
CSC 480/580 Principles of Machine Learning

02 Limits of Learning

Jason Pacheco

1*some slides are from Daniel Hsu and Francesco Orabona with their permission

HW1 released (due next Thursday)

2

So far..

• Decision trees serve as an example of ML method (supervised learning in
particular)

• Machine learning is a general & useful framework…but it’s not “magic”

• Understand when machine learning will and will not work

4

We will now get into the deeper into the foundations of supervised learning.

Optimal classification with known 𝐷

Suppose

• Binary classification: 0-1 loss ℓ 𝑦, ො𝑦 = 𝐼 𝑦 ≠ ො𝑦

• Data Generating distribution 𝐷 known for every (𝑥, 𝑦)

5

predictor 𝒇

𝑓(𝑥)

test

, cat

𝑦𝑥

𝑒𝑟𝑟𝒟 𝑓 = E 𝑥,𝑦 ∼𝐷𝐼 𝑦 ≠ 𝑓(𝑥) = 𝑃 𝑥,𝑦 ∼𝐷 𝑦 ≠ 𝑓(𝑥)

𝐼 𝑦 ≠ 𝑓(𝑥)

Question
What is the 𝑓 that minimizes,

 𝑒𝑟𝑟𝒟 𝑓 = 𝑃 𝑥,𝑦 ∼𝐷 𝑦 ≠ 𝑓(𝑥)

Generalization Error

Generalization Error

Simple case: discrete domain 𝒳

𝑃𝐷 𝑥, 𝑦 𝑥 = 1 𝑥 = 2 𝑥 = 3

𝑦 = −1 0.2 0.2 0.15

𝑦 = +1 0.1 0.3 0.05

6

Which classifier is better?

• 𝑓1 1 = −1, 𝑓1 2 = −1, 𝑓1 3 = −1 ⇒ 𝑒𝑟𝑟𝒟 𝑓 𝑓1 = 0.1 + 0.3 + 0.05

• 𝑓2 1 = −1, 𝑓2 2 = +1, 𝑓2 3 = −1 ⇒ 𝑒𝑟𝑟𝒟 𝑓 𝑓2 = 0.1 + 0.2 + 0.05

Is this the best classifier? Why?

• For any 𝑥, should choose 𝑦 that has higher value of 𝑃𝐷 𝑥, 𝑦

• 𝑓∗ 1 = −1, 𝑓∗ 2 = +1, 𝑓∗ 3 = −1

The Bayes classifier: The optimal classifier that we don’t know.

• 𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

ℙ𝒟 𝑌 = 𝑦 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

• 𝑒𝑟𝑟𝒟(𝑓𝐵𝑂) is called the “Bayes error rate”

• (Theorem) 𝑓𝐵𝑂 achieves the smallest error rate among all functions.

7

we can never know what it is, but we can talk about
it and reason about it.

Proof

8

It suffices to show: ∀𝑔, 𝑒𝑟𝑟𝒟 𝑔 ≥ 𝑒𝑟𝑟𝒟 𝑓𝐵𝑂

Fix a function 𝑔.

(1) State what we know

𝑃 𝑌 = 𝑓𝐵𝑂 𝑥 𝑋 = 𝑥) ≥ 𝑃 𝑌 = 𝑦 𝑋 = 𝑥), ∀𝑦 ∈ 𝒴

⇒ 𝑃 𝑌 = 𝑓𝐵𝑂 𝑥 𝑋 = 𝑥) ≥ 𝑃 𝑌 = 𝑔 𝑥 𝑋 = 𝑥)

// tower property= 𝔼𝑋 𝔼 𝐼 𝑌 ≠ 𝑔 𝑋 | 𝑋

= 𝔼𝑋 1 − 𝑃 𝑌 = 𝑔 𝑥 𝑋)

𝑒𝑟𝑟𝒟 𝑔 = 𝔼𝑋,𝑌 𝐼 𝑌 ≠ 𝑔 𝑋

≥ 𝔼𝑋 1 − 𝑃 𝑌 = 𝑓𝐵𝑂 𝑥 𝑋) // what we knew

= 𝑒𝑟𝑟(𝑓𝐵𝑂)

(2) Start from 𝑒𝑟𝑟𝒟(𝑔)

= 𝔼𝑋 𝑃 𝑌 ≠ 𝑔 𝑋 | 𝑋

Recall: 𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

ℙ𝒟 𝑌 = 𝑦 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

𝔼 𝐴,𝐵 𝑓 𝐴, 𝐵 = 𝔼𝐵 𝔼𝐴|𝐵 𝑓 𝐴, 𝐵 𝐵]

// 𝔼𝐴 𝐼 𝐹 = 𝑃(𝐹)

The cause of the limit

• Missing important features

• Product search (e.g., amazon.com): The user poorly described what they want

• Feature noise

• e.g., images too dark to distinguish anything

• Label noise

• The correct label is arguable.

9cat vs dog pitbull vs huskyphotos from websubstance/Bigstock, imgur.com/exoticearthporn

Or, some important user info is not available due to privacy

Challenges in ML

Why not learn a very complex function that can have 0 train set error and be done with it?

Extreme example: Let’s memorize the data. To predict an
unseen data, just guess a random label.

green: 1-NN: almost memorization
black: true decision boundary

Doesn’t generalize to unseen data – called overfitting the
training data.

Solution:

Try multiple ML methods with varying degree of
“complexity” and choose the best one.

10

but how to choose?

Overfitting vs Underfitting

Source: ibm.com 11

ෞ𝑒𝑟𝑟𝑆
መ𝑓 ≪ 𝑒𝑟𝑟𝒟(መ𝑓)ෞ𝑒𝑟𝑟𝑆

መ𝑓 ≈ 𝑒𝑟𝑟𝒟(መ𝑓)
both high

ෞ𝑒𝑟𝑟𝑆
መ𝑓 ≈ 𝑒𝑟𝑟𝒟(መ𝑓)

both low

Note: These are loosely defined

(very)

{Over,Under}-fitting

Shallow tree: Deep tree:

• Underfitting: Can learn something but didn’t

• Overfitting: Pay too much attention to idiosyncrasies to training data, and do not generalize well

• A model that neither overfits nor underfits is expected to do best

12

What is the inductive bias of a shallow decision tree?

Model Selection / Assessment
Partition your data into Train-Validation-Test sets

Fit Each Model Evaluate
/ Select Model

Assess Model

• Ideally, Test set is kept in a “vault” and only peek at it once model is selected

• Small dataset: 50% Training, 25% Validation, 25% Test (very loose rule)

• For large data (say a few thousands), 80-10-10 is usually fine.

13

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … , 𝐻}?

• For each hyperparameter ℎ ∈ {1, … , 𝐻}:

• Train Treeℎ using DecisionTreeTrain by constraining

 the tree depth to be ℎ

• Choose one from Tree1, … , Tree𝐻

• Idea 1: choose Treeℎ that minimizes training error

• Idea 2: choose Treeℎ that minimizes test error

• Idea 3: further split training set to training set and validation set (development/hold-out set), (1)
train Treeℎ’s using the (new) training set; (2) choose Treeℎ that minimizes validation error

14

Test: 200
examples

Training: 700 examples
Val:100

examples

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … , 𝐻}?

• Law of large numbers => Validation error closely approximates test error & generalization error

15

hyperparameter

Overfitting vs Underfitting
Underfitting performs poorly on both training and validation…

…overfitting performs well on training but not on validation

Source: ibm.com

Cross-Validation

Source: Bishop, C. PRML

N-fold Cross Validation Partition training
data into N “chunks” and for each run
select one chunk to be validation data

For each run, fit to training data (N-1
chunks) and measure accuracy on

validation set. Average model error
across all runs.

Drawback Need a lot of training data to partition.

Hyperparameter tuning: cross-validation

• Main idea: split the training / validation data in multiple ways

• For hyperparameter ℎ ∈ {1, … , 𝐻}

• For 𝑘 ∈ {1, … , 𝐾}

• train መ𝑓𝑘
ℎ with 𝑆 ∖ fold𝑘

• measure error rate 𝑒ℎ,𝑘 of መ𝑓𝑘
ℎ on fold𝑘

• Compute the average error of the above: ෞerrℎ =
1

𝐾
σ𝑘=1

𝐾 𝑒ℎ,𝑘

• Choose ෠ℎ = arg min
ℎ

ෞerrℎ

• Train መ𝑓 using 𝑆 (all the training points) with hyperparameter ෠ℎ

• 𝑘 = |𝑆|: leave one out cross validation (LOOCV)

18

Training set 𝑆

fold1, … , fold5

Stratification in k-CV
• Issue: Say we have few positive labels (=imbalanced class)

 The error rates in CV can be unstable.

• Goal: ensure each fold receives the same fraction of pos/neg labels.

• E.g., |S|=100. 20 positive/80 negative. K=10

• Each fold should have 2 ⨁, 8 ⊖.

• Pool positive data points, randomly shuffle them; place 2 data points for each fold.

• Perform the same with negative data points.

19

(or even, some folds may have no positive points!)

The role of test set

• Your boss says: I will allow your recommendation system to run on our website only if the accuracy
is ≥ 90% accuracy!

• Again, never allow test set to be part of train/validation set!!

20

Review of terminologies

• Parameter

• Hyperparameter

• Model = ‘model class/family’ + parameter

21

Implementation tips

22

Useful python packages

• numpy: numerical computing (only includes the ‘essential’ part)

• Classes for vectors and matrices

• scipy: scientific computing

• Based on numpy

• Includes numerical optimization (=minimize a given function), integration, interpolation,
eigenvalue problems, algebraic equations, differential equations, statistics

• scikit-learn: numpy-based machine learning library

• pytorch: python package for ML (mainly for deep learning)

23

An example real-world machine learning pipeline

• Any step can go wrong

• E.g. data collection, data representation

• Debugging pipeline: run oracle experiments

• Assuming the downstream tasks are perfectly done,

 is this step achieving what we want?

• General suggestions:

• Build the stupidest thing that could possibly work

• Decide whether / where to fix it

24

Debugging

• Take debugging seriously

• You can get stuck indefinitely! – it’s better to take some time to do a systematic approach

• It’s a real problem solving/research skill!

• Debugging is harder in ML since verifying correctness is nontrivial.

• pdb/ipdb: debugging tools

• Examining values are more important in numerical programming!!

• pdb.set_trace(): insert this to the place where you want to stop briefly and check values or run
some functions with the variables right at that point in runtime.

• pdb.pm(): when error happens, it gets you back to the place where the error happened, so you
can easily check values and go up and down in the stack trace

• Read: https://wil.yegelwel.com/pdb-pm/

25

You implemented an algorithm to get error rate 45%..
It’s relatively high for binary classification.
You think: Oh, maybe I did not implement it correctly?

https://wil.yegelwel.com/pdb-pm/

Data splitting for train/validation/test or k-CV

• I am given a dataset from someone else. It has 10 categorical labels.

• Total 1000 points.

• I am going to take the first 800 points for training, 100 points for validation, and the rest for test.

• What’s wrong with this approach?

26

The data points could have been sorted in certain way.
(e.g., first 100 points are label 1, the next 100 are label 2, …)

Or, labels are mixed, but the instances may come sorted by certain
feature (e.g., age, timestamp of the tweet from a day worth of tweets).

Dataset split with numpy

27

array([6, 1, 8, 7, 3, 4, 2, 5, 11, 10, 0, 9])permidx = np.random.permutation(12)

idx = np.arange(12) % 5

folds = [permidx[idx == i] for i in np.arange(5)]

folds_except = [permidx[idx != i] for i in np.arange(5)]

[array([6, 4, 0]),
array([1, 2, 9]),
array([8, 5]),
array([7, 11]),
array([3, 10])]

[array([1, 8, 7, 3, 2, 5, 11, 10, 9]),
array([6, 8, 7, 3, 4, 5, 11, 10, 0]),
array([6, 1, 7, 3, 4, 2, 11, 10, 0, 9]),
array([6, 1, 8, 3, 4, 2, 5, 10, 0, 9]),
array([6, 1, 8, 7, 4, 2, 5, 11, 0, 9])]

array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1])

If the data is feature X (𝑛 by 𝑑 array; 𝑛 data points, 𝑑 dimension) and label Y (length-𝑛 array)
• For 𝑖 = 1. . 𝑘

• train set: trainX = X[folds_except[i],:]

 trainY = Y[folds_except[i]]

• validation set: valiX = X[folds[i],:]

 valiY = Y[folds[i]]

• …

array = vector in math

Example: (k=5)-fold CV

idx==0 is array([True, False, False, False, False, True, False, False, False, False, True, False])

import numpy as np

Debugging under randomness

• During the development phase, you should use random seed.

• Otherwise, your code could have a ‘stochastic bug’.

28

In [28]: import numpy as np

In [29]: np.random.seed(3)

In [30]: np.random.rand()
Out[30]: 0.5507979025745755

In [31]: np.random.rand()
Out[31]: 0.7081478226181048

In [28]: import numpy as np

In [32]: np.random.seed(31)

In [33]: np.random.rand()
Out[33]: 0.28605382166051563

In [34]: np.random.rand()
Out[34]: 0.958105566519

Scikit-Learn

Models can be fit using the fit() function. E.g.,
Random Forest Classifier,

fit() Generally accepts 2 inputs

• Sample matrix X— 2d array (n_samples, n_features)

• Target values Y— real numbers for regression, integer for classification

29

Train / evaluate the KNN classifier for each value 𝑘,

𝑘-Nearest Neighbors

Plot error vs 𝑘:

30

For large dataset, use geometric grid like 1,2,4,8,…

from sklearn.neighbors import KNeighborsClassifier

↑ vector operation!
(element-wise)

// make predictions simultaneously for all points in the validation set

Preprocessing : Z-Score
Typical ML workflow starts with pre-processing or transforming data into some useful
form, which Scikit-Learn calls transformers:

Example use this to
standardization in k-NN.

• Features are standardized independently (columns of X)

• Other transformers live in sklearn.preprocessing

31

fit(X) returns the object created by StandardScaler() so you
can use a series of dot operations!

Preprocessing : Encoding Labels
Oftentimes, categorical labels come as strings, which aren’t easily modeled
(e.g., with Naïve Bayes).

LabelEncoder transforms
these into integer values, e.g. for

categorical distributions

Can undo using inverse_transform so we don’t have to store two copies
of the data

32

fit() is doing the heavy work: create the
mapping from string to integers

0 1 2 3

Cross-Validation
Easily do cross validation for model selection / evaluation…

• sklearn.model_selection
• Many split functions: K-fold, leave-one-out, etc.

34

& score being 𝑅2 for regression

	Slide 1: CSC 480/580 Principles of Machine Learning 02 Limits of Learning
	Slide 2: HW1 released (due next Thursday)
	Slide 4: So far..
	Slide 5: Optimal classification with known D
	Slide 6: Simple case: discrete domain X
	Slide 7: The Bayes classifier: The optimal classifier that we don’t know.
	Slide 8: Proof
	Slide 9: The cause of the limit
	Slide 10: Challenges in ML
	Slide 11: Overfitting vs Underfitting
	Slide 12: {Over,Under}-fitting
	Slide 13: Model Selection / Assessment
	Slide 14: Hyperparameter tuning using validation set
	Slide 15: Hyperparameter tuning using validation set
	Slide 16: Overfitting vs Underfitting
	Slide 17: Cross-Validation
	Slide 18: Hyperparameter tuning: cross-validation
	Slide 19: Stratification in k-CV
	Slide 20: The role of test set
	Slide 21: Review of terminologies
	Slide 22: Implementation tips
	Slide 23: Useful python packages
	Slide 24: An example real-world machine learning pipeline
	Slide 25: Debugging
	Slide 26: Data splitting for train/validation/test or k-CV
	Slide 27: Dataset split with numpy
	Slide 28: Debugging under randomness
	Slide 29: Scikit-Learn
	Slide 30: k-Nearest Neighbors
	Slide 31: Preprocessing : Z-Score
	Slide 32: Preprocessing : Encoding Labels
	Slide 34: Cross-Validation

