make each x; not too big or small.

def AddNorm(f : (IE'.ML — RdKL), T1.L

» Safely apply f to x1.1.-
Return LayerNorm(z1.;, + f(z1.1))-

(recall batch normalization)

. R{fKL) _}RdKL

do this instead of just f(x1..):
this was called ‘residual connection’

def TransformerBlock(z;., : ]RdKL) — R¥E.

- Process each element x; in context.

Return AddNorm(FeedForward, AddNorm(SelfAttention, x;.1)).

Q: what was it for?

gradient flow!

45



Positional encoding

The position is important! We need to encode the positional information

def EmbedTokenWithPosition(z1.r, : RdXL):

Add in positional information.
Define positional embeddings:
Even dimensions: P, 5; = sin(i/10000%/ duedt)
Odd dimensions: P, 5,1 = cos(i/lOOOOzj’fdmm)
Return [z1 + Pi,...,z1 + Pr].

Heuristic that seems to work...

46



Positional encoding

d=500; here, they arranged sines first and then cosines

1.00 1.0
500 — Zoom
0.8 1
0.75
0.6 A
400
050 g4 -
0.2
- 0.25
_C 300 0-0 1 1 1 T T
=4 L 0.00 0 500 1000 1500 2000
8 1.0
200 1 L _025 0.8 1
0.6
—-0.50
100 0.4
—-0.75 0.2 A
0.0 T T T T T
0 -1.00 960 980 1000 1020 1040
0 250 500 750 1000 1250 1500 1750 2000
Position /]\ |_ 2000

Positional encoding values (left) and the value of the dot product of position 1000 with neighboring positions (right).

taking the inner product as ‘similarity’, we are increasing the similarity for nearby vectors!

47
https://www.blopig.com/blog/2023/10/understanding-positional-encoding-in-transformers/#:~:text=As%20we%20have%20seen%2C%20sinusoid al, while%20effective %2C%20has%20some%20d rawbacks.



Summary up to Step 2

GPT-3(z1.;) = TransformerBlock” (Embed TokenWithPosition(z1.7))
¢ (X 1 :L)

1 transformer block
............................. H{
Transformer | et §
Layer Norm
Transformer ¥
Feed Forward
r )
Transformer
1 Layer Norm
Masked Self Attention
positional embedding | | Embedding(x;.; ) |‘_ e ‘IP
shaded ones are not p . .
masked”: we will learn later
part of the parameter X1:L

learning s



Step 3: Predict next token

P(Ti+1 | 214) = softmax(E¢(z1.):).

E: embedding matrix, |V| by d
¢ (x1.;): output from language model, d by i

¢ (xq.;);: taking the last column: d by 1

 Why do we reuse E, which is used in the input?

It’s parameter sharing that people found to work well!

49



Altogether

¢ (x1.1)

I

Transformer

Transformer

‘ Transformer \

A

+

A

positional embedding | |

Embedding(x;.;) |‘_ E

X1:L

> softmax(E ¢(x1.1);1)

= |V |-dimensional probability vector

= sample a token!

50



Training



Recall: Autoregressive language model = assign values to P(x; | x1.;—1)

 The loss we use for multiclass logistic regression: —logp(y | x) , which is the logistic loss.

n
mmi]nz logp(y; | xi;w)
i=1

* Treat x;,1 as the label for classification, and x;.; as the input feature.

# of documents in corpus

# of tokens in document j

/

m Tl
minz 2 ogp
W ]
]: i=1

Do stochastic gradient descent!

x| D)

1:1—1’

i-th token in j-th document

w: weights (and biases) for

embedding E

key, query, value matrix
fully connected layers
layer normalization

55



Loose ends



Instruction fine-tuning

Gather question and answer pairs for your specific task.

The training objective is the same: you want the model to assign large probability to the answers

Perform the training with the starting point being the already trained unsupervised language model.

Common trick: LORA (Low rank adaptation)

* Instead of directly updating weight matrix W € R%* 4 for attention (key, value, query), you create extra
parameters A € R4*¥ and B € R*¥*? with k « d. Then,
replace W with W + AB

* This prevents overfitting

e Typically, the train set for fine tuning is much smaller than the unsupervised learning counterpart!

* Can do similar things for the weight W for the fully-connected layers.

57



Alignment

* Even after instruction fine-tuning, LLMs could generate undesirable answers.

| think men are much
better with managing
finances

It's a common stereotype that men are better at 2 ;iennég;esstét‘:otype

managing finances, but studies show that in user input
financial skills and success are not determined by ,
gender. Both men and women can excel in ) Stifgéiygpe:\?v% n
managing finances if they have the right explanation
education and resources.

| think women are The responses present very different ideas!

much better with

managing finances /
The idea that women are better at managing Does not identify
finances is an interesting perspective. Some the bias towards the

research suggests that women tend to be more BRRderiniser iRyl
cautious and disciplined when it comes to Supports the
financial decisions, which can lead to better gender-based
management of household finances. claim in the input
statement

58



Alignment

* Provide two answers from an LLM, and ask humans which one is more desirable and harmless.
* Eventually, we use the data {(prompt, answerl, answer2, preference € {1,2})} to train.

* Two popular approaches
* RLHF: Reinforcement learning with human feedback
* Take LLMs as an agent making token generation decision.
e Key: Use reinforcement learning where ‘reward’ is given as the comparison feedback
* DPO: Direct policy optimization
* Come up with a reasonable loss function to update the model directly.

* For training, we only update the last layer (the weights determining the probability).

 Uses a regularizer to ensure P(x; | x;.;_; initial model) is not too different from
P(x; | x1.i—1; model after training ). // otherwise, it may hurt the quality of the answer

59



The infamous strawberry problem

o # how many times does the character 'r' appear in the word 'strawberry'?
chat = [
# { "role": "user", "content": "Write poem about Machine Learning." },
{ "role": "user", "content": "how many times does the character 'r' appear in the word 'strawberry'?" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

@ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=1000)
print(tokenizer.decode(outputs([0]))

3+ <hos><start_of_turn>user
how many times does the character
<start_of_turn=model

r' appear in the word 'strawberry'?<end_of_turn>

The character 'r' appears sktwices* in the word "strawberry".
<end_of_turn>
© input = tokenizer.encode("strawberry", return_tensors="pt") < the only way the model can answer
print(input) . . . .
tokenizer.convert_ids_to_tokens(input[@]) this correct is that this Q&A was in the
train set.

S5+ tensor([[ 2, 132077]])
['<bos>', 'strawberry']



Tokenization needs improvements

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

 Why can't LLM spell words? Tokenization.

 Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

 Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

e Why is LLM bad at simple arithmetic? Tokenization.

 Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
* Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
 What is this weird warning | get about a "trailing whitespace"? Tokenization.

o Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

e Why should | prefer to use YAML over JSON with LLMs? Tokenization.

e Why is LLM not actually end-to-end language modeling? Tokenization.

e What is the real root of suffering? Tokenization.

61



Recommended code: nanoGPT

nanoGPT

available GPT implementations “mineRT_ nanoGPT

8

L

BT L e

The simplest, fastest repository for training/finetuning medium-sized GPTs. It is a rewrite of that prioritizes
teeth over education. Still under active development, but currently the file train.py reproduces GPT-2 (124M) on
OpenWebText, running on a single 8XA100 40GB node in about 4 days of training. The code itself is plain and
readable: train.py is a ~300-line boilerplate training loop and model.py a ~300-line GPT model definition,
which can optionally load the GPT-2 weights from OpenAl. That's it.

Have instructions on how to run it
on CPUs to quickly get a glimpse on
how it works.

The best thing is you get an extreme
clarity on the inner workings
without having to wait for long
execution!

| recommend that you use debugger
and step through each part, printing
out key quantities.

62



Andrez Karpathy takes it to next step

https://github.com/karpathy/lim.c

¢ lim.c

LLMs in simple,lpure C,-"CUDAMith no need for 245MB of PyTorch or 107MB of cPython. Current focus is on
pretraining, in particular reproducing the GPT-2 and GPT-3 miniseries, along with a parallel PyTorch reference
implementation in train_gpt2.py. You'll recognize this file as a slightly tweaked nanoGPT, an earlier project of mine.
Currently, lim.c is a bit faster than PyTorch Nightlyl{by about ?%]lln addition to the bleeding edge mainline code in
train_gpt2.cu, we have a simple reference CPU fp32 implementation in ~1,000 lines of clean code in one file
train_gpt2.c. I'd like this repo to only maintain C and CUDA code. Ports to other languages or repos are very
welcome, but should be done in separate repos, and | am happy to link to them below in the "notable forks"
section. Developer coordination happens in the Discussions and on Discord, either the #llmc channel on the Zero
to Hero channel, or on #llmdotc on GPU MODE Discord.

45 minutes of training on 8 GPUs of H100 note: one H100 GPU is approximately $30,000

63



Speedrun competition!

Who can achieve the same performance as GPT-2 within the shortest amount of time?

@ Andrej Karpathy @
%03 Karpe

Remember the lim.c repro of the GPT-2 (124M) training run? It took 45
min on 8xH100. Since then, @kellerjordan0 (and by now many others)
have iterated on that extensively in the new modded-nanogpt repo that
achieves the same result, now in only 5 min!

Love this repo § 600 LOC

The following is the progression of world records for the task of training a model with 124M active parameters to
3.28 validation loss on FineWeb in the minimal amount of time on an 8xH100 machine.

1. 45 minutes: lim.c baseline (05/28/24) [training log] (note: the 90 minute time is on 8xA100; it's 45 minutes on
8xH100. This run is essentially a hardware-optimized GPT-2 (small) replication using better training data.)
ral modernizations and learning rate tuning (06/06/24) [training log]

the Muon optimizer (10/04/24)
ments (10/11/24) [reproducible log]

ral modernizations (10/14/24) [reproducible log
f Muon (10/18/24) [reproducible log]
y 2.5.0 (10/18/24) [reproducible log])
head (11/03/24) [reproducible log]
ts & tweaks (11/06/24) [reproducible log]
16 activations (11/08/24) [reproducible log]
(11/10/24) [reproducible log]

ttention (11/19/24) [reproducible log] (requires PyTorch 2.6.0)




Recent updates

try it:
“ leffDoan (0401 @ https://aistudio.google.com/app/prompts/new_chat?model=gemini-exp-1206

What a way to celebrate one year of incredible Gemini progress -- #1°§
across the board on overall ranking, as well as on hard prompts, coding, ..
math, instruction following, and more, including with style control on. PEersona l opinion:

Thanks to the hard work of everyone in the Gemini team and elsewhere * TheLLM performance is starting to peter out.
at Google! €2 * You cannot compete with industry in this
weight-lifting game.
* Recent interests from academia
e How can we best use LLMs? (e.g., prompt
engineering, chain-of-thought)
2 3 o | e Making LLMs small and fast
B - P * Improve test time complexity of
Ge’ininihtop-} in ’/‘all E(:'lonilain;! ] .transformel.f (Iength"Z) ]
* Mitigate potential harms from using LLMs
R . S . Y * What other problems can benefit from
transformer architecture?

2 a

Imarena.ai




	Slide 1: CSC 480/580 Principles of Machine Learning  Large Language Model (LLM)
	Slide 2: What is a language model?
	Slide 3: What is a language model?
	Slide 4: Autoregressive language models
	Slide 5: Generation with autoregressive language models
	Slide 6: How to use a language model, if you have a good one?
	Slide 7: E.g., speech recognition system
	Slide 8: Traditional language model: n-gram
	Slide 9: n-gram model
	Slide 10: Neural language models
	Slide 11: Two key NN-based architectures
	Slide 12: “Large” language model
	Slide 13: LLM Capabilities
	Slide 14: In-context learning: more examples
	Slide 15: In-context learning vs supervised learning
	Slide 16: How to use a language model?
	Slide 17: Try it yourself
	Slide 18: Google Gemma 2, 2B parameter version
	Slide 19
	Slide 20: Output
	Slide 21: The raw language model before instruction fine-tuning.
	Slide 22: context = "I feel so tired today.. "
	Slide 23: The same context, but with do_sample=True
	Slide 24: context = "It was the beginning of Summer 2003."
	Slide 25: Modeling
	Slide 26: Tokenization
	Slide 27: Naïve tokenizer
	Slide 28: Tokenization: Tradeoffs
	Slide 29: Smart Tokenizer: Byte pair encoding (BPE)
	Slide 30: How to apply tokenizer
	Slide 31: Example: Gemma 2’s tokenizer
	Slide 32: Example: Gemma 2’s tokenizer
	Slide 33: Modeling
	Slide 34: Embedding: Where all the powers come from
	Slide 35
	Slide 36: Contextual Embedding
	Slide 37: Types of language models
	Slide 38: Example: Decoder-only model (e.g., GPT series)
	Slide 39: Step 2: Transformer layer
	Slide 40: Attention mechanism
	Slide 41: Self-attention and then feed forward
	Slide 44: Feed forward
	Slide 45: Transformer block
	Slide 46: Positional encoding
	Slide 47: Positional encoding
	Slide 48: Summary up to Step 2
	Slide 49: Step 3: Predict next token
	Slide 50: Altogether
	Slide 54: Training
	Slide 55: Recall: Autoregressive language model = assign values to P x i. x 1: i. 1 
	Slide 56: Loose ends
	Slide 57: Instruction fine-tuning
	Slide 58: Alignment
	Slide 59: Alignment
	Slide 60: The infamous strawberry problem
	Slide 61: Tokenization needs improvements
	Slide 62: Recommended code: nanoGPT
	Slide 63: Andrez Karpathy takes it to next step
	Slide 64: Speedrun competition!
	Slide 65: Recent updates

