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Supervised Learning



Supervised learning setup: putting it together
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» Goal: design learning algorithm A such that its output f on T @ -=-=7

lid training data S has low generalization error Generalization error: Ly(f) = E(xyy-p 209, £ (x))
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ISSystems?

Model: Decision Tree: Example

no XS

takenOtherSys?
no yes
mommg? |||<edOtherSys?

dbd &

Figure 1.2: A decision tree for a course
recommender system, from which the
in-text “dialog” is drawn.

Input: the course & student info
Use questions to arrive at a conclusion.

Terminology:
* (Question, Answer) - (Feature, Feature Value)
o “Like” / “Nah” - Label

* {(A set of (Question & Answer)’s, Label)} = Train
Data



Prediction using a decision tree

test point: the data point to be classified

* Test: predict using a decision tree: (vs train point: data point to be used for training)

Algorithm 2 DecistIONTREETEST(tree, test point)

i If tree is of the form LEAF(guess) then
= return guess

guess = prediction

5 else if tree is of the form Nobpkx(f, left, right) then ¥ \’"‘CS

#  If f = no in test point then (ike)  [takenOtherSys?]

5: return DecistoNTREeTEsT(left, test point) ’y “5 eft = no

6: else | | imorning?| [likedOtherSys?| nght - ves
7 return DEeCISIONTREETEST(right, test point) yes  no/ \yes

s endif 1 L J &

o end if

 Training: how to design a learning algorithm A that can build trees f from training data?



k-nearest neighbors (k-NN): main concept

Training set: S = {(x1,¥1 ), -, (X, Vi )}

Inductive bias: given test example x, its label should resemble the
labels of nearby points

51."-2‘

Function
* Input: x .
* find the k nearest points to x from §; call their indice
e output: the majority vote of {y;:i € N(x)} c .° .

« For regression, the average.



/ decision boundary




k-NN classification: pseudocode
* Training Is trivial: store the training set

* Jest:
Algorithm 3 KNN-Prep1cT(D, K, %)
list ——> = S < []
= forn =110 Ndo
append to list——, S« S @ (d(xy, %), n) // store distance to training example n
o + end for
sort in first coordinate——» s: S < soORrRT(S) // put lowest-distance objects first
6 I <0
» fork =110 Kdo
s (distn) « S // n this is the kth closest data point
o U+ Y // vote according to the label for the nth training point
. end for
Majority vote of {y;:i € N(x)}——>«: return siGnN(7) //return +1if§ > 0and —1if§ <0

* Time complexity (assuming distance calculation takes 0(d) time)
e O(md +mlogm +k) = O(m(d +logm))

» Faster nearest neighbor search: k-d trees, locality sensitive
hashing



Background: Train set accuracy/error

« Suppose the ML algorithm has trained a function / using the dataset D =
(O, yi)izq
 Train set accuracy:

1 n
acc(f) = Ez I{f (x;) = yi}

» Train set error: err(f) =% i1 {f(x;) # y;} =1 —ace(f)

* Q: We have 100 train set (images) consisting of 5 cats, 80 dogs, and 15 lions.
What is the train set accuracy of the majority vote classifier? What is the error?



Bayes optimal classifier

(- : » A
Theorem fz, achieves the smallest 0-1 error among all classifiers.
feo(x) =argmaxPp(X = x,Y =y) =argmaxPp(Y =y | X =x),Vx € X

\_ yeY yeEY y

Example Iris dataset classification:
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— setosa
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— virginica
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Iris Virginica °%5

Iris Versicolor

Iris Setosa

5.5 6.0 6.5

4.5 5.0 .
sepal length
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Bayes error rate: alternative form

Lp(fgo) = PD(Y # fp0(X))
=2xPp(Y # fpo(x) | X = x) Pp(X = x)
=2x(1—=Pp(Y = fpo(x) | X = x)) Pp(X = x)
=2x(1—m;1xPD(Y=y|X=x))PD(X=x)

=E[1—maXPD(Y=y|X)]
y

« Special case: binary classification

* Lp(fgo) = Xx Pp(Y # fpo(x), X = x)
=Y, min(P,(Y =41,X=x),Pp(Y =—-1,X = x))

p(x|wl)Prob(w1l)
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When is the Bayes error rate nonzero?

Ly (fgo) = Z min( Pp,(Y =+1,X =x),P,(Y = -1,X = x))

 Limited feature representation '

* Noise In the training data
* Feature noise
 Label noise
« Sensor failure
* Typo In reviews for sentiment classification

* May not be a single “correct” answer
* Inductive bias of the model / learning algorithm

12



Model Validation and Selection



New measures of classification performance

- True positive rate (TPR) actual class
_TP _ P(=+1y=+1) — A —
) — P(y=+1) positive negative
e 4
(aka recall, sensitivity) . positive | true positives false positives
» True negative rate (TNR) = — (TP) (FP)
e N predicted <
(specificity) class . .
7 Fp negative false negatives true negatives
 False positive rate (FPR) = ™ (FN) (TN)
\.
» False negative rate (FNR) = ? P=TP+FN N=FP+TN

TP __ P(y=+1y=+1)
P—called P(y=+1)

* Precision = . P —called =TP + FP



New measures of classification performance

» actual class
True positive rate (TPR)
{5 — — - N
= 1B PO=+Ly=+1) positive negative
P P(y=+1) f
(aka recall, sensitivity) positive true positives false positives
. TN (TP) (FP)
True negative rate (TNR) =— _ Type | error
N predicted <
(specificity) class negative | false negatives [ true negatives
. FP FN TN
False positive rate (FPR) = ~ ! ( )Type [ (TN)
, FN P=TP+FN N=FP+TN
False negative rate (FNR) = -
Applications:
- ~ e Search engine: precision & recall
Precision = EL P(y_+1’y_+1), P — called = TP + FP * Cancer classification: FNR vs. FPR

P—called P(y=+1)
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Adjust TP, FP, TN, FN

e Decision values

* E.g., the predicted P(Y = 1|X = x)

* Some classifiers just have a real-value
where positive value indicates
positive prediction. | | predicted <
(e.g, supper vector machine — will be ¢lass
covered later)

f

« Default: P(Y = 1|X = x) = .5 then call it positive
 Threshold to 1.1 = always predict neg.
 Thresholdto 0 = always predict pos.

\

positive

negative

actual class

.

'l

positive

. b
negative

true positives
(TP)

false positives
(FP)

false negatives
(FN)

true negatives
(TN)

P=TP+FN

TPR

O bad

N =FP+TN

FPR

1 bad
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ROC curve

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate
as a threshold on the confidence of an instance being positive is varied

ideal point Different methods can work
better in different parts of
(TP/P) N Alg 1 ROC space.
o 1.0
-.é ’ -
)
= Alg2 .~
9
Q ‘\ expected curve for
= random guessing
|_

" 1.0
False positive ra(tFeP/N) get this curve by varying the threshold from large to small

(starts from (0,0) then goes to left and downwards to (1,1))
(the green curve is misleading) 17



ROC curve

decision value; sorted in decreasing order

e

) confidence correct

* Conceptually, consider every instance _positive class
possible threshold, put a dot for Ex9 .99 +
each, and connect them. Ex7 98 TPR=2/5FPR=05 +
Ex 1 A2 -

Ex2 .70 +

* In practice, just need to care about _EX6 .65 TPR=4/5FPR=1/5 +
when the ‘correct class’ changes Ex10 .51 -
from + to — or from —to +. = -

. . Ex5 .24 1pr-55FPR=35 +

* results in staircase shape, but Ex 4 17 -
diagonal line can still happen. Ex8 01 TPR=5/5FPR=55 -

* A popular alternative: just plot
when going from + to -.
(what’s shown here)

TPR=0, FPR=0
/

1.0+

True positive rate

—
ov

False positive rate
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ROC curve algorithm

O W m) _(m) _ . . :
let ((y » € ) (y » € )) be the test-set instances sorted according to predicted confidence
c¢) that each instance is positive

let num_neg, num_pos be the number of negative/positive instances in the test set
TP =0, FP=0
last TP =0
fori=1tom
/l find thresholds where there is a pos instance on high side, neg instance on low side
if (i>1)and (c?=cD)yand (y? ==neg)and (TP > last TP)
Q——— FPR = FP/ num_neg, TPR = TP /num_pos
output (FPR, TPR) coordinate
last TP = TP
if y() == pos
++71P
else
++FP
FPR = FP / num_neg, TPR = TP / num_pos
output (FPR, TPR) coordinate
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Overfitting vs Underfitting

Underfitting performs poorly on both training and validation...

Error Under- : Over-
fitting | fitting validation

: set
|

|

|

|

|

|

|

|

|

|

I

|

|

|

|

:

“sweet spot” f Training

: set

I

Source: ibm.com Number of
iterations

...overfitting performs well on training but not on validation



Cross-Validation

I | | I | run 1 N-fold Cross Validation Partition training

data into N “chunks” and for each run
I | | I I run 2 select one chunk to be validation data
I | | I I run 3
For each run, fit to training data (N-1
I | | I I run 4 chunks) and measure accuracy on
validation set. Average model error
across all runs.

Drawback Need a lot of training data to partition.

Source: Bishop, C. PRML



Hyperparameter tuning: cross-validation

Main idea: split the training / validation data in multiple ways

For hyperparameter h € {1, ..., H}
* Forke{l,.., K}
e train fi* with S\ fold,
* measure error rate ey, ; of £ on fold,

—~— 1
« Compute the average error of the above: eérr” = }Zlk{=1 en k

Choose h = arg min err”

h
Train f using S (all the training points) with hyperparameter h

k = |S|: leave one out cross validation (LOOCV)

Training set S
fold,, e folds

[ ]
I
[ 1

I
[ ]

run 1

run 2

run 3

run 4

run 5
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Interval Estimation / Hypothesis Testing



Motivation: evaluating & comparing ML models

Example
* Your ML model f has test set error = 6.9%
* Your nemesis, Gabe’s, ML model g has test set error = 6.8%
* How confident are we to conclude that g has smaller generalization error than that of f?

* Intuition: We should be more confident if the test set is larger, less if it’s smaller
e Our uncertainty can be quantified with a confidence interval

* Determining the best model can be done rigorously with hypothesis testing

Disclaimer: we only focus on the key ideas (standard stats courses spend >= 5 lectures on this)

24



Confidence Intervals

Intuition Find an interval such that we are pretty sure it encompasses the
true parameter value (e.g. algorithm accuracy).

Given data X, ..., X,, and confidence o € (0, 1)
find interval (a, b) such that,

P € (a,b) >1—«

In English the interval (a, b) contains the true
parameter value 6 with probability at least 1 — «

* Intervals must be computed from data a(X1,..., X, ) and b(X4,..., X,,)
* Interval (a,b) is random, parameter{ is not random (it is fixed)

* Requires that we know the distribution of the estimator ¢



Knowledge Check

What is the confidence level of this estimator?

/U\
1 e 4 o
2 e 0o i "3l
3 o ob T o
4 . ..—?'é—. -
5 T e e
6 o T -
7 ..—.‘:‘—
8 — . .
9 ——.
10 el % e
11 s ¥ 1 .
12 ce TI%
13 CERGT
14 o e
15 s T
16 ce 1TV ew
17 . '.—3—.
18 o lwme T®
19 ssoet .
20 o ¥
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Cl construction

A standard recipe:
e Construct an estimator for 8 based on S -- call it O

e Let I(S) = [O5 — w, O + W], where w is chosen such that for any 6,
P5~Dg(9 € [6s —w, 05 + W]) >1—-a

Important example: confidence interval for normal mean
* D, =N, %XTL) ~ D}
* Define fig = % i=1 X Known variance
e l¢g—u~N (O, %)4— Central limit theorem

* How to choose w such that P(|ji¢ —u|l <w) =>1-—a?

lowyer
lirmit

Lpper
lirnit:

27



Confidence Intervals of the Normal Distribution

Given enough data many estimators follow a Normal distribution

0.3 0.4

0.2

0.0 0.1

J

|

]

|

(central limit theorem)

A Normal RV falls within 20 of
the mean with ~¥95% probability

P(6 € (—20,20)) > 0.95

The interval(—30, 30) covers
34 1% 34.1% ~99%, super high confidence

For various reasons, 95% has become standard confidence level



Cl for normal mean (cont’d)

fig—u~N (O%) Central limit theorem

0.025

e How to choose w such that P(|fi¢ —u| <w) =>1—«a?

[ovver Lpper
lirmit lirnit

=

Note: Z = v/n (fis — u) ~ N(0,1)

« Suffices to find z, suchthat P(|Z| < z,) > 1—«a,and letw = %l
-2.58 -1.I!EIEi -1I 1] 1 1.!IEIEi 2.:58
+— % —F
| ¥———— o4 ————— |
| 29% |
. [ . i . . . _ _|n _Za 75 Zg
Final (1 — a)-confidence interval construction for u: I(S) [,uS T s + 7n

196 A 1.96

T Hs +ﬁ

E.g. 95%-confidence interval for u: I(S) = [ﬁg —

29



Cl for means of general distributions, unknown variance

* Given Dy with mean parameter 8 with unknown variance Import scipy.stats as st

alpha = 0.05
n (X;— 0 )2 st.t.ppf(1-alpha/2,df=2)
. Gy = l_ln_ll —— = unbiased estimator of var(Dy) => 4.302652729911275
2 N 1 wn st.t.ppf(1-alpha/2,df=5)
* Theorem: Let Xy, ...,X,~N(u,0%), and fi,, == - =1 Xj => 2.5705818366147395
ﬁn —Uu st.t.ppf(1-alpha/2,df=10)
\Vn "~ student-t (mean O, scale 1, degrees of freedom=n — 1) => 2.2281388519649385
n
G t st.t.ppf(1-alpha/2,df=30)
° - |7 a =
Cl: [,un + 7 ] 0.40 > 2.0422724563012373
0.35f st.t.ppf(1-alpha/2,df=100)
0.30} => 1.9839715184496334
How do we estimate variance |  _°*°
. 5 0.20
of algorithm performance? |

0.10
0.05F
0.00




Two-sample hypothesis testing: definition

Given Dg with parameter 6

Samples Sy = (Xy,...,Xp) and Sy = (13, ..., Yy) drawn iid from distribution Dy, and Dy,

respectively mean(r)
=90.34

mean({No EP)

Equality test version: =961

* Null hypothesis Hy: 8y = 0y
* Alternative hypothesis H;:0y # 0y

Eg Dﬂ — Ber(l.l), HO:AUX = Uy (lj ; 10 15

Design hypothesis tester T such that the two types of errors are controlled

31



Paired t-test

Sy = (X1,...,Xp) and Sy = (Y3, ..., ¥,) drawn iid from distribution Dy, = N(ux, o) and Dy, = N(uy, 0%),
respectively

* Hotux = py

* Hitux # py

let §; == X; — Y, foralli=1,..,n

— L 1 n
Let 6, == nZizl i Do not reject Hy,

Reject HO—‘

Design hypothesis test T so that Py (T(S) =0) 21—«

Intuition: reasonable to reject if |5, | is large

32



Paired t-test

 Under Hy, 6; ~N(0,0%),i =1, ...,n, where 6? = 62 + 0/

0.40
0.35f

—= \2
S ~ i 8i—6n 0.30}
e Recall Thm: Let 64, ..., 6,,~N(0,0%2), and §,, = Iyn s 52 .— i )

—Li=1Y%i,Yn

n n_l ’_‘0.25-

_ Zo0.20f

6 0.15}

Z = \n—= ~ student-t (mean O, scale 1, degrees of freedom=n — 1) 0.10
(0}

n 0.05}

0.00

* Let’s ask “under H,, what is a plausible range of values of Z with failure rate a = 0.05?”
* Find the 0.025, 0.975-quantiles of Z =>t; ¢»5, £t 975
* Hypothesis tester

T(S) =1(Z & [to.025 togrs]) =1 (\/ﬁg_z € [to.025) to.975])

Do not reject H,

Reject H, J



Linear Models



OUTPUT. Y

Linear Regression

Regression Learn a function that
predicts outputs from Inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlz+b

| |
0 1

INPUT: X

= We will add noise later...



Linear Regression

Input-output mapping is not exact, so we will add
zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y=w'zr+e where ¢ NN(O,UZ)

OUTPUT: Y

This is equivalent to the likelihood function,

p(y ‘ w,x) — N(y ‘ waaUQ) S _;NPlDJT:;< |

Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m, P) z4+c~N(m+c,P)

In the case of linear regressionz — ¢ and ¢ — w'



Great, we’re done right?

Data — We have this

We need to fit It to
data by learning the 1
regression weights

Random; Can’t do

R A
y —w X _I_ € - anything about it

low to do this? Y

Don’t know these;
What m_akes gOOd need to learn them
weights?




Learning Linear Regression Models

There are several ways to think about fitting regression:
 Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Learning Linear Regression Models

There are several ways to think about fitting regression:

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



MLE for Linear Regression

Given training data {(z;, y;)}., likelihood function
IS given by,

N N
log [ [ p(yi | zi,w) =) logp(ys | @i, w)
i=1 i—1

OUTPUT: Y

Recall that the likelihood Is Gaussian:

p(y | w,z) =N(y | w'z,0°%)

INPUT. X

So MLE maximizes the log-likelihood over the whole data as,

N
wM = arg max Zlog]\/(yi | wh z;, 0%)
i=1



MLE of Gaussian Mean

Assume data are I.I1.d. univariate Gaussian,

|—> Variance is known
y | M HN yz | My O )

Log-likelihood function'

Constant doesn’t N

1
sonsta B 2 _—2
ependonmean  _ . bot _ 5 Zl ((ys — p)?o™7)

MLE doesn’t change when we:
1) Drop constant terms (in /)

MLE estimate Is least squares estimator: 2) Minimize negative log-likelihood

N N
| |
i = - s argmax y (y; — p)” = argmin } _(y; -



MLE of Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1 X;

01 — Estimated regression line, f(x) =bo + by x
= = Residual, y;—f(x))

Substitute linear regression
prediction into MLE solution
and we have,

N
min Y (y; — wx;)?
i=1
So for Linear Regression,

MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE of Linear Regression

Using previous results, MLE is equivalent to [ Image: Murphy, K. (2012)
minimizing squared residuals, T %

N
min Y (y; —w”w:)? = [ly — w"X]?
=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~~T Derivation a bit involved for lecture but...
W = (X X) X Yy « We know it has a closed-form and why

« We can evaluate it
« Generally know where it comes from

Ordinary Least Squares (OLS) solution



Nonlinear Models



Nonlinear Data

1 : +
0 5 10 15 20 \ . . i

What If our data are not What if classes are not
well-described by a linear linearly-separable?
function?

[Source: Murphy, K. (2012) ]



Basis Functions

« A basis function can be any function of the input features X
* Define a set of m basis functions ¢1(z), ..., ¢m(x)
* Fit a linear regression model in terms of basis functions,

Yy = Z wii(z) = w' ¢(x)

* Regression model is linear in the basis transformations
* Model is nonlinear in the data X



Kernel Functions

A kernel function is an inner-product of some basis function
computed on two inputs

M
k(z,2") = ¢p(x) p(a') = Z di(x)di(z’)

A conseqguence Is that kernel functions are non-negative real-
valued functions over a pair of inputs,
k(z,2') € R k(z,z") >0

Kernel functions can be interpreted as a measure of
distance between two inputs



Kernel Functions

Example The linear basis ¢(x) = x produces the kernel,

k(w,2') = dp(z)” ¢(2') = 27 2’

It Is often easier to directly specify the kernel rather than the
basis function...

Example Gaussian kernel models similarity according to an
unnormalized Gaussian distribution,

/ 1 N2 Note Despite the name,
Iﬁ:(SC, X ) —eXp | =55 (CIZ' — X ) this is not a Gaussian
20 orobability density.

Also called a radial basis function (RBF)



Kernel Functions

Given any set of data {x;}}~, a necessary and sufficient
condition of a valid kernel function is that the nxn gram matrix,

k(z1,21) kK(x1,29) ... K(T1,T0)

k(ze,x1) kK(xo,22) ... K(T2,T0)
K =

K(Tn, 1) K(Tp,z2) ... K(Tp,Tn)

Is a symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxXN matrix

Primal Dual
1 oi(x1) ... éar(xr) k(x1, 1) kK(ri,x2) ... K(T1,25)
( 1 di(za) ... omlxe) \ / k(xa, 1) kK(xo,22) ... K(T2,29) \
P — K= . . .
\ 1 Cbl(fl?N) ng(CL'N) / \ ’Q(mmml) H:(:L’n,xz) m(azn,xn) }
w=(®T®+ )" '@y y(z) = k(x)" (K + M)~y
A\ ~ _J \/_/
MxM Matrix Inversion NxN Matrix Inversion
O(M?3) O(N?3)

Number of training data N greater than basis functions M
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