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Outline

» Random Variables and Discrete Probability



Random Events and Probability

Suppose we roll two fair dice... ‘
» What are the possible outcomes? 0’

» What is the probability of rolling even numbers?
» What is the probability of rolling odd numbers?

...probability theory gives a mathematical formalism to
addressing such questions...

Definition An experiment or trial is any process that can be repeated
with well-defined outcomes. It is random if more than one outcome is
possible.



Random Events and Probability

Definition An outcome is a possible result of an ‘
experiment or trial, and the collection of all possible

outcomes is the sample space of the experiment,

Example (1,1), (1,2), ..., (6,1), (6,2), ..., (6,6) 0

Definition An event Is a set of outcomes (a subset of the sample
space),

Example Event Roll at least a single 1
{(1,1), (1,2), (1,3), ..., (1,6), ..., (6,1)}



Random Events and Probability

Assume each outcome is equally likely, and sample ‘
space is finite, then the probability of event is:

P(E) = 1 0’

Y

This is the uniform probability distribution

Example Probability that we roll only even numbers,
EV" =1(2,2),(2,4),...,(6,4),(6,6)}

B ‘Eeven‘ B 9

P(Ecver _ 7
( ) [ 36




Random Events and Probability

Example Probabillity that the sum of both dice Is even,
ErUmeven = £(1.1),(1,3),(1,5),...,(2,2),(2,4),...}

‘Esum even’ 18 1
P( Eswm eveny _ _ - _
( ) Q)] 36 2

Example Probabillity that the sum of both dice is greater than 12,
E>12 _ @
. |H"" 12
W EAEY = —
PLE") Tl |

l.e. we can reason about the probability of impossible outcomes




Random Variables

Suppose we are Iinterested in a distribution over “

the sum of dice...

Two dice example:

Option 1 Let E; be event that the sum equals | f’

Eo = {(17 1)} E3 = {(172)7 (27 1)} By = {(133)7 (272)7 (37 1)}
By = {(174)7 (273)7 (372)7 (47 1)} Fg = {(175)3 (274)7 (373)7 (472)7 (57 1)}

Enumerate all possible means of obtaining desired sum. Gets
cumbersome for N>2 dice...



Random Variables

Option 2 Use a function of sample space...

(Informally) A random variable is an unknown
guantity that maps events to numeric values.

Example X is the sum of two dice with values,

X €{2,3,4,...,12}

Example Flip a coin and let random variable Y
represent the outcome,

Y € {Heads, Tails}




Discrete vs. Continuous Probabillity

Discrete RVs take on a finite or countably infinite set of values
Continuous RVs take an uncountably infinite set of values

* Representing / interpreting / computing probabilities becomes
more complicated in the continuous setting

* \We will focus on discrete RVs for now...



Random Variables and Probability

Capitol letters represent Lowercase letters are
random variables realized values
X ==z

X = z Is the event that X takes the value x

Example Let X be the random variable (RV) representing the sum of two
dice with values,

X €{2,3,4,...,12}

X=5 Is the event that the dice sum to 5.



Probablility Mass Function

A function p(X) is a probability mass function (PMF) of a discrete
random variable if the following conditions hold:

(a) It Is nonnegative for all values in the support,
p(X=2)>0

(b) The sum over all values In the support is 1,
D (X =1x)=1

Intuition Probability mass is conserved, just as in physical mass.
Reducing probability mass of one event must increase probability mass
of other events so that the definition holds...



Probablility Mass Function

Example Let X be the outcome of a single fair die. It has the PMF,

1
p(X = ;13) — 6 forx = 1j c. ,6 Uniform Distribution

Example We can often represent the PMF as a vector. Let S be an
RV that is the sum of two fair dice. The PMF is then,

p 1/36
Observe thatS_does / p(S : i% \ ( 11//128 \
e S = | PP =
\ p(S=12) )\ 1/36



Functions of Random Variables

Any function f(X) of a random variable X is also a random
variable and it has a probability distribution

Example Let X, be an RV that represents the result of a fair die, and
let X, be the result of another fair die. Then,

S =X+ Xo

Is an RV that is the sum of two fair dice with PMF p(S).

NOTE Even if we know the PMF p(X) and we know that the
PMF p(f(X)) exists, it is not always easy to calculate!



PMF Notation

* We use p(X) to refer to the probability mass function (i.e. a
function of the RV X)

* We use p(X=x) to refer to the probability of the outcome X=x
(also called an “event”)

* We will often use p(x) as shorthand for p(X=x)



Joint Probability

Definition Two (discrete) RVs X and Y have a joint PMF denoted by
p(X,Y) and the probability of the event X=x and Y=y denoted by
p(X =x,Y = y) where,

(a) It is nonnegative for all values in the support,

p(X=xz,Y=9y)>0

(b) The sum over all values in the supportis 1,

Y pX=aY=y=1




Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

0 0.04 0.36

' 1 < 0.30 0.30
v>

All values are nonnegative




Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

0 0.04 0.36

' 1 < 0.30 0.30
v>

The sum over all values is 1:
0.04+0.36 +0.30+0.30=1




Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

0.04 0.36

1 0.30

P(X=1, Y=0) = 0.30
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Fundamental Rules of Probabillity

Given two RVs X and Y the conditional distribution Is:

XY) XY
p(X|Y) =257 = v haeem

Multiply both sides by p(Y ') to obtain the probability chain rule:
p(X,Y) =pY)p(X | Y)
The probability chain rule extends to NV RVs X, Xo,..., Xy
(X1, Xo, ..., Xn) =p(X1)p(Xo | X1)...0( XN | XNn_1,...,X7)

N
Chain rule valid _ p(X1) Hp(X,L | Xic1yeo, X1)

for any ordering
1=2



Fundamental Rules of Probabillity

Law of total probability
_ Zp(y X — 33) * P(y) is a marginal distribution

* This is called marginalization

Proof Z p(Y, X =z) = Z p(Y)p(X =z |Y) (chainrule)

Zp =2 | Y) (distributive property )

= p(Y) (PMFsumsto 1)

Generalization for conditionals:
plY [ Z2)= ,pY, X =x]|2)



Tabular Method
Let X, Y be binary RVs with the joint probability table

For Binomial use K-by-K Y
probability table.
Y1 Y,
*1 | 0.04 0.36 0.4

X P(X1)

X2 | 0.30 0.30 V.6 s

2

P(x)
0.34 0.66

P(y1)=P(x1,y1)+P(X2,y1) P(y) P(X1)=P(X1,y1)+P(X1,Y,)
P(y2)=P(x1,Y2)+P(X2,Y-) P(X2)=P(X2,y1)+P(X2,Y>)
[i.e., sum down columns] [i.e., sUm across rows]

P(y.) P(y2)



Tabular Method

We don’t care about

Y / event Y=y2

Y, Y,
Xy 0.04
X
X2 0.30
Censored!
0.34

P(xly,)=? \

P(y.)



Tabular Method

0.04/0.34
P(X]y,)

Y:y1

X1 0.04

X2 0.30 0.30/0.34
0.34

P(y.)

These sum to one:
A conditional probability distribution is
still a probability distribution




Intuition Check

Question: Roll two dice and let their outcomes be X1, X5 € {1,...,6}
for die 1 and die 2, respectively. Recall the definition of conditional
probability,

p(X1, Xo)

P(X1 | X2) = p(X2)

Which of the following are true?
a) p(X1 =1|Xo=1) >p(X; =1)
b) p(X1 =1|X2 =1) =p(X1 =1) | o0utcome of die 2 doesn't affect die 1
c) p(X1=1|Xa =1) <p(X; =1)




Intuition Check

Question: Let X; € {1,...,6} be outcome of die 1, as before. Now let
X3 €{2,3,...,12} be the sum of both dice. Which of the following are
true?

Only 2 ways to get X, = 3 , each with equal
a) p(X1 =1|X3 =3) >p(X1 =1) prot))/abilityY get X g

b) p(X1 =1|X3=3)=p(X; =1) (X1=1,X2=2) or (X1=2Xo=1)
SO

c) p(X1 =1[X3 =3) <p(Xy =1) p(X1=1| X5=3) =

> :p(Xl = 1)

b | =
S| =



Dependence of RVs

Intuition...
Consider P(B|A) where you want to bet on B

Should you pay to know A?

In general you would pay something for A if it
changed your belief about B. In other words |f,

P(B|A) = P(B)



Independence of RVs

Definition Two random variables X and Y are independent if and only If,
pX =zY =y) =p(X =z)p(Y =y)

for all valueszand y, and we say X L Y.

Definition RVs X, Xo, ..., Xy are mutually independent if and only If,

N
p(X1=w1,..., Xy =2an) = || p(Xi = z:)
i=1

» Independence is symmetric: X 1 Y <Y 1 X
> Equivalent definition of independence: p(X | Y) = p(X)



Independence of RVs

Definition Two random variables X and Y are conditionally independent
given Z if and only If,

pX=x,Y=y|Z=2)=pX=zx|Z=2)p(Y =y|Z=2)

for all values =, y, and z, and we say that X 1 Y | Z.

» N RVs conditionally independent, given Z, if and only If:

Implies for all x, y, z

N
p(X1,..., XN | 2) = Hp(X. | 7) | Shorthand notation
i=1

> Equivalent def'n of conditional independence: p(X |Y,Z) =p(X | Z)
» Symmetric: X LY |Z&<Y 1L X | Z
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Moments of RVs

Definition The expectation of a discrete RV X, denoted by E[X], Is:
E[X] — Z ggp(X — gj) Summation over all

values in domain of X

Example Let X be the sum of two fair dice, then:

1 1 1
E[X] 24 — 344 —-12=7

T 36 18 36

Theorem (Linearity of Expectations) For any finite collection of
discrete RVs X, X5, ..., Xy with finite expectations,

Y ] N
Corollary For any constant c | _ E.g. for two RVs Xand Y
E[cX]| = cE[X] E E :X’I» _ E : E[X’L] E[X + Y] = E[X]| + E[Y]

L 1=1 _ 1=1




Moments of RVs

Theorem: If X 1 Y then E/XY]|=E[X|E[Y].

Proof: EXY]=) > (z-yp(X =2,Y =y)

L Y

— ZZ(m P )p(X = 2)p(Y =) ( Independence)

r oy

— (Z“" p(X = 5,;)) (Zy p(Y = y)) = E[X]E[Y] (Linearity of Expectation )

Y

Example Let X1, X5 € {1,...,6} be RVs representing the result of rolling
two fair standard die. What is the mean of their product?

E[X; X,] = E[X;]E[X;] = 3.5



Moments of RVs

Definition The conditional expectation of a discrete RV X, givenY is:

E[X |Y =y = Zaﬁp =z |Y =y)

Example Roll two standard six-sided dice and let X be the result of the
first die and let Y be the sum of both dice, then:

E[X,|Y =5]=) zp(X,==|Y =5)




Moments of RVs

Law of Total Expectation Let Xand Y be discrete RVs with finite
expectations, then:

E[X]|=EyEx X | Y]]

Proof Ey[Ex[X | Y]] =Ey ZLI:-p(zc 1Y)
= Z Za: p(z |y ] (y) ( Definition of expectation)
— ZZ:@- p(z,y) ( Probability chain rule)
_ Z Z p(2,y) ( Linearity of expectations )

— Zaz . p(z) = E[X] ( Law of total probability )



Moments of RVs

Definition The variance of a RV X is defined as,

Var[X] = E[(X — E[X])?] [(x-unitsy

The standard deviation is o[X] = y/Var[X]. |(-units)

Lemma An equivalent form of variance Is:
Var[X] = E[X?] — (E[X])’

Proof Keep in mind that £ X is a constant,
E[(X — E[X])?] = E[X? — 2XE[X] + E[X]?] (Distributive property)

X% - 2E[X|E[X] + E[X]*  (Linearity of expectations)

E
E[X?] — E[X]? (Algebra)



Moments of RVs

Definition The covariance of two RVs X and Y Is defined as,

Cov(X,Y)=E|(X —E[X]))(Y — E[Y])]

Lemma For any two RVs X and Y,
Var|X + Y] = Var|X| + Var|Y| + 2Cov(X,Y)
e.g. variance Is not a linear operator.

Proof Var[X + Y] = E[(X +Y — E[X + Y])?]

(Linearity of expectation) =E[X +Y —E[X] - E[Y])?]

(Distributive property) = E[(X —E[X])*+ (Y — E[Y])? +2(X — E[X])(Y — E[Y])]
(Linearity of expectation) = E[(X — E[X])*] + E[(Y — E[Y])?] + 2E[(X — E[X])(Y — E[Y])]

(Definition of Var / Cov) — Var[X] + Var[Y] + 2Cov(X,Y)



Moments of RVs

Question: What is the variance of the sum of independent RVs

Var|X; + Xs] = Var|X;] + Var|[Xs] 4+ 2Cov (X7, X5)

= Var|X;| + Var|
= Var|X;| + Var|
= Var|X;| + Var|
= Var|X;| + Var|

| + 2E[(X, — E

| + 2E[(X, — E
| + 2 (E[X1] — E[X}1]) (E[X;] — E[X3])

X1
X1

) (X2 — E[X5])]
E[(X> — E[X>])]

E.g. variance is a linear
operator for independent RVs

Theorem: If X 1 Y then Var|X + Y] = Var|X] + Var|Y]

Corollary: If X 1 Y then Cov(X,Y) =0



Correlation

Definition The correlation of two RVs X and Y is given by,

Cov(X,Y)

Corr(X,Y) =

where ox = /Var(X)

OXO0Yy
1 0.8 0.4 -0.8 -1
1 1 1 1 1 1
v P B )
/ ~ — . T \\w \\.
0 0 0
. .;!-“gi_'Lr nailn,
v i
o B
i fOR G

Like covariance, only expresses linear relationships!
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Useful Discrete Distributions

Bernoulli A.k.a. the coinflip distribution on binary RVs X € {0,1}
p(X) =n%(1—m)t=%

Where 7 Is the probability of success (e.g. heads), and also the mean

EX|=m-1+4(1-7)-0=m7

Suppose we flip N independent comsX1, Xo, ..., Xy, wWhatis the
distribution over theirsumY = >.*, X,

Num. “successes” out of N trials Num. ways to obtain k successes out of N &

~ N\«
Binomial Dist. p(Y =k) = (/{)Wk(l _ )Nk

Binomial Mean: E[Y] — N - 7T sSum of means for N indep. Bernoulli RVs

\

| .



Useful Discrete Distributions

Question: How many flips until we observe a success?

Geometric Distribution on number of independent draws of

X ~ Bernoulli(7) until success: = o for fair com
p(Y =n)=(1- W)n_17T E[Y] = % '::/v;f}i{fst)ank:lf/g.
e.g. there must be n-1 failures (tails) before a success (heads).
Question: How many more flips if we have already seen k failures?
p(Y =t k| ¥ > ) = HOSIEIon s %
= Qo et (i =p(Y =)

For 0 <w <1, Zpa' =at/(1—x) Corollary: p(Y > k) = (1 —m)*"



Useful Discrete Distributions

Categorical Distribution on integer-valued RV X € {1,..., K} ‘

K I( X =k
p(X)=Thom” 7 or p(X) =Y I(X =k) m 0
with parameter p(X = k) = 7 and Kroenecker delta:
1, IHFX=k

I(X =Fk) = { 0, Otherwise

Can also represent X as one-hot binary vector,
X €{0,1}* where Zle Xr=1 then p(X)= Hle ik

This representation Is special case of the multinomial distribution



Useful Discrete Distributions

What if we count outcomes of N independent categorical RVs?

Multinomial Dlstrlbutlon on K-vector X € {0, N }* of counts of N
repeated trials >, X = N with PMF:

plzy,... oK) = (xm ) Hw

Number of ways to partition N objects into K groups.

n B n!
1T ... TK rilzo! .. k!

Leading term ensures PMF is properly normalized:

ZC171 ZCEQ "'Zpr(:Bl)xQ,-..,CCK) — 1




Useful Discrete Distributions

0.40

A Poisson RV X with rate parameter Ahas ol

the following distribution: | mMean and variance both 025}
scale with parameter

e~ M\F x 0.20f
p(X =k) = E[X] = Var[X] =X  Tous}
k' 0.10

0.05f
0.00

Represents number of times an event occurs
In an interval of time or space.

Ex. Probability of overflow floods in 100 years,

—11k
. e 1 Avg. 1 overflow flood every 100 years,
p (k’OVGl”ﬂOW floods in 100 yrs) o k! makes setting rate parameter easy.

Lemma (additive closure) The sum of a finite number of Poisson RVs
IS a Poisson RV.

X ~ Poisson(A1), Y ~ Poisson(X2), X 4+Y ~ Poisson(\; + A2)
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Continuous Probability

Experiment Spin continuous wheel and measure X displacement from O

N

X

|

Question Assuming uniform probability, what is p(X = z)?



Continuous Probability

> Let p(X = x) = w be the probability of any single outcome

> Let S(k) be set of any k distinct points in[0, 1) then,
P(x € S(k)) =kn

> Since 0 < P(x € S(k)) < 1 we have that k7 < 1 for any k

» Therefore:m =0and P(x € S(k)) =p(X =2) =0



Continuous Probability

> We have a well-defined event that x takes a value in set = € S(k)
» Clearly this event can happen... i.e. it is possible

» But we have shown it has zero probability of occurring,
P(x e S(k)) =0

» The probability that it doesn’t happen is,
P(:C §7_f S(kj)) =1 — P(:C c S(k)) — 1 We seem to have

a paradox!

Solution Rethink how we interpret probabillity in continuous setting
» Define events as intervals instead of discrete values
» Assign probability to those intervals



Continuous Probability

DiscReTE CoNTINUOVLS

é P(X = 3) = Height of bar P(E3) = Areaof bar
> (7 - |
= 7— What does height
S // represent?
O
ARRNE= y \%//j“ﬁ
t \ M| | vl t t I ' .l..-—
I Z 2 4 5 E, E. B3 E, B9
Probabil; Height represents probability per
> Height — robability unit in the x-direction
Ax
We call this a probability density

(as opposed to probability mass)




Continuous Probability
> We denote the probability density function (PDF) as, p(X)
» An event E corresponds to an interval a < X < b

» The probability of an interval is given by the area under the PDF,

P(a§X<b):/bp(X:a:)da:

Qa

» Specific outcomes have zero probability P{X = 2] = Ple < X < £} =1

» But may have nonzero probability density p(X = x)



Continuous Probability Measures

Definition The cumulative distribution function (CDF) of a real-valued
continuous RV X is the function given by,

Different ways to represent

P(zr) = P(X < x) probability of interval, CDF

IS just a convention.

» Can easily measure probability of closed intervals,
Pla < X <b)=P(b) — P(a)

Fundamental Theorem

> If X is absolutely continuous (i.e. differentiable) then, of Calculus
dP(x t
p(x) = dfc ) and P(t) = / p(x) da

Where p(z)is the probability density function (PDF)



Continuous Probability

Most definitions for discrete RVs hold, replacing PMF with PDF/CDF...

Two RVs X & Y are independent if and only If,
p(x,y) =p(x)ply) or  P(X<z,Y <y =PX<x)PY <y)

Conditionally independent given Z Iff, Shorthand: P(z) = P(X < z)

plx,y|z)=plz|2)ply|z) or Plr,y|z)=Pl|z)P(y|=z)

Probability chain rule,
p(z,y) = p(z)p(y | z) and P(z,y) = P(z)P(y | )



Continuous Probability

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,
mm:/m%m@
Y
Expectation of a continuous random variable,
E[X] = / x - p(x)dr
X
Covariance of two continuous random variables X & Y,

Cov(X,Y) = E[(X-E[X])(Y -E[Y])] :L[)}(x—E[X])(y—E[Y])p(may) dxdy



Continuous Probability
Caution Some technical subtleties arise in continuous spaces...

For discrete RVs X &Y, the conditional P(Y=y)=0 means impossible
P(X =x,Y =y)

P(Y =y)
Is undefined when P(Y=y) =0 ... no problem.

P X=z|Y=y) =

For continuous RVs we have,

P(X <Y =
PX<a|Yy =y =XV =Y

P(Y =y)
but numerator and denominator are 0/0. P(Y=y)=0 means improbable,

but not impossible




Continuous Probability

Defining the conditional distribution as a limit fixes this...

P(X§$|Y:y)zgin(l)P(XSZUHISYSer(S)
_>
’ P X <z,y<Y <y+4)9) Definition The conditional PDF is given by,
= 1111
550 Ply<Y <y+9) o1y p(z,y)
P\T 1Y) =
L PX <Y <y+8) - P(X <Y <) p(y)
= 111N
5—0 PlY<y+4+d)—P(Y <y)
x 8@P(u,y+ §) — aQP(‘LL,y) ( Fundamental theorem of calculus)
- /OO ?L% P(y+96) — P(y) du (Assume interchange limit / integral )
%) o
© (&P(uwy+6) = EP(uy)) /0 |
— lim ~92~ 2" A d Multiply by ¢ =1
R (MultPy By = )
82 . T . . .
O P(y, z ( Definition of partial derivative )
N / af’:ag oy du = / ny du ( Definition PDF )



Useful Continuous Distributions

Uniform distribution on interval |a, b],

4 (

0 ifx <a, 0

pla) = 5 ifa<az<b, PX <z)=q73="
0
\

itb < x |1

Say that X ~ U(a,b) whose moments are,
(b—a)’

b+ a
2

E[X] =

SupposeX ~ U(0,1) and we are told X < %

what Is the conditional distribution?

P(X<z|X<1)=U(@

Var|X| =

ifr < a,
ifa <z <b,
ifb < x

1

? 2

)

f(x)
L
b—a ¢ ¢
\ \
| \
0 a b X
1
F (x)




Useful Continuous Distributions

n
—

> > >
oo
[

—_ a0

Exponential distribution with scale \,

&)

o
—

p(x) = e M Plx)=1-— e % . \
for X>0. Moments given by, S ~
1 . | o 1 2 s 4 s
E(X|= - Var X| =
[ ] \ i | )2 | | | X

Useful properties
» Closed under conditioning If X ~ Exponential(\) then,
PIX s+t | X Z2s)=PIX >1l]=¢ Al
* Minimum Let X4, Xs,..., X be i.i.d. exponentially distributed
with scale parameters A1, A2, ..., Ay then,
P(min(X7, Xo,...,Xn)) = Exponential(} . A;)




Useful Continuous Distributions

1.0

Gaussian (a.k.a. Normal) distribution with
mean (location) p and variance (scale) 0% .|

parameters, - b
1 1 '4’_
p(x) = Wexp—§($—ﬂ)2/02 0.2»_

We say X ~ N (u, o?). L R B T T BT

Useful Properties o o

0.8

 Closed under additivity: i i_:, 2

X ~ Nz, 02) Y ~ N(py, 02) L
X +Y ~ N + py, 07 +07) © osl
 Closed under linear functions (a and b constant): °2|

aX +b~ N(ap, +b,a%0?) ool




Useful Continuous Distributions

Multivariate Gaussian On RV X ¢ R¢
with mean 1 € R4 and positive semidefinite
covariance matrix ¥ ¢ Raxd

_ 1 _
p(x) = 2087 exp — o (2 — )T 87 (@ — p)

Moments given by parameters directly.

Useful Properties
» Closed under additivity (same as univariate case)

* Closed under linear functions,
AX +b~N(Au, + b, ALAT)

Where A € R™*4 and b € R™ (output dimensions may change)
« Closed under conditioning and marginalization



Covariance

Captures correlation between random variables...can be
viewed as set of ellipses...

ZEQ‘ LEQ‘ L9
X1 X1 X
B ————— B ——————
Positive Uncorrelated Uncorrelated and
Correlation same variance

(Isotropic / spherical)



Covariance Matrix

o o Var(Xl) ,OO'X1 0 X,
2 = Cov(X) = ( pox,0x, Var(Xs) )



Covariance Matrix

Marginal variance of
just the RV X,

|

o o Var(Xl) PO X, 0 X,
2= COV(X) o PO X,0 X, Val“(XQ)

I.e. How “spread out” is the distribution
In the X, dimension...




Covariance Matrix

Correlation between
X, and X,

|

Var(X ox,0
¥ = Cov(X) = (X1) - pox,ox;
pox,0x, Var(Xs)
R 0 e e
Recall, correlation is given by: / \
COV(Xl, XQ) 1 1 1 1 1 1
P = S s

0X,0X,

Captures linear dependence of RVs




Covariance

Captures correlation between random variables...can be
viewed as set of ellipses...

ZEQ‘ LEQ‘ L9
L1 X1 X1
e EEE— S —
Positive Correlation Uncorrelated Isotropic / Spherical

p >0 Z:(Ugﬁ (2) ) 2:((;2 02):021
Full matrix & 0 ox%, 0 o
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