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OUTPUT. Y

Linear Regression

Regression Learn a function that
predicts outputs from Inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlz+b

| |
0 1

INPUT: X

= We will add noise later...



Linear Regression

Where is linear regression useful?

Altaba Inc. Stock Price Prediction (@)  24-Hour Eta Forecast Thickness vs. Observed Maximum Temperature
: ::E:\gsmk Price Madmumn Tem perture (F)
3 = TS O 5 10 15 20 25 30 35 40 45 S0 S5 60 65 70 75 80 85 8 85 100
o 1200 .
o 1225
j—
a? ,ﬁ/ 1250 F
v v 1215
‘ 23 2 1300
l |‘| i || Il ! 2 § g
bl ull IR N U g8
fiLa L s a i | c?2 £ 1350
IRl T [ - 2. .F
W Wl ‘ ‘ E o 197TSE
81 guuui-
< Srasf
0 1450
1475
1996 2000 2004 2008 2012 2016 1600
Time
L L | L L | L L L | L L

Stock Prediction Climate Models
Massie and Rose (1997)

Trendlines

Used anywhere a linear relationship is assumed
between continuous inputs / outputs



Line Equation

Recall the equation for a line has a
slope and an intercept,

Q¢(L y:w.aj_|_b

/[ ]

Slope Intercept

Intercept (b) indicates where line crosses y-axis

/]

Slope controls angle of line

Positive slope (w) = Line goes up left-to-right

Negative slope = Line goes down left-to-right




Moving to higher dimensions...

In higher dimensions Line - Plane

Multiple ways to define a plane, we

will use:
r _
/n (p—p1)=0
Normal Vector In-Plane Vector
(controls orientation) (handles offset)

Regression weights will take place
of normal vector

Source: http://www.songho.ca/math/plane/plane.html



http://www.songho.ca/math/plane/plane.html

Inner Products

Recall the definition of an inner product:

T

W r=w1x1 +Waro + ... +WDITD

D
— E WqXd
d=1

Projection of one vector onto another,

T ~

w & = [w| cos where 2 =17y = T

Unit Vector




Linear Regression

[ Image: Murphéy,' K (2012) ]

For D-dimensional input vector = € R? the
plane equation,

y=wlz+b

Often we simplify this by including the intercept
Into the weight vector,

(o) [

TD @T%’:dederb-l

v ) Uy




Adding Noise

Gaussian (a.k.a. Normal) distribution with
mean (location) x and variance (scale) o
parameters,

1 1 ) 10|
p(m)_mexp_§($_ﬂ) /J

We say X ~ N (X | p,0°)

0.4

Useful Properties

* Closed under additivity:
X ~ N (e, 03) YNN(NyaUg?)

X+YNN(Hm+ﬂyaUa%+Us)

Probability Density

©
o

» Closed under linear functions (a and b constant):
aX +b~ N(ap, +b,a%0?)



Linear Regression

Input-output mapping is not exact, so we will add
zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y=w'zr+e where ¢ NN(O,UZ)

OUTPUT: Y

This is equivalent to the likelihood function,

p(y ‘ w,x) — N(y ‘ waaUQ) S _;NPlDJT:;< |

Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m, P) z4+c~N(m+c,P)

In the case of linear regressionz — ¢ and ¢ — w'



Great, we’re done right?

Data — We have this

We need to fit It to
data by learning the 1
regression weights

Random; Can’t do

R A
y —w X _I_ € - anything about it

low to do this? Y

Don’t know these;
What m_akes gOOd need to learn them
weights?




Learning Linear Regression Models

There are several ways to think about fitting regression:
 Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Fitting Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1 X;

01 — Estimated regression line, f(x) =bo + byx
= = Residual, y;-f(x;)

Intuition Find a line that is as
close as possible to every
training data point

The distance from each point
to the line Is the residual

T

/ o <
Training Output Prediction

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/
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Least Squares Solution

® Actual response, y;

B Predicted response, f(x;) = by + b1 X;

01 — Estimated regression line, f(x) =bo + byx
= = Residual, y;—f(x))

Functional Find a line that
minimizes the sum of
sqguared residuals

Over all the training data,
{(zi,yi) }iss

Least squares regression

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Least Squares

mmz —wlx;)?

This is just a quadratic functlon...
« Convex, unigue minimum

* Minimum given by zero-derivative
« Can find a closed-form solution

Let’'s see for scalar case with no bias,

Y = W




d 2
" E (y; —wx;)” =

Derivative (+ chain rule) — E 2 — ngz xz) p— O m—

Distributive Property 0= E Yil; — W E :'T?
i=1 =1

Z yzmz

3$J

Algebra w —



Least Squares in Higher Dimensions

Things are a bit more complicated in higher
dimensions and involve more linear algebra,

/ 1 I11 1D \
1 21 oD
X = .
\ 1 N1 .. IND )

Design Matrix

( each training input on a column)

"

YN

Vector of

Training labels

[ Image: Mu__rphéy',' K (2012) ]

Can write regression over all training data more compactly...

y = Xw

+«—— Nx1 Vector



Least Squares in Higher Dimensions

Least squares can also be written more [ Image: Murphy, K. (2012)
compactly, T %

N
min Y (y; —w”:)? = [ly —w” X
=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~~T Derivation a bit involved for lecture but...
W = (X X) X Yy « We know it has a closed-form and why

« We can evaluate it
« Generally know where it comes from

Ordinary Least Squares (OLS) solution



Learning Linear Regression Models

There are several ways to think about fitting regression:
 Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Learning Linear Regression Models

There are several ways to think about fitting regression:

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



MLE for Linear Regression

Given training data {(z;, y;)}., likelihood function
IS given by,

N N
log [ [ p(yi | zi,w) =) logp(ys | @i, w)
i=1 i—1

OUTPUT: Y

Recall that the likelihood Is Gaussian:

p(y | w,z) =N(y | w'z,0°%)

INPUT. X

So MLE maximizes the log-likelihood over the whole data as,

N
wM = arg max Zlog]\/(yi | wh z;, 0%)
i=1



Univariate Gaussian (Normal) Distribution

Gaussian (a.k.a. Normal) distribution with
mean (location) ;. and variance (scale) o2
parameters,

1 1

= exp —5 (v — p)? /o

N(z | p,0°) = ;

2m0

The logarithm of the PDF if just a negative
guadratic,

1 1

log N'(z | p,0%) = —5 log 27 —logo — —= (x — p)?

9 2

o
\ J \

)

Y

Y

PDF

10"

1072

1073

10"

=5

Constant in mean Quadratic Function of mean



Notation

Likelihood of linear basic regression model...

p(y | w,z) =Ny | wz,0”)

v

p(y | p) =Ny | po?)

...we will just look at learning mean parameter for now



MLE of Gaussian Mean

Assume data are I.I1.d. univariate Gaussian,

|—> Variance is known
y | M HN yz | My O )

Log-likelihood function'

Constant doesn’t N

1
sonsta B 2 _—2
ependonmean  _ . bot _ 5 Zl ((ys — p)?o™7)

MLE doesn’t change when we:
1) Drop constant terms (in /)

MLE estimate Is least squares estimator: 2) Minimize negative log-likelihood

N N
| |
i = - s argmax y (y; — p)” = argmin } _(y; -



MLE of Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1 X;

01 — Estimated regression line, f(x) =bo + by x
= = Residual, y;—f(x))

Substitute linear regression
prediction into MLE solution
and we have,

N
min Y (y; — wx;)?
i=1
So for Linear Regression,

MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Multivariate Gaussian Distribution

We have only seen scalar (1-dimensional) X, but MLE is still least
squares for higher-dimensional X...

Let X € R? with meanu € R and positive semidefinite covariance
matrix Y € R%*4 then the PDF is,

N(z | p,E) = 275" exp—=(z — )" Sz — p)

Again, the logarithm is a negative quadratic form,
1
log |27%| 712 — (2 — 1) TS (@ — )

\ J \ )
Y Y

Constant (in mean) Quadratic Function of mean




Multivariate Quadratic Form

Quadratic form for vectors is

% /|- given by inner product,
\ | f— P
[ 1 -
o & & 52— K1) (y—n)
LZ T~ , For iid data MLE of Gaussian
P R < mean is once-again least
) squares,
« Strongly convex N
- Differentiable min > (yi — )
1=1

* Unique optimizer at zero gradient



Notation

Substitute multi-dimensional linear regression...

p(y | p) =Ny | po?)

v

p(y |w,z) =N(y | wz,0°I)

...brings us back to the least squares solution



MLE of Linear Regression

Using previous results, MLE is equivalent to [ Image: Murphy, K. (2012)
minimizing squared residuals, T %

N
min Y (y; —w”w:)? = [ly — w"X]?
=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~~T Derivation a bit involved for lecture but...
W = (X X) X Yy « We know it has a closed-form and why

« We can evaluate it
« Generally know where it comes from

Ordinary Least Squares (OLS) solution



Linear Regression Summary

1. Definition of linear regression model,
y=wlz+e where ¢~ /\/((),(;2)

2. For N 1id training data fit using least squares,

N

wO" = arg min E (y; — w' ;)7
w
i=1

3. Equivalent to maximum likelihood solution



Linear Regression Summary

Ordinary least squares solution
N

wO = arg min Z(yz — w! z;)?

w
1=1

Is solved In closed-form using the Normal equations,

/ 1 11 1D \ "
1 21 Top
X=1 . . . y =

f ) wOLS _ (XTX)_ley

YN

\ 1 o ... awp )

Design Matrix Vector of QU EST'ONS')

( each training input on a column) Training labels



A word on matrix inverses...

wOLS _ (XTX)—ley
Least squares solution requires inversion of the term,
(X*Xx)™!
What are some Issues with this?

1. Requires O(D?) time for D input features

2. May be numerically unstable (or even non-invertible)

1 1 | -
(Qj _|_ €) — — Small numerical errors in input

can lead to large errors in solution
T + €




Pseudoinverse
UJOLS _ (XTX)—ley
The Moore-Penrose pseudoinverse Is denoted,
XT=XI'x)"1x?

» Generalization of the standard matrix inverse
« Exists even for non-invertible XX

* Directly computable in most libraries

*In Numpy itis: 1inalg.pinv



Linear Regression In Scikit-Learn

_ _ For Evaluation
Load your libraries,

import matplotlib.pyplot as plt .
import numpy as np

from sklearn import datasets, linear model
from sklearn.metrics import mean squared error, r2 score

Load data,

# Load the diabetes dataset

diabetes X, diabetes y = datasets.load diabetes(return X y=True) Samples total 442

Dimensionality 10

# Use only one feature Features FEHL -2 <Xx<.2
diabetes X = diabetes X[:, np.newaxis, 2] Targets Integer 25 - 346
Traln / Test Spllt diabetes X train = diabetes X[:-20] diabetes y train = diabetes y[:-20]

diabetes X test = diabetes X[-20:] diabetes y test = diabetes y[-20:]



Linear Regression In Scikit-Learn

.ﬁewm

Train (fit) and predict,

# Create Linear regression object
regr = linear model.linearRegression()

# Train the model using the training sets
regr.fit(diabetes X train, diabetes y train)

# Make predictions using the testing set
diabetes y pred = regr.predict(diabetes X test)

Coefficients:
[938.23786125]

Plot regression line with the test set, Hean squared error: 254807 '

Coefficient of determination: ©.47

# Plot outputs
plt.scatter(diabetes X test, diabetes y test, color="black™)
plt.plot(diabetes X test, diabetes y pred, color="blue", linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()
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Outliers

How does an outlier affect the estimator?

Squared Error




Outliers

How does an outlier affect the estimator?

Squared Error




Outliers In Linear Regression

Outlier “pulls”
regression line away
from inlier data

Need a way to ignore or
to down-weight impact
of outlier

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html



https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html

Dealing with Outliers

00 many outliers can indicate many things: non-Gaussian
(heavy-tailed) data, corrupt data, bad data collection, ...

A few ways to handle outliers...

1. Use a heavy-tailed noise distribution (Student's T)
Fitting regression becomes difficult
2. ldentify outliers and discard them

NP-Hard and throwing away data is generally bad

3. Penalize extreme weights to avoid overfitting (Regularization)



Regularization

Regqularization helps avoid overfitting training data...

Model = min Loss(Model, Data) + A - Regularizer(Model)

;e

97 T Regularization Regularization Penalty
Strength

Red model is without regularization

Green model includes regularization




Reqgularized Least Squares

A couple regularizers are so common they have specific names

L2 Regularized Linear Regression
* Ridge Regression
 TiIknonov Regularization

L1 Regularized Linear Regression

* LASSO
» Stands for: Least Absolute Shrinkage and Selection Operator



Reqgularized Least Squares

Ordinary least-squares estimation (no regularizer),

Already know how to = arg mln E w 337,
solve this...

Quadratic Penalty

/

A
— argmmz —wla;)? §Hw|\2

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSQ) AbsoluteValue (L1) Penalty

—argmmz —wlx;)? + Nwl



A word on vector norms...

he L2-norm (Euclidean norm) of a vector w Is,

D D
Jwl| = VuTw = | 3w Jw|* = w?
\dzl d=1

The L1-norm (absolute value) of a vector w is,

D
wl =) |wd
d=1



Other Regularization Terms

H | l |

g<lis not a norm, L1 is non- L2 Regularization
and thus not convex differentiable

A more general regularization penalty,
1 A
6 = arg mgin 5 Z(yz — )% + 5\6’](]

1=1



L2 Regularized Least Squares

Quadratic
x N
wL2 — arg m]_n E (yz —_ wT.sz)Q _I_ 5 Hw H 2 ; Sum of squ‘ares errorconltours forlinear‘ regression
w ﬁ
=1 \ j 25 // -

Quadratic

Quadratic + Quadratic = Quadratic

e Differentiable
. Convex COBE e TN
» Unique optimum N T—

* Closed form solution wo



L2 Reqgularized Least Squares : Simple Case

N
d 1 A,
— = , — WXy | w =
dw 2 4 Ui ’ 2 dw
1=1
Derivative (+ chain rule) p— Z — ng‘Z ;CZ) -+ )\w = ()=
Distributive Property 0 = Z Y; Xy — W Z ZE? — A\w
i=1 j=1

A+ Zj a:?

Algebra w =



L2 Reqgularized Linear Regression — Ridge Regression

Source: Kevin Murphy’s Textbook
A 2
= argmm E —wlx;)* + §Hw|\

Sum of squares error contours for linear regression

After some algebra... B
wl? = (AT + XTX)1xTy oo S — N
Compare to ordinary least squares: w;? | i
wOS — (XTX)"1XTy O-j
Regularized least-squares includes osr ]
pseudocount in weighting similar to SN 1; . 3

Gaussian mean estimator _ Wo



Notes on L2 Regularization

« Feature weights are “shrunk” towards zero (and each other) —
statisticians often call this a “shrinkage” method

« Typically do not penalize bias (y-intercept, wy) parameter,

mmg —whz; —wp) +)\§ w3
d=1

* Penalizing w, would make solution depend on origin for Y — adding a
constant ¢ to Y would not add a constant to solution weights

 Can fit bias In a two-step procedure, by centering features x;; —
then bias estimate is wg = ¥y

« Solutions are not invariant to scaling, so typically we standardize (e.g.
Z-score) features before fitting model ( Sklearn StandardScaler )



Scikit-Learn : L2 Regularized Regression

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize="deprecated', copy X=True, max_iter=None, tol=0.001,

solver="auto’, positive=False, random_state=None) 1 [source]

alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and

reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 /
(2C) in other linear models such as LogisticRegression Or LinearSVC. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in number.

Alpha is what we have been calling A



Scikit-Learn : L2 Regularized Regression

Define and fit OLS and L2 regression,

2001 — oqLs
175 {— B
ols=linear model.LinearRegression() 150 -
ols.fit (¥ train, y train)
ridge=linear model.Ridge(alpha=0.1) 125 -
ridge.fit (X train, y train) 100 -
0.75 1
Plot results,
0.25 A
. _ 0.00 1
fig, ax = plt.subplots()

ax.scatter (X train, y train, s=50, c="black", marker="o") 000 025 050 075 100 125 150 175 200
ax.plot (X test, ols.predictix_test}, color="red", label="0QLS")
ax.plot (X test, ridge.predict(X test), color="blue", label="L2")

plt.legend/()
plt.show ()

L2 (Ridge) reduces impact of any single data point



Prediction Error

Choosing Regularization Strength

We need to tune regularization strength to avoid over/under fitting...

N

A
L2 - T N2 N2
w —argngng (yi —w” x;) +2Hw|\

1=1

Recall bias/variance tradeoff
Low Variance High Variance . . .
Error = Irreducible error + Bias? + Variance

High regularization reduces model
complexity: increases bias / decreases
variance

Training Sample

How should we properly tune \?

Model Complexity



Cross-Validation

I | | I | run 1 N-fold Cross Validation Partition training

data into N “chunks” and for each run
I | | I I run 2 select one chunk to be validation data
I | | I I run 3
For each run, fit to training data (N-1
I | | I I run 4 chunks) and measure accuracy on
validation set. Average model error
across all runs.

Drawback Need to perform training N times.

Source: Bishop, C. PRML



Model Selection for Linear Regression

A couple of common metrics for model selection...

Residual Sum-of-squared Errors The total squared residual
error on the held-out validation set,

N

RSS = Z(y@ — UJT%’)Q

1=1

Coefficient of Determination Also called R-squared or R2.
Fraction of variation explained by the model.

Model selection metrics are known as “goodness of fit” measures



Coefficient of Determination R2

Predic‘te/d Variance Residual Sum-of-Squares
N T 2
R2_ 1 RSS | D im1 (Ui —w” ;)
/SS > im1(Yi — U)
Total variance /
In dataset Variance using avg. prediction

1
Where: ¥ = = Zyz IS the average output



Coefficient of Determination R2

RSS xf\il(% — ’wTﬂfi)z
S5O xi\;(yz — g)Z

Value R?=1.0 means model
explains all variation in the data

Value R?=0 means model is as good
as predicting average response

Quarterly change in GDP  (A%)

R2<0 means model worse than © .10 05 00 05 10 15 20
prec“ctlng average Output Quarterly change in the unemployment rate  (A%)



“Shrinkage” Feature Selection

Down-weight features that are not useful for prediction...

Quadratic penalty A||w||* down-weights
(shrinks) features that are not useful for
prediction

Example Prostate Cancer Dataset measures
prostate-specific cancer antigen with features:
age, log-prostate weight (lweight), log-benign
prostate hyperplasia (Ilbph), Gleason score
(gleason), seminal vesical invasion (svi), etc.

0.000'!—> L2 regularization learns zero-weight

Term LS  Ridge

Intercept 2.465 2.452

lcavol  0.680 0.420

lweight  0.263 0.238

age —0.141 —0.046

lbph  0.210 0.162

csvio, 0.305 L 0.227

'lcp —0.288

gleason —0.021 ~0.040

pggds  0.267 0.133

for log capsular penetration (lcp)

[ Source: Hastie et al. (2001) ]



Constrained Optimization Perspective

mmz —w' x) Intuition Find best model (lowest
N RSS) given constraint on total
P re weights...
Squared Error Y eature weights
/ /?;fi - // ,/’f / /

Total Weight W2/ @° /// There exists a mathematically
Norm S equivalent formulation for some
lwll? = 6() e function 6(\)

w — [\ ///"'
\ \--‘/OIOtimaI Model
L2 penalized regression rarely
wq learns feature weight that are
exactly zero...

[ Source: Hastie et al. (2001) ]



Reqgularized Least Squares
Ordinary least-squares estimation (no regularizer),
= arg mmz — w? ajz

Quadratic Penalty

/

A
= argmmz —whx;)? §Hw|\2

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSQ) AbsoluteValue (L1) Penalty

—argmmz —wlx;)? + A|w



Optimal Model

Learns w, =0

L1 Reqgularized Least-Squares

/
4 //
s F i
$ S S /S
/S S g P /
2.
// / / // / yd
/ / s /
/ /o S
/ T s
i | L~ -
/ | > Ve
- //
|' -
-
\ 7 g
\_ .

Able to zero-out weights that are not predictive...



Coefficients

Feature Weight Profiles

0.0 0.2 0.4 0.6 0.8 1.0

Shrinkage Factor s

Varying regularization
parameter moderates
shrinkage factor

For moderate regularization
strength weights for many
features go to zero

 Induces feature sparsity
* |deal for high-dimensional settings

« Gracefully handles p>N case, for p
features and N training data



Coefficients

Feature Weight Profiles

L1 Penalty

Icavol

svi
Iweight

pgg45
Ibph

age

lcp

0.0 0.2

04 0.6 0.8 1.0

Shrinkage Factor s

Coefficients

0.6

0.4

L2 Penalty

Icavol

_» SV
* [weight
pggas

Ibph

——

e




Learning L1 Regularized Least-Squares

—argmmz —whz;)? + Nw|

Not differentiable...

w| d |y
I .I
il

...doesn’t exist at w=0

! Can'’t set derivatives to zero as
In the L2 case!




Learning L1 Regularized Least-Squares

* Not differentiable, no closed-form solution

* Butitis convex! Can be solved by quadratic programming
(beyond the scope of this class...)

+ Efficient optimization algorithms exist

* Least Angle Regression (LAR) computes full solution path for
a range of values A

« Can be solved as efficiently as L2 regression



sklearn.linear model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize="deprecated', precompute=False, copy X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection="cyclic') 1 [source]

Parameters: alpha : float, default=1.0
Constant that multiplies the L1 term. Defaults to 1.0. alpha = @ is equivalent to an ordinary least square,
solved by the LinearRegression object. For numerical reasons, using alpha = @ with the Lasso object is not
advised. Given this, you should use the LinearRegression object.

fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e.
data is expected to be centered).

precompute : ‘auto’, bool or array-like of shape (n_features, n_features), precompute
Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as
argument. For sparse input this option is always False to preserve sparsity.

copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.



Specialized methods for cross-validation...

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(* eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize="deprecated’,
precompute="auto', max_iter= 1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False,

random_state=None, selection="cyclic") [source]

Computes solution using coordinate descent

sklearn.linear model.LassolarsCV

class sklearn.linear_model.LassolLarsCV(*, fit_intercept=True, verbose=False, max_iter=500, normalize="deprecated',
precompute="auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy X=True, positive=False) 1

[source]

Uses least angle regression (LARS) to compute solution path



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

model = LassoCV(cv=20).fit(X, y) or model = LassolarsCV(cv=20, normalize=False).fit(X, y)

Mean square error on each fold: coordinate descent (train time: 0.38s)
3800 Bl

- TR
Plot solution path for range of alphas, | B
| I
e !
plt.figure() 3400 - '?~,_
ymin, ymax = 2300, 3800 5 |
plt.semilogx(model.alphas + EPSILON, model.mse path , ":™) $ el I ﬂ:ué
plt.plﬁt( §3000- ................ !
model.alphas + EPSILON, A“ alphas— 5 i
model.mse path .mean(axis=-1), i T i
my, | ........... e
k 3 2600 4  ereererenrrzzizer :
label="Average across the folds", Fooeer.,
- Average across the folds
linewidth=2, 24001 --- alpha: CV estimate
) e By s o
plt.axvline( a
model.alpha + EPSILON, linestyle="--", color="k", label="alpha: CV estimate”
) <
(1Pl

— Learned alpha_ (no “s”... annoying...)



» Linear Regression
» Least Squares Estimation
» Regularized Least Squares

» Logistic Regression



Classification as Regression

Suppose our response variables are binary y={0,1}. How can we use
linear regression ideas to solve this classification problem?

1 |:| . .:Iﬁ-i.!;-!.!.*.:.:.!.::.:.x-:-.-.:-..._:..-.:...

Purchased
o]
[=3]

=
.

. B T - U U i S —_.—--lhéL

10.0 12.5 15.0 17.5 20.0 2.5 25.0 27.5
Age
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Classification as Regression

10.0 125 150 17.5 20,0
Age

22.5

5.0

215

ldea Fit a regression function to the
data (red). Classify points based on
whether they are above or below the
midpoint (green).

(

0 ifwlz <05

Class = ¢
1 ifwlz>=0.5

\

 This Is a discriminant function, since it discriminates between classes
e Itis alinear function and so is a linear discriminant
» Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Multiclass Classification as Regression

Suppose we have K classes. Training outputs
for each class are a set of indicator vectors,

Y =(Y1,...,Yk)
With Y. = 1 if class k, e.g. Y=(0,0,...,1,0,0).

For N training inputs create NxK matrix of outputs Y and solve,

T 1~T W is DxK matrix of K linear
W = (X X) XY regression models, one for

each class

« Compute fitted output [f{x] = [T W|" a K-vector o
_ _ This is an instance of
* Identify largest component and classify as, multi-output linear

regression
C' = argmax fi(x)

k [ Image: Hastie et al. (2001) ]



Linear Probability Models

4

0 ifwlz<0.5

Class = ¢
1 ifwlz>=05

\

Binary Classification Linear model approximates
probability of class assignment,

Hsﬁgimmzmm y(aj) _ wT:U ~ p(CIaSS _ 1 |w’ x)

Multiclass Classification Multiple decision boundaries,
each approximated by the class-specific linear model,

fk(aﬁ) = Wyr.x Where Wy..is ki row

Approximates probability of class assignment,

A

fr(x) ~ p(Class = k | x)




What'’s the rationale?

Recall the linear regression model,

p(y | I) — N(wT$702)

So linear regression models the expected value,

Ely | z] =wlz We can call this
approach least
For discrete values we have that, squares classification

Elyr. | 2] = fe(z) = p(Class = k | z)

Can easily verify that they sum to 1,

S frl(@) =1

But they are not guaranteed to be positivel ~ = = = = g = = @



Logistic Regression

ldea Distort the response variable in
some way to map to [0,1] so that it is
actually a probabillity:

s U NSNS NANSNSHSA MENES NSNS AAE I ERUINSS SRS A —

y(z) = o(w' z)

Uses the logistic function,

T IS USSR SUUUUUUUUUUUUU SUUUUUUUUUN: SUNURUUUUUUE SO, GHRUUUUUS SUUUURUUU: USSR AU

| T exp(w” x)
0.0 f- : : 5 5 ] ! ; ol\w ) =
1|:;.|:| 12I.5 :|.5I.|]I l?l.5 2|:;.|:| 22I.5 25I.|} 2]"'.5 ( ) 1+exp(wT$)
Age

* Logistic function is a type of sigmoid or squashing function, since it maps any
value to the range [0,1]

 Predictor variable now actually maps to a valid probability mass function (PMF),
y(x) = o(wlz) = p(Class = 1|w, x)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Logistic Regression : Decision Boundary

Binary classification decisions are
based on the posterior odds ratio,
p(C=1]|xz)
p(C=0]x)

= 0

T IS USSR SUUUUUUUUUUUUU SUUUUUUUUUN: SUNURUUUUUUE SO, GHRUUUUUS SUUUURUUU: USSR AU

If this ratio Is greater than 1.0 then
classify as C=1, otherwise C=0

10.0 125 15.0 17.5 20.0 22.5 25.0 27.5
Age

In practice, we use the (natural) logarithm of the posterior odds ratio,

log — 5 —w'z This is a linear decision boundary
= £

Logistic regression is a linear classifier



Logistic vs. Logit Transformations

Logistic Function

1 -

0:5

Maps (—o0,0) to [0,1]

Logit Function

—f(x)=1

| —

%0

_4(

/

Maps [0,1] to (—oo, 00)

Logistic also widely used in Neural Networks — for classification last
layer is typically just a logistic regression



Logistic vs. Logit Transformations

Logistic function maps the linear regression to the interval [0,1],

exp(w! )

T 1+ exp(w! x)

o(w' )

Logit function is defined for probabillity values p in [0,1] as,

logit(p) = log -

Logit is the inverse of the logistic function, Logit s also the log-likelihood

ratio, and thus decision boundary

for our binary classifier

logit(o(w!2)) = w!z



Multiclass Logistic Regression

Classification decision based on log-ratio compared to final class,

p(C=1]|x) T
1

log = Wy T

p(C =K | x)
_ p(C=2|z) T

K-1 log-odds (or logit) log — = Wa X

transformations ensures p(C =K |z)
probabilities sumto 1
C=K-—-1
log p( ) — wl_ .z

p(C =K | x)

Choice of denominator class is arbitrary, but use K by convention



Least Squares vs. Logistic Regression

» Both models learn a linear decision boundary
 Least squares can be solved in closed-form (convex objective)
 Least squares is sensitive to outliers (need to do regularization)

[Source: Bishop “PRML"]



Least Squares vs. Logistic Regression

Similar results In 1-dimension

Purchased
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Least Squares vs. Logistic Regression

Least Squares Logistic Regression

[l

[Source: Bishop “PRML"]



Fitting Logistic Regression
Fit by maximum likelihood—start with the binary case

Posterior probability of class assignment is Bernoulli,

ply |z, w)=ply=1]z,w)?1 —ply=1]z,w)"¥
Given N iid training data pairs the log-likelinood function is,

Zlogp Yi ‘ L, W

— Z{yz logp(y; = 1| @i, w) + (1 —y;) logp(y; = 0 | 23, w)}

— Z {ysz:L'Z — log (1 —+ Bwai) }




Fitting Logistic Regression

wMHE = arg max Z {yinmi — log (1 + ewa"’) }

Computing the derivatives with respect to each element wy,

’LUTCIZ‘Z'
Tai | Ys =0
8U)d Z di | Yi — 1+ e’wT:Uf,,

* For D features this gives us D equations and D unknowns

* But equations are nonlinear and can’t be solved directly

* Need to use gradient-based optimization to solve (Newton’s method)
* Beyond scope of this class; but know that it is an iterative process




lteratively Reweighted Least Squares

Given some estimate of the weights w°'4 update by solving,

W = (X?WX) ' X! Wz

Y Y

Design Matrix NxN Diagonal
(NxD) Weight matrix
Where z Is the gradient direction, P(y=1x) for each

training point

7, — Xwold + W_l(y . p{

Essentially solving a reweighted version of least squares,

OLS T —1~T Each iteration changes W
w il (X X) X Yy and p so need to resolve



sklearn.linear_model.LOgisticRegression

class sklearn.linear_model.LogisticRegression(penalty="12', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class="auto', verbose=0, warm_start=False,
n_jobs=None, [1_ratio=None) 1 [source]

penalty : {’[1’, ‘12°, ‘elasticnet’, ‘'none’}, default="12’
Specify the norm of the penalty:

* 'none':no penalty is added;
e '12':add a L2 penalty term and it is the default choice;
e '11':add a L1 penalty term;
e ‘'elasticnet':both L1 and L2 penalty terms are added.

tol : float, default=1e-4
Tolerance for stopping criteria.

C : float, default=1.0
Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values
specify stronger regularization.



Choice of Optimizer

N — se0 | . - .
— Momentum | S_lnce Loglst_lc regression
~= NAG = requires an optimizer, there are

i more parameters to consider
adelta

Rmsprop

The choice of optimizer and

parameters can effect time to
= fit model (especially if there are
many features)

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms
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Scikit-Learn Logistic Regression

= log regression.fit (pd.DataFrame (x), V)

Yy pred = log regression.predict proba (pd.DataFrame (x))
log v pred 1 = [item[l] for item in y pred]

fig = plt.figure(figsize=(10,5))
xlabel = 'Age'

ylabel = 'Purchased'

plt.xlabel (xlabel)

plt.ylabel (yvlabel)

Purchasad

plt.grid(color="'k', linestyle=':', linewidth=1)
plt.plot(x, vy, '"xb'") : ; ; i SR _ s
plt . pl ot (%, log Y_pre.;j_ 1, '-r") 10.0 125 15.0 175 200 2.5 5.0 215

= plt.plot(x, line point 5,'-g"')

Function predict proba (X) returns prediction of class
assignment probabilities (Just a number Iin binary case)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,

* In Machine Learning we use Logistic Regression for building predictive
classification models

 In Data Science we use it for understanding how features relate to data
classes / categories

Example South African Heart Disease (Hastie et al. 2001)

Data result from Coronary Risk-Factor Study in 3 rural areas of South
Africa. Data are from white men 15-64yrs and response is
presence/absence of myocardial infraction (MIl). How predictive are
each of the features?



0

0

sbp

Looking at Data
Each scatterplot shows
pair of risk factors. Cases
with Ml (red) and without

(cyan)

tobacco

10 20 30

Features
 Systolic blood pressure
« Tobacco use

0.8

famhist

00 04

« Low density lipoprotein (Idl)

« Family history (discrete)
* Obesity
« Alcohol use

alcohol

50 100

* Age

20

o e s n am w [Source: Hastie et al. (2001)]




Example: African Heart Disease

Coefthicient Std. Error Z Score

(Intercept)  —4.130 0964 4285  Fitlogistic regression to the

sbp 0.006 0.006  1.023  data using MLE estimate via

tobacco 0.080 0.026 3.034 iteratively reweighted least
1d1 0.185 0.057 3.219 sguares

famhist 0.939 0.225 4.178

obesity -0.035 0.029 —1.187 Standard error Is estimated

alcohol 0.001 0.004 0.136 standard deviation of the
age 0.043 0.010 4184 learned coefficients

Recall, Z-score of weights is a random variable from standard Normal,
Wq —~ SE(’wd) ~ N(O, 1)

Thus anything with Z-score > 2 is significant at 5% confidence level



Example: African Heart Disease

Coefhcient Std. Error Z Score

(Tatercepw) _ _ 4130 _ _ 0964 4285 Finding Systolic blood
T sbp 0.006 0.006  1.023 - pressure (sbp) is not a
L tobaces = = - 9.080 = =+ 0:026 - = - 3034 ! significant predictor
1d1 0.185 0.057 3.219
T ii:i;‘ T -83%? - %ﬁé‘;' = fﬂé‘? b, Obesity IS not significant and
e mgST T D00 — goo1 - - o1 | negatively correlated with heart
age 0.043 0.010 4.184 disease in the model

Remember All correlations / significance of features are based
on presence of other features. We must always consider that
features are strongly correlated.



Example: African Heart Disease

Doing some feature selection

Coefficient Std. Error Z score we find a model with 4 _
(Tntercept) —4.204 0498 _8.45 features: tobacco, Idl, family
tobacco 0.081 0.026 3.16 history, and age
1d1 0.168 0.054 3.09
famhist 0.924 0.223 4.14 How to interpret coefficients?
age 0.044 0.010 4.52 (e_g_ tobacco = 0_081)

» Tobacco Is measured In total lifetime usage (in kg)
* Thus, increase of 1kg of lifetime tobacco yields

exp(0.081) = 1.084

Or 8.4% Increase In odds of coronary heart disease
* 95% Clis 3% to 14% since exp(0.081 + 2 x 0.026) = (1.03,1.14)
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