
CSC 480/580 Principles of Machine Learning

03 𝑘-Nearest Neighbors

Jason Pacheco

1*some slides are from Daniel Hsu, Francesco Orabona, and Jerry Zhu with their permission

Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

Idea Find a student ``similar’’ to Alice & has taken Algorithm course before, say Jeremy

• If Jeremy likes Algorithms, then Alice is also likely to have the same preference.

• Or even better, find several similar students

2

• Prediction = mapping inputs to outputs

• Inputs = features that can be viewed as points in some space (possibly high-dimensional)

• “Similarity” = “distance” in feature space

• Suggests a geometric view of data

𝑘-nearest neighbor: main concept

• Train set: 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚 , 𝑦𝑚 }

• Idea: given a new, unseen data point 𝑥, its label should resemble the labels of nearby points

• Learned function

• Input: 𝑥 ∈ ℝ𝑑

• Find the 𝑘 nearest points to 𝑥 from 𝑆; call it 𝑁(𝑥)

• Output: the majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}

• For regression, compute the average label.

3

E.g., Euclidean distance

Measuring Nearest Neighbors

• Oftentimes convenient to work with feature 𝑥 ∈ R𝑑

• Distances in R𝑑:

• Euclidean distance 𝑑2 𝑥, 𝑥′ = σ𝑓=1
𝑑 𝑥(𝑓) − 𝑥′ 𝑓

2

• Manhattan distance 𝑑1 𝑥, 𝑥′ = σ𝑓=1
𝑑 𝑥 𝑓 − 𝑥′ 𝑓

• If we shift a feature, would the distance change?

• What about scaling a feature?

• How to extract features as real values?

• Boolean features: {Y, N} -> {1,0}

• Categorical features: {Red, Blue, Green, Black}
• Convert to {1, 2, 3, 4}?

• Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

4

notation 𝑥(𝑓): 𝑥 = (𝑥 1 , … , 𝑥(𝑑))

Nearest Neighbor Classification

Query point ? Will be classified as +
but should be -

5

Inductive Bias Query points belong to
same class as closest example seen in

training data

Question How can we reduce
inductive bias?

𝑘-nearest neighbors (𝑘-NN): main concept

Training set: 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚 , 𝑦𝑚 }

Inductive bias: given test example 𝑥, its label should resemble the labels of nearby points

Function

• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}

• For regression, the average.

6

k-NN classification example

7

decision boundary

𝑘-NN classification: pseudocode

• Training is trivial: store the training set

• Test:

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time)

• 𝑂 𝑚 𝑑 + 𝑚 log 𝑚 + 𝑘 = 𝑂 𝑚 𝑑 + log 𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing

8

list

append to list

sort in first coordinate

Majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}

Issue 1: Feature Scaling

• Features having different scale can be problematic.

• Ex: ski vs. snowboard classification

• Solution: feature standardization

9

(cm)

(mm)

(cm)

(cm)

Make sure features are scaled fairly
• Features having different scale can be problematic. (e.g., weights in lbs vs weight in grams)

• [Definition] Standardization

• For each feature f, compute 𝜇𝑓 =
1

𝑚
σ𝑖=1

𝑚 𝑥𝑖(𝑓) , 𝜎𝑓 =
1

𝑚
σ𝑖=1

𝑚 𝑥𝑖(𝑓) − 𝜇𝑓
2

• Then, transform the data by ∀𝑓 ∈ 1, … , 𝑑 , ∀𝑖 ∈ {1, … , 𝑚}, 𝑥𝑖(𝑓) ←
𝑥𝑓

𝑖
−𝜇𝑓

𝜎𝑓

• Be sure to keep the “standardize” function and apply it to the test points.

• Save { 𝜇𝑓 , 𝜎𝑓 }𝑓=1
𝑑

• For test point 𝑥∗, apply 𝑥𝑓
∗ ←

𝑥𝑓
∗ −𝜇𝑓

𝜎𝑓
, ∀𝑓

10

after transformation, each feature has mean 0 and variance 1

Issue 2: Irrelevant Features

11

• Recall: how did we deal with these in decision trees?
• Solution: feature selection (later in the course)

Test example

Test example

Issue 3: test time complexity

• How a k-NN function work (say 𝑑-dimension):

• Compute distance to 𝑚 points

• Sort distances

• Pick 𝑘 smallest.

• Overall 𝑂 𝑚 𝑑 + log 𝑚

• Issue: test time complexity scales linearly with 𝑚!!

• Solutions

• k-d tree: Exact search

• Best case: 𝑂 log 𝑚 Worst case: 𝑂(𝑚)

• Locality-sensitive hashing: approximate search, 𝑂(𝑚𝜌) with 𝜌 ∈ (0,1)

12

𝑂(𝑑𝑚)

𝑂(𝑚 log 𝑚)

𝑂(𝑘)

for large 𝑑 very likely to hit the worst case

imagine an image classifier trained on 10M
images to be used in smart phones.

sublinear time complexity!

Comparison (feature 𝑥 ∈ R𝑑)

• Interpretability

• Sensitivity to
irrelevant features

• training time

• test time per example

13

Decision Tree 𝑘-NN

High Medium (example-based)

Low High

𝑂(#nodes ⋅ 𝑑 ⋅ (𝑚 + 𝑚 log 𝑚))

𝑂(depth) 𝑂 𝑚 𝑑 + log 𝑚

0

≤ ෨𝑂(𝑑 𝑚2) (when no two points have the same feature)

Can reduce this with
K-d trees or locality

sensitive hashing

Curse of Dimensionality - Computation

Divide space into regular intervals to avoid computing distances for each data

14

Number of required cells grows exponentially in dimension!

Curse of Dimensionality – Distance Weirdness

• Consider D-dimensional hypersphere of radius r=1

• What is the fraction of volume within shell of width 𝜖?

15

𝜖

• Total volume of hypersphere concentrates onto shell at the surface!

• Distances go to zero!

Intuition about lower dimensions doesn’t extend to high dimensions

Issue 3: choosing 𝑘

• 𝑘 is not learned from data. Must be selected by practitioners.

• Q: If we set 𝑘 = 𝑚, then which classification rule does it look like?

• Q: If we set 𝑘 = 1, what would be the train set error (assume there is no repeated train data point)?

16

Hyperparameter tuning in 𝑘-NN

17

Hyperparameter tuning in 𝑘-NN

• Hyperparameter: 𝑘

• 𝑘 = 1:

• Training error = 0, overfitting

• 𝑘 = 𝑁:

• Output a constant (majority class) prediction, underfitting

• Can use hold-out validation to choose 𝑘

18

k-NN Summary

• Given: labeled data 𝑆

• Training

• Compute and save { 𝜇𝑓 , 𝜎𝑓 }𝑓=1
𝑑

• Compute and save standardization of 𝑆

• Test

• Given 𝑥∗, apply standardization 𝑥𝑓
∗ ←

𝑥𝑓
∗ −𝜇𝑓

𝜎𝑓
, ∀𝑓

• Compute k nearest neighbors 𝑁 𝑥∗

• Make prediction

• For classification: Predict by majority vote label in 𝑁 𝑥∗

• For regression: Predict by the average label in 𝑁 𝑥∗

19

Variations
Recall the majority vote rule: ො𝑦 = arg max

𝑦∈{1,…,𝐶}
σ𝑖∈𝒩 𝑥 1{𝑦𝑖 = 𝑦}

Q: Blue dot is the test point. If k=3, which label would it predict?

Q: Which label do you think we should predict?

Weighted version

• ො𝑦 = arg max
𝑦∈{1,…,𝐶}

σ𝑖∈𝒩 𝑥 𝑤𝑖1{𝑦 𝑖 = 𝑦}

Q: What would be the downside of using weighted version?

20

+
+

-

𝑤𝑖 ∝ exp −𝛽 ⋅ 𝑑 𝑥, 𝑥 𝑖 , 𝛽 > 0

𝑤𝑖 ∝
1

𝑑 𝑥, 𝑥 𝑖 𝛽

𝑤𝑖 ∝
1

1 + 𝑑 𝑥, 𝑥 𝑖 𝛽
weights that sum to 1

tuning 𝛽 is cumbersome!

Confidence

Confidence

• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ∝ σ𝑖∈𝒩 𝑥 1{𝑦 𝑖 = 𝑦}

• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ∝ σ𝑖∈𝒩 𝑥 𝑤𝑖1{𝑦 𝑖 = 𝑦} // weighted version

Same thing applies to decision tree.

• At each leaf node, we need to record the fraction of labels, not just the majority vote label.

21

k-NN Regression

22

𝑑1
𝑑2

𝑑3

𝑦𝑡𝑒𝑠𝑡 = ෍

𝑗

1

𝑑𝑗

−1

෍

𝑖

1

𝑑𝑖
𝑦𝑖

Predict real-valued outputs as
inverse-distance-weighted
average of nearby points

Sum over k neighbors

Known as Shepard’s
interpolation

Model parameters

23

Parameter: the variables that describe the model

Decision tree’s parameter
• The entire tree structure
• What questions are being asked at each internal node
• Output (=prediction) from each leaf node

Q: What are the parameters of kNN? It’s the train set!

*Hyper-parameter: parameters that are not learned by the algorithm. E.g., 𝑘

	Slide 1: CSC 480/580 Principles of Machine Learning 03 k-Nearest Neighbors
	Slide 2: Motivation
	Slide 3: k-nearest neighbor: main concept
	Slide 4: Measuring Nearest Neighbors
	Slide 5: Nearest Neighbor Classification
	Slide 6: k-nearest neighbors (k-NN): main concept
	Slide 7: k-NN classification example
	Slide 8: k-NN classification: pseudocode
	Slide 9: Issue 1: Feature Scaling
	Slide 10: Make sure features are scaled fairly
	Slide 11: Issue 2: Irrelevant Features
	Slide 12: Issue 3: test time complexity
	Slide 13: Comparison (feature x R d)
	Slide 14: Curse of Dimensionality - Computation
	Slide 15: Curse of Dimensionality – Distance Weirdness
	Slide 16: Issue 3: choosing k
	Slide 17: Hyperparameter tuning in k-NN
	Slide 18: Hyperparameter tuning in k-NN
	Slide 19: k-NN Summary
	Slide 20: Variations
	Slide 21: Confidence
	Slide 22: k-NN Regression
	Slide 23: Model parameters

