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What is machine learning?



What is machine learning?

• Tom Mitchell established Machine Learning Department at CMU (2006).

• Algorithm that builds an algorithm through experience (=data)

• A subfield of Artificial Intelligence – algorithms to perform smart tasks. The difference from the 
traditional AI is “how” you build a computer program to do it.

• An outdated book but still has interesting discussion (and easy to read).
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AI Task 1: Image classification

• Predefined categories: 𝐶 = {cat, dog, lion, …}

• Given an image, classify it as one of the classes in 𝐶 with the highest accuracy as possible.

• Use: sorting/searching images by category.

• Also: categorize types of stars/events in the Universe (images taken from large surveying telescopes)
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AI Task 2: Recommender systems

• Predict how user would rate a given movie (say 5-star rating)

• Use: For each user, pick an unwatched movie with the high predicted ratings.

• Idea: compute user-user similarity or movie-movie similarity, then compute a weighted average.

• This particular approach is called ‘collaborative filtering’
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AI Task 3: Machine translation
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•  No need to explain how useful it is.



AI Task 4: Board game

• Predict win probability of a move in a given game state (e.g., AlphaGo)

• Traditionally considered as a “very smart” task to perform.

• Use: From the AI Go player, you can do practice play or even
         learn from it.

• These days, when people broadcast go game, they show
the winning rate of each move!

7



AI Task 5: ChatGPT

• No need to explain.

• Good at retrieving knowledge and presenting it in natural language.

• Not necessarily good at difficult tasks (e.g., reasoning).
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Traditional AI vs Machine Learning (ML)
• Traditional AI: you encode the knowledge (e.g., logic statements), and the machine

executes it, with some more ‘inference’ like if a -> b and b-> c, then a-> c. 

• e.g., if you see some feather texture with two eyes and a beak, classify it as a bird.

• ML: I give you a number of  input and output observations (e.g., animal picture + label), and you give me a 
function (can be a set of logical statements or a neural network) that maps the input to the output 
accurately.

• As the “big data” era comes, data is abundant ⇒ far better to learn from data than to encode domain 
knowledge manually.

• “statistical” approach // “data-driven” approach

• “Every time I fire a linguist, the performance of the speech recognizer goes up.” – 1988, Frederick Jelinek, 
a researcher who worked on speech recognition.

• Note: ML approach to logic-based system: decision tree (simple rules) / inductive logic programming (complex 
rules)
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Work in ML

• The usual CS background is often not sufficient – especially mathematical side, beyond discrete 
math.

• Data scientists: may not necessarily use ML (e.g., find associations between age and disease)

• Applied ML

• Collect/prepare data, build/train models, tune hyperparameters, measure performance.

• ML research

• Design/analyze models and algorithms

• Theory: Provide mathematical guarantees. E.g., If I were to achieve 90% accuracy, how many 
data points do we need?  => generalization bound.
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Prereqs

• Math

• Linear algebra, probability & statistics, multivariate calculus, reading and writing proofs.

• Q: how many of you are familiar with eigen decomposition?

• Software/programming

• Much ML work is implemented in python with libraries such as numpy and pytorch.

• You need to be fluent at writing functions and using them efficiently.
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Overview of ML methods

12

supervised learning

unsupervised learning reinforcement learning
(broadly, interactive learning)
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Supervised Learning



• Training data: dataset comprised of labeled examples: a labeled example = a pair of (input, label)

Basic setting: Supervised learning

14

supervised 
learning 

algorithm

function
(”classifier”)

cat!

training testing

example = data point



Examples function 1: Decision tree

• Task: predict the rating of a movie by a user 

• If age >= 40 then

• if genre = western then

• return 4.3

• else if release date > 1998 then

• return 2.5

• else ..
…
end if

• else if age < 40 then
…

• end if
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can be deeply nested!



Example function 2: Linear

• E.g., Image classification

• Let 𝑥 be a set of pixel values of a picture (30 by 30 pts) => 900 dimensional vector 𝑥 ∈ 0,1 900.

• If 0.124 ⋅ 𝑥1 − 2.5 ⋅ 𝑥2 +⋯+ 2.31 ⋅ 𝑥900 > 2.12 then 

• return cat

• else

• return dog

• end

• Coefficients: signed “importance weights”
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“linear combination”
“inner product”



Example function 3: Nonlinear
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Gaussian process / KernelsNeural network

(stacked linear models with nonlinear activation functions) (linear in the induced feature space)



Supervised learning: Types of prediction problems

• Binary classification

• Given an email, is it spam or not? (or, the probability of it being spam)

• Multi-class classification

• Image classification with 1000 categories.

• Regression: the label is real-valued (e.g., price)

• Say I am going to visit Italy next month. Given the price trends in the past, what would be the 
price given (flight destination, the # of days before the departure, day of week)?

• Pricing: predict the price that will maximize the profit. 

• Structured output prediction: more than just a number

• Given a sentence, what is its grammatical parse tree?
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Beyond supervised learning

• Online learning (opp. “batch learning”)

• Immediate updates are needed (e.g., personalized product/content recommendation)

• Sequential update for fast learning / adapt to changing environment

• Unsupervised learning

• Finds patterns/representation in the data without the help of labels.

• Reinforcement learning

• The environment interacts with your action, transferring you to different states.

• It learns to take ‘actions’ as opposed to making ‘predictions’.

• When there are no states: ”bandit” feedback.

• E.g., Amazon recommends you a pair of shoes. You did not click it. Amazon don’t know if you 
would’ve clicked had it recommended speakers or cookware. 

• The dataset is now dependent on the recommendation algorithm ⇒  biased data.

• “bandit-logged” data.
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The challenge: How to learn a function

• Okay, we have a training data. Why not learn the most complex function that can work flawlessly for 
the training data and be done with it? (i.e., classifies every data point correctly)
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• Extreme: let’s memorize the data. To predict an unseen data, 
just follow the label of the closest memorized data.

• It does not work.

• You need to learn training dataset but don’t ”over-do” it.

• This is called “regularization” – an important notion.
green: memorization
black: true decision boundary



What to expect in the class

• How to use sklearn, pytorch, tensorflow, fine-tuning deep neural networks

• Algorithm and statistical principles

• Well-studied models and methods.

• Those that give you some “understanding”.

• These are and will be referred/extended/revisited in the future.

• Programming and proofs

• No need to be a guru.

• But you must be familiar enough to (1) follow popular codes and proofs and (2) be able to adapt 
yourself to new programming tools and proofs in the future.
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Logistics



Electronical Resources
Course Webpage: http://pachecoj.com/courses/csc480-580_spring25/ 

Textbook: Daumé, Hal. "A Course in Machine Learning." 2017. 

D2L 580: https://d2l.arizona.edu/d2l/home/1571901
D2L 480: https://d2l.arizona.edu/d2l/home/1571904

Piazza: https://piazza.com/arizona/spring2025/csc480580

Gradescope 480: Register with code G3Y8E2

Gradescope 580: Register with code WW84YW

Instructor Homepage: http://www.pachecoj.com
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Syllabus summary

• Basics of supervised learning

• Basic supervised learning: decision tree, k-NN, perceptron

• Practical issues: evaluation, feature selection, etc.

• Bias-variance decomposition

• Learning methods

• Linear models, kernels

• Naïve Bayes, graphical models

• Neural networks

• Other training methods: ensemble, stochastic gradient descent

• Other paradigms: unsupervised learning, reinforcement learning

• Learning theory

• Large language models
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Syllabus summary
• 01/16: HW0 (calibration) assigned

• 01/28: HW1 assigned

• 03/13: HW2 assigned

• 03/06: Midterm exam (at the class meeting 
time)

• 03/18: Project proposal due

• 03/25: HW3 assigned

• 04/08: HW4 assigned

• 05/06: Final project due

• 05/14: Final exam at 6:00pm – 8:00pm

• Due: HW0 is due in 7 days. HW1-4 and is due in 
10 days. 

• NO LATE DAYS

25

• Grading scheme
• Assignments: 40%

• Project Proposal: 5%

• Project: 15%

• Midterm Exam: 15%

• Final Exam: 15%

• Participation: 10%

• Project

• Pick a paper in recent ML venue and 
implement it

• Pioneering new applications of ML 
(e.g., connect to your research)

• Talk to me for other ideas.

• Will explain 480 vs 580 later.



400- vs. 500-Level Credit

• This course will be co-convened CSC 480 / 580

• The same assignments will be issued to all students

• Assignments / Exams will have questions designated only for CSC 580 students

• Undergraduates should not answer these questions

• There won’t be extra credit for answering them

• Expectations for the semester project will be higher for CSC 580 students

• More emphasis on novelty

• I.e. if you implement a paper you should explore ways to improve it

• Undergrads may implement an algorithm as-is or apply it to a dataset of their choice.
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Office Hours
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TA: Yinan Li

Fridays @ 3:00 – 5:00pm
Zoom

Me

Office Hours TBA
Undergraduates Only

Office Hours are for:

• Clarification on lecture material

• Homework questions

• Other questions related to course 
logistics / material / ML

I prefer “Jason” or “Professor”



Participation

• Stop me at any point to ask questions! There are no bad questions.

• Any ideas to encourage participation?

• I strongly encourage off-class discussion in Piazza.

• Students should also attempt to answer questions.

• Sometimes answering questions helps us learn better (especially if we’re wrong)

• Online activities will be factored into the participation score.

• Lecture videos are for review -- you should attend lecture in-person.
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Academic Integrity Rules

• You may discuss assignments with other students

• You may not discuss or share assignment solutions

• You may consult any online or textbook resources

• You may not directly copy from external resources

• You may not upload solution material publicly accessible web

• You may not discuss exams with students in any capacity

Good Rule Cite any external resource you use that may be 
considered plagiarism without citation.



HW0

• Calibration purpose; due on 01/23 @ 11:59pm. NO LATE DAYS. Will not accept late submissions.

• Will not be part of the homework score.

• I require that you spend some time to figure out an answer to the homework.

• If you failed to figure out, please explain what you have done to find an answer and where you get 
stuck.

• DON’T:  ”I googled it and nothing came up”

• DO: “I read material A, and there is this statement B that seems to help, but when I tried to 
apply, C became an issue due to independence. ..."

• The participation score will be deducted (-2 out of 10pts) if …

• Empty answers

• No nontrivial efforts to solve it.
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Useful Background Material
Probability

• http://cs229.stanford.edu/section/cs229-prob.pdf

• Lecture notes: http://www.cs.cmu.edu/~aarti/Class/10701/recitation/prob_review.pdf

Linear Algebra:

• http://cs229.stanford.edu/section/cs229-linalg.pdf

• Short video lectures by Prof. Zico Kolter: http://www.cs.cmu.edu/~zkolter/course/linalg/outline.html

• Handout associated with above video: http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf

Big-O notation:

• http://www.stat.cmu.edu/~cshalizi/uADA/13/lectures/app-b.pdf

• http://www.cs.cmu.edu/~avrim/451f13/recitation/rec0828.pdf

Other resources:

• The matrix cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• The probability and statistics cookbook: http://statistics.zone/

• Calculus cheatsheet: https://tutorial.math.lamar.edu/pdf/calculus_cheat_sheet_all.pdf
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I look forward to working with you!
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