03 k-Nearest Neighbors

Jason Pacheco

THE UNIVERSITY
. OF ARIZONA

*some slides are from Daniel Hsu, Francesco Orabona, and Jerry Zhu with their permission 1

Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

Idea Find a student "‘similar” to Alice & has taken Algorithm course before, say Jeremy
* If Jeremy likes Algorithms, then Alice is also likely to have the same preference.

* Or even better, find several similar students

Prediction = mapping inputs to outputs

Inputs = features that can be viewed as points in some space (possibly high-dimensional)

“Similarity” = “distance” in feature space

Suggests a geometric view of data

k-nearest neighbor: main concept

* Trainset: S = { (x4, ¥1), o, (X, Ym)}

* Idea: given a new, unseen data point x, its label should resemble the labels of nearby points

e Learned function
e Input: x € R4

* Find the k nearest points to x from §; call it N(x) E.g., Euclidean distance

* Output: the majority vote of {y;:i € N(x)}
* For regression, compute the average label.

Measuring Nearest Neighbors

« Oftentimes convenient to work with feature x € R%
 Distances in R%: notation x(f): x = (x(1), ..., x(d))

* Euclidean distance d,(x,x") = \/fo:l(x(f) - x'(f))z
e Manhattan distance d,(x,x") = Z?zllx(f) —x'(f)l

* |If we shift a feature, would the distance change?

 What about scaling a feature?

* How to extract features as real values?
* Boolean features: {Y, N} ->{1,0}
e Categorical features: {Red, Blue, Green, Black}
 Convertto{l, 2, 3, 4}?
* Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

Nearest Neighbor Classification

+a

=E

+T 4+

++ T

?
—+_

Query point ? Will be classified as +
but should be -

Inductive Bias Query points belong to
same class as closest example seen in
training data

Question How can we reduce
inductive bias?

k-nearest neighbors (k-NN): main concept

Training set: S = {(x1, V1), oo, (X1, Vi)}

Inductive bias: given test example x, its label should resemble the labels of nearby points

Function
* input: x

* find the k nearest points to x from §; call their indices N (x)

* output: the majority vote of {y;:i € N(x)}
* For regression, the average.

e ®
O
™
® =
® @.
®
L ®
® °
° . e o
* ® e L]
° P

kK-NN classification example

/ decision boundary

k-NN classification: pseudocode

* Training is trivial: store the training set

Algorithm 3 KNN-PrepicT(D, K, %)

» forn =1to N do

* Test:

appendto list —— ., S« S @ (d(xy, &), n) // store distance to training example n
+ end for
sort in first coordinate =— 5 S < SORT(S) // put lowest-distance objects first
6: 9 — 0
» fork=1t0 Kdo
s (distn) « S /I n this is the kth closest data point
o G+ Yy // vote according to the label for the nth training point
. end for
Majority vote of {y;:i € N(x)}——>« return siGn(f) //return +1if § > 0and —1if§ <0

* Time complexity (assuming distance calculation takes O(d) time)
e Omd +mlogm +k) = O(m(d +logm))

* Faster nearest neighbor search: k-d trees, locality sensitive hashing

Issue 1: Feature Scaling

* Features having different scale can be problematic.

* Ex: ski vs. snowboard classification

& h. S eWX s
< \ne) S
Nﬂ(é(m) _ guoudbercd (em) oudbercd ©
by i
,J'——’X—/’:’J—'Ji"___._n - iy
$E T 11;’.
_ i (mm) | iAW (em)

e Solution: feature standardization

Make sure features are scaled fairly

* Features having different scale can be problematic. (e.g., weights in lbs vs weight in grams)

* [Definition] Standardization

* For each feature f, compute,uf—— iz x:(f), op = J ¥ (x () —,uf)z

@

* Then, transform the data by Vfe{l,..,dLViel, .., m}x(f) « 2L)

after transformation, each feature has mean 0 and variance 1

* Be sure to keep the “standardize” function and apply it to the test points.

+ Save {(17, 07)}f-1

. * * x}_'uf
* For test pomt X, apply Xf «— - , Vf
f

10

Issue 2: Irrelevant Features

here’s a case in which there consider the effect of an
is one relevant feature x; and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctl
y Test example
@ ®
o
P o
X2
________ L
o
Test example
PY o
—0—00 00 0 0 0 &
X1 X1

e Recall: how did we deal with these in decision trees?
e Solution: feature selection (later in the course)

11

Issue 3: test time complexity

 How a k-NN function work (say d-dimension):

* Compute distance to m points 0(dm)
* Sort distances O(mlogm)
* Pick k smallest. O(k)

- Overall O(m(d + logm))

* Issue: test time complexity scales linearly with m!! imagine an image classifier trained on 10M
. images to be used in smart phones.
e Solutions
e k-d tree: Exact search for large d very likely to hit the worst case

* Best case: 0(log(m)) Worst case: 0(m)
* Locality-sensitive hashing: approximate search, O(m*) with p € (0,1)

sublinear time complexity!

12

Comparison (feature x € R%)

Decision Tree k-NN
° |nterpretabi|ity High Medium (example-based)
* Sensitivity to Low High

irrelevant features

O(#nodes - d - (m + mlogm))

* training time 0
< 0(d m?) (when no two points have the same feature)
e test time per example O(depth) 0(m(d +1logm))
: Can reduce this with
i :
L aiL K-d trees or locality
nEE EEwm sensitive hashing

j‘ ‘ ‘H
| | | [W N
T T T 1 T N

. 13

o
[

Curse of Dimensionality - Computation

Divide space into regular intervals to avoid computing distances for each data

A T

Number of required cells grows exponentially in dimension!

14

Curse of Dimensionality — Distance Weirdness

e Consider D-dimensional hypersphere of radius r=1 I

e What is the fraction of volume within shell of width €? 0

0.6F

0.4r

volume fraction

0.2

D 1 1 1 1
0 0.2 0.4 0.6 0.8 I

* Total volume of hypersphere concentrates onto shell at the surface! €

* Distances go to zero!

Intuition about lower dimensions doesn’t extend to high dimensions
15

Issue 3: choosing k

e k is not learned from data. Must be selected by practitioners.
 Q:If we set k = m, then which classification rule does it look like?

e Q:If weset k = 1, what would be the train set error (assume there is no repeated train data point)?

16

Hyperparameter tuning in k-NN

K=1 K=5
45 . 45 .
o
[] e -
4.0 1 . L 40 ™
. - * e " o
o
L] *e [] ® 1 ®
- see o |
2 LA L e - cesee ‘T
. o * ‘es ees ® o oo o oo “ens o
. o0 LI o o9 . a0
g1 = I "8 a8 ane kel L 1] 304 @) 2 0 e8e . e ®
® oS eosese ® . ™ 8 G086 @
408 & 880 L ese = eee
® s e e @ . s es @
e @ . e @
25 1 e see . . 25 A . see o]
- '. . e .
ae 2 - e
45 50 55 60 65 70 75 BO 45 50 55 60 65 70
K=10 K =50
45 45
» .
. .
. .
40 1 L] 40 1 L]
» .
.
e ee ™ e o .
35 ase @ 35 4 ase @
e e e ew e 'R R .e
o o ° .
* o0 . (T T T e e . e e80 @
o o * o8 e o8 e o9
ig] @ s e a8 eee amse . T ig] e s e e 5 eee moe .
® []] [TI11 TN] [] » [1] 2000e @&
ese o eed I ete 0 ees
. s es @ > s e
e @ o T
25 A * 0 see i) 25 e see . ™
[] [] [] »
. » . .
e e

Hyperparameter tuning in k-NN

Hyperparameter: k

k =1:
e Training error = 0, overfitting

k = N:
e QOutput a constant (majority class) prediction, underfitting

Can use hold-out validation to choose k

18

K-NN Summary

* Given: labeled data S

* Training
* Compute and save {(,uf, af)}?zl
 Compute and save standardization of S

* Test

. . . . XfH
* Given x7, apply standardization x; « fa f,‘v’f
f

e Compute k nearest neighbors N(x*)

* Make prediction
* For classification: Predict by majority vote label in N(x*)
* For regression: Predict by the average label in N(x*)

19

Variations

Recall the majority vote rule: § = arg Er{riax Qien(o Wi =y}

o)
@@ 0
Q: Blue dotis the test point. If k=3, which label would it predict?

Q: Which label do you think we should predict?

w; Xexp|—pf -d x, x (0 ,0>0
Weighted version (())

1
*y=arg max, Tiewey w; 1{y® =y} Aol

ye(l, .. \)
Wi X -
weights that sumto 1 1+ d(x, x(D)F

Q: What would be the downside of using weighted version?

tuning [is cumbersome!

20

Confidence

Confidence
* P(Y =y[X =x) < Xienm 1{y® = y}
* P(Y =y[X =x) < Xicnm w; 1{y® = y} // weighted version

Same thing applies to decision tree.

* At each leaf node, we need to record the fraction of labels, not just the majority vote label.

21

k-NN Regression

ﬂfgl

Predict real-valued outputs as
inverse-distance-weighted
average of nearby points

@
®
@
dy
@ @ d2
® i, ® . Known as Shepard’s
L ® . .
° . interpolation
@ @
o
® o o o
@ P
_
I

Jtest (Z

1
d;

) Sa
I—» Sum over k neighbors

22

Model parameters

Parameter: the variables that describe the model

Decision tree’s parameter

* The entire tree structure

 What questions are being asked at each internal node
e Qutput (=prediction) from each leaf node

Q: What are the parameters of KNN? It’s the train set!

*Hyper-parameter: parameters that are not learned by the algorithm. E.g., k

23

	Slide 1: CSC 480/580 Principles of Machine Learning 03 k-Nearest Neighbors
	Slide 2: Motivation
	Slide 3: k-nearest neighbor: main concept
	Slide 4: Measuring Nearest Neighbors
	Slide 5: Nearest Neighbor Classification
	Slide 6: k-nearest neighbors (k-NN): main concept
	Slide 7: k-NN classification example
	Slide 8: k-NN classification: pseudocode
	Slide 9: Issue 1: Feature Scaling
	Slide 10: Make sure features are scaled fairly
	Slide 11: Issue 2: Irrelevant Features
	Slide 12: Issue 3: test time complexity
	Slide 13: Comparison (feature x R d)
	Slide 14: Curse of Dimensionality - Computation
	Slide 15: Curse of Dimensionality – Distance Weirdness
	Slide 16: Issue 3: choosing k
	Slide 17: Hyperparameter tuning in k-NN
	Slide 18: Hyperparameter tuning in k-NN
	Slide 19: k-NN Summary
	Slide 20: Variations
	Slide 21: Confidence
	Slide 22: k-NN Regression
	Slide 23: Model parameters

