
CSC 580 Principles of Machine Learning

16 Reinforcement learning (RL)

Jason Pacheco

Department of Computer Science

1
*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun & Chicheng Zhang

Reinforcement learning references
• ‘’Reinforcement learning’’ by Sutton & Barto (available online)

• RL course by David Silver:
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

2

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

Outline
• Background / Markov Decision Processes (MDPs)

• Planning in MDPs

• Reinforcement Learning in MDPs

3

4

Background / Markov Decision Processes

5

Source: David Silver

Source: David Silver
6

Reinforcement Learning (RL)
• Task of an agent embedded in an environment

• repeat forever:
• 1) sense world (=state)
• 2) reason
• 3) take an action (this changes the state)
• 4) get feedback (usually a real-valued reward),
• 5) learn from the feedback

7

Characteristics of RL
How does RL differ from other ML frameworks?
• There is no supervisor, only a reward signal

• Feedback is not instantaneous (decisions lead to delayed reward)

• Data is not i.i.d. (it is sequential, time matters)

• The agent’s actions affect subsequent data it receives

8

Source: David Silver

Examples of RL
• Fly stunt maneuvers in a helicopter (reward: not crashing)

• Manage an investment portfolio (reward: $)

• Play many different video games (reward: score)

• Make a humanoid robot walk (reward: distance traveled)

• Defeat world champion in Backgammon (reward: win/lose)

• Defeat world champion in Go! (reward: win/lose)

9

Examples
• https://www.youtube.com/watch?v=TmPfTpjtdgg

• https://www.youtube.com/watch?v=0JL04JJjocc

• https://www.youtube.com/watch?v=gn4nRCC9TwQ

10

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=gn4nRCC9TwQ

Markov Decision Process (MDP)

• Environment model ℳ

• Set of states 𝑆

• Set of actions 𝐴

• at each time t, agent observes state 𝑠! ∈ 𝑆, then chooses action 𝑎! ∈ 𝐴

• then receives a reward 𝑟! and moves to state 𝑠!"#; repeat.

11

Markov Decision Process (MDP)

Markov assumption:
𝑃(𝑟!|𝑠!, 𝑎!, 𝑠!$#, 𝑎!$#, …) = 𝑃(𝑟!|𝑠!, 𝑎!)

𝑃 𝑠!"# 𝑠!, 𝑎!, 𝑠!$#, 𝑎!$#, …) = 𝑃(𝑠!"#|𝑠!, 𝑎!)

12

These are unknown to the learner!

i.e. the future is independent of the past,
given the present

Markov Decision Process (MDP)

• A policy is the agent’s behavior

• It is a map from state to action, e.g.

• Deterministic policy: 𝑎 = 𝜋(𝑠)

• Stochastic policy:
𝜋 𝑎 𝑠 = 𝑃(𝐴! = 𝑎 ∣ 𝑆! = 𝑠)

13

Markov Decision Process (MDP)

14

Goal:
Learn a policy 𝜋: 𝑆	 → 𝐴 for choosing actions that
maximizes expected cumulative (discounted) reward

 𝔼%[𝑟& + 𝛾	𝑟# + 𝛾'𝑟' +⋯ ∣ 𝑠&] where 0 ≤ 𝛾 < 1

for every possible starting state 𝑠&

The intention behind the RL formulation
• Note that the formulation is reward-driven.

• Example: Robot learning: move a dish from one place to another
• We can assign reward +10 when it accomplishes the task
• We can also assign reward +1 when it picks up the dish successfully

• Evaluative feedback (cf. Instructive feedback – supervised learning)

Main Hypothesis:
All goals can be described by the maximization of expected cumulative reward.

17

(from David Silver’s lecture)

Goal Reward

Walk Forward displacement

Escape maze -1 if not out yet; 0 if out

Robots for recycling soda cans +1 if a new can collected; -10 if run into things;
0 otherwise.

Win chess 0 if not finished; +1 if win; -1 if lose

The grid world: Learning to Navigate
• The grid world

• State s: the location of the agent

• Each arrow represents an action 𝑎 and the associated number represents reward 𝑟(𝑠, 𝑎)	(assume
that it is deterministic for now).

18

The structure of returns
• Define return at time step 𝑡:
 𝐺! = 𝑟! + 𝛾𝑟!"# + 𝛾$𝑟!"$ +⋯

• The goal of RL: find a policy 𝜋 that maximizes its return at the start:

 𝔼% 𝑟& + 𝛾	𝑟# + 𝛾$𝑟$ +⋯ = 𝔼% 𝐺&

• 𝐺! satisfies the following recurrence:
𝐺! = 𝑟! + 𝛾 𝑟!"# + 𝛾𝑟!"$ +⋯ = 𝑟! + 𝛾𝐺!"#

 Current return Immediate reward Future return

19

Value Function
• Prediction of future reward
• Used to evaluate goodness / badness of states
• And therefore, to select actions, e.g.

𝑉> 𝑠 = 𝔼 𝑟? + 𝛾𝑟?@A + 𝛾B𝑟?@B +⋯ 𝑠? = 𝑠, 𝜋

• We explicitly notate that the value depends on the policy

20

Value function for a policy
• Given a policy 𝜋: 𝑆 → 𝐴, define its value function 𝑉% 𝑠 = 𝔼 ∑!'&(𝛾! 𝑟! 𝑠& = 𝑠, 𝜋
• Important property (Bellman consistency equation):

 𝑉% 𝑠 = 𝔼 𝐺& 𝑠& = 𝑠, 𝜋
 = 𝔼 𝑟& 𝑠& = 𝑠, 𝜋 + 𝛾𝔼 𝐺# 𝑠& = 𝑠, 𝜋

 = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾𝔼)!|),%) [𝑉%(𝑠,)]
 where 𝑅 𝑠, 𝑎 = 𝔼[𝑟! ∣ 𝑠! = 𝑠, 𝑎! = 𝑎]

• Fact: there is a policy 𝜋∗ such that 𝜋∗ = argmax
%

𝑉%(𝑠) for all 𝑠

• 𝜋∗ is called the optimal policy

• 𝑉∗ 𝑠 := the value function achieved by the optimal policy – optimal value function

21

* Note: We assume deterministic policies for simplicity; nondeterministic policy would assign probabilities
to actions given state; i.e., p(a|s) =: 𝜋(𝑎|𝑠) => 𝑉% 𝑠 = ∑(∈*𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾𝔼+!|+,(𝑉% 𝑠.

Value function for a policy 𝜋
• Suppose 𝜋 is shown by red arrows, 𝛾 = 0.9

• The Bellman consistency equation:

22

𝑉% 𝑠 values are shown in red

𝑉% 𝑠 = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ⋅ ∑)! 𝑃 𝑠, 𝑠, 𝜋(𝑠) 	𝑉% 𝑠, 	

* stochastic policy: 𝑉% 𝑠 = ∑. 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ ∑)! 𝑃 𝑠, 𝑠, 𝑎 	𝑉% 𝑠,

optimal policy 𝜋∗

Policy evaluation
• How to compute 𝑉% given MDP ℳ and policy 𝜋?

• Recall Bellman consistency equation:

 𝑉% 𝑠 = ∑. 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ ∑)! 𝑃 𝑠, 𝑠, 𝑎 	𝑉% 𝑠,

 = ∑. 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ ∑)! ∑. 𝜋 𝑎 𝑠 𝑃 𝑠, 𝑠, 𝑎 	𝑉% 𝑠,

• In matrix form (denote by 𝑉% = 𝑉% 𝑠)∈0 ∈ ℝ
0 , etc):

𝑉% = 𝑅% + 𝛾𝑀%𝑉%

• A linear system! How to solve it?
• Gaussian elimination

• Is this efficient?
• Time complexity: O(𝑆 1)

23

(recall the vector/matrix notation here)

𝑅%(𝑠) 𝑀%(𝑠, 𝑠′)

Policy evaluation (cont’d)
Fixed point iteration for policy evaluation

Initialize: 𝑉% arbitrarily (e.g., all zero).

• While 𝑉% does not change much from the previous iteration
• 𝑊% ← 𝑉%
• For each 𝑠 ∈ 𝑆

• 𝑉% 𝑠 ← ∑(𝜋 𝑎 𝑠 𝑅(𝑠, 𝑎) + ∑+! 𝑃 𝑠. 𝑠, 𝑎 ⋅ 𝛾	𝑊% 𝑠.

• This is called synchronous update

• Asynchronous update: remove 𝑊% ← 𝑉% and perform in-place updates for 𝑉%

• Preferred method.

24

𝑉" 𝑠 =$
#

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅$
$!
𝑃 𝑠% 𝑠, 𝑎 	𝑉" 𝑠%

Fixed point iteration: an illustration
• Episodic MDP (i.e., terminal states involved) with
𝛾 = 1

• Shaded squares are terminal states

• 4 actions

• Actions to the wall end up with the same state.

• Rewards are -1 until the terminal state is reached.

• The policy 𝜋: take an action uniformly at random.

25

Side Q: what’s the optimal policy under this reward setting?

Example
• Synchronous updates.

• Values are propagated!

26

𝑉" 𝑠 ←$
#

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾$
$!
𝑃 𝑠% 𝑠, 𝑎 ⋅ 𝑊" 𝑠%

27

Planning in MDPs

• Given: full specification of ℳ, (specifically 𝑹(𝒔, 𝒂) and 𝑷(𝒔,|𝒔, 𝒂) are known)

• Goal: find optimal policy 𝜋∗ of ℳ

• Recall: 𝑉∗(𝑠) is the value function of the optimal policy.

• Claim: To find the optimal policy, it suffices to find 𝑉∗ 𝑠 for every state s

• Why?

𝜋∗ 𝑠! = argmax
.∈2

	𝑅 𝑠! , 𝑎 + 𝛾R
)∈0

𝑃 𝑠!"# = 𝑠 𝑠! , 𝑎 𝑉∗ 𝑠

• How to find 𝑉∗(𝑠)?

Planning in MDPs

28

Bellman optimality equation
• Fact: 𝑉∗ 𝑠 = max

%
	𝑉%(𝑠) satisfies the following equation:

𝑉∗ 𝑠 = max
.

𝑅 𝑠, 𝑎 + 𝛾 ⋅R
)!
𝑃 𝑠, 𝑠, 𝑎 	𝑉∗ 𝑠,

• This is known as the Bellman optimality equation

• Intuition:
• 𝑅 𝑠, 𝑎 + 𝛾 ⋅ ∑)! 𝑃 𝑠, 𝑠, 𝑎 	𝑉∗ 𝑠, is the return achieved by: (1) taking action 𝑎; and (2) behave

optimally afterwards
• Optimal behavior = optimal action 𝑎 + optimal behavior afterwards

• Issue: Bellman optimality equation has no closed form solution. (unlike computing 𝑉%!)

• However, 𝑉∗	can still be seen as a fixed point

29

Algorithm: Value iteration
Key idea: perform fixed point iteration on Bellman optimality equation

Initialize 𝑉 𝑠 arbitrarily

While 𝑉 𝑠)∈0 is not much different from the previous iteration’s 𝑉 𝑠)∈0

• For each 𝑠 ∈ 𝑆
• 𝑉 𝑠 ← max

.
	 𝑅 𝑠, 𝑎 + 𝛾 ∑)!∈0𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑉 𝑠,

• End For

End While

30

𝑉∗ 𝑠 = max
#

𝑅 𝑠, 𝑎 + 𝛾 ⋅$
$!
𝑃 𝑠% 𝑠, 𝑎 	𝑉∗ 𝑠%

Algorithm: Policy iteration
• The idea:

 estimate optimal value 𝑉∗ and optimal policy 𝜋∗ simultaneously & iteratively

• Observe:
• 𝜋∗ is greedy wrt 𝑉∗
• 𝑉∗ is the value function of 𝜋∗

• Can we obtain a pair (𝜋, 𝑉) that exhibit the above properties?

Algorithm:
• Start from an arbitrary policy 𝜋 (e.g., assign actions randomly)

• Repeat the following:
• [Policy evaluation] 𝑉 ← 𝑉% (either solve the linear system or iterative method)
• [Policy improvement] Update the policy: 𝜋 ← greedy(𝑉)
 For every s ∈ 𝑆, 	𝜋 𝑠 ← argmax

(
𝑟 𝑠, 𝑎 + 𝛾 ∑+.∈0𝑃 𝑠′ 𝑠, 𝑎 𝑉% 𝑠′

31

Policy iteration with inexact policy evaluation

32

what you get if you apply the policy improvement step
Suppose we perform fixed-point iteration for evaluating 𝑉%, with 𝜋 𝑎 𝑠 = 1/4, ∀𝑠, 𝑎

Algorithm: Modified policy iteration
• From previous slide: inexact value functions are still useful!

• Start from an arbitrary policy 𝜋 (e.g., assign actions randomly)

• [(Inexact) Policy evaluation] 𝑉 ← take 𝑘 fixed-point iterations for computing 𝑉% (so 𝑉 ≈ 𝑉%)

• [Policy improvement] Update the policy:
• For every s ∈ 𝑆, 	 𝜋 𝑠 = argmax

.
𝑅 𝑠, 𝑎 + 𝛾 ∑),∈0𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′

33

This is not a valid value function anymore (no
corresponding 𝜋 that achieves this value in general)

Summary
• Policy evaluation: just evaluates the value function for a given 𝜋

• closed form / fixed-point iteration

• Planning:
• Policy iteration: policy evaluation + policy improvement
• Modified policy iteration: only k steps of policy evaluation
• Value iteration: k=1

• Recall: so far, we are in the planning setting, where we are already given a model of the world: i.e.
know 𝑃(𝑠′|𝑠, 𝑎) and 𝑃(𝑟 ∣ 𝑠, 𝑎)

• What if we don’t? This is called the “learning in MDPs” problem

34

35

Learning in MDPs

Learning in MDPs: basic setup
• Given:

• MDP ℳ (unknown)
• The ability to interact with ℳ for 𝑇 steps

• Obtaining trajectory 𝑠&, 𝑎&, 𝑟&, … , 𝑠1, 𝑎1, 𝑟1

• Goal:
• (Online learning) maximize cumulative reward 𝔼 ∑3456 𝛾3 𝑟3

• Useful in applications where every action taken has real-world consequences (e.g. medical
treatment)

• (Batch learning) output a policy Z𝜋 such that 𝑉3% is competitive with 𝑉∗

• Useful in applications where experimentations are affordable (e.g. laboratory rats,
simulators)

36

Learning in MDPs: A Taxonomy of Approaches
• Model-based RL:

 Repeat:
• &ℳ ← Estimate ℳ based on data (e.g. by MLE)
• Plan according to [ℳ

• Model-free RL: do not estimate [ℳ explicitly
• Direct policy search

• E.g. policy gradient (REINFORCE)
• Value-based methods

• E.g. Q-learning (this lecture)
• Actor-critic: combination of the two ideas

37https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Unique challenges in RL I: Temporal Credit Assignment
• Performance measure:

• focuses on the quality of a sequence of interdependent states / actions

• Aim for maximization of long-term rewards

• E.g.
• Daily exercise: short term – long term ++
• Stay up all night playing video games: short term + long term --
• Chess tactics: sacrifice pieces

• Different from supervised learning: correct classification on every individual examples

• Need to answer questions like: “what is the key step that caused me to lose this game?” – temporal
credit assignment

38

Unique challenges in RL II: Exploration
• Learning agent’s data is induced by its own actions

• This is another key difference with supervised learning

• How to collect useful data?
• The exploration challenge

• Rough intuition: collect data that “covers” all states and actions
• Uniform exploration: take actions uniformly at random

• Caveat: uniform exploration may fail because of some hard-to-reach states
• E.g. RiverSwim [Strehl & Littman, 2008]

39https://rlgammazero.github.io/docs/2020_AAAI_tut_part0.pdf

Unique challenges in RL II: Exploration (cont’d)
• Extra challenge in the online learning setting

• Need to take good actions that yield high rewards
• Balance exploration vs. exploitation
• Not an issue in the batch learning setting

• Popular idea:
• 𝜖-greedy: w.p. 1 − 𝜖, choose action that is believed to be optimal based on the information

collected so far; otherwise, choose actions uniformly at random.
• Again, 𝜖-greedy may fail in some hard MDP environments

40https://www.nature.com/articles/s41591-018-0310-5

Monte Carlo Reinforcement Learning
• MC methods learn directly from episodes of experience
• MC is model-free: no knowledge of MDP transitions / rewards
• MC learns from complete episodes (no bootstrapping)
• MC uses the simplest idea: value = mean return
• Caveat: Can only apply MC to episodic MDPs (must terminate)

41Credit: David Silver

Monte Carlo Reinforcement Learning
Goal: learn 𝑉> from episodes of experience under policy 𝜋:

𝑆A, 𝐴A, 𝑅B, … , 𝑆S ∼ 𝜋

Recall that return is total discounted reward:

𝐺? = 𝑅? + 𝛾𝑅?@A + 𝛾B𝑅?@B +⋯

And recall that the value function is expected return:

𝑉> 𝑠 = 𝐸> 𝐺? 𝑆? = 𝑠

MC policy evaluation uses empirical mean return instead of expected return

42Credit: David Silver

First-Visit MC Policy Evaluation
• To evaluate s
• The first time-step t that s is visited in an episode
• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1
• Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺?
• Estimate value by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁 𝑠
• By the law of large numbers 𝑉 𝑠 → 𝑉> as 𝑁 𝑠 → ∞

43Credit: David Silver

Every-Visit MC Policy Evaluation
• To evaluate s
• Every time-step t that s is visited in an episode
• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1
• Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺?
• Estimate value by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁 𝑠
• Again, 𝑉 𝑠 → 𝑉> as 𝑁 𝑠 → ∞

44Credit: David Silver

Example: Blackjack
Objective: Have your card sum be greater than the dealer’s without
going over 21

States (200 of them)
• Current sum (12-21)
• Dealer’s showing card (Ace-10)
• Do I have a useable ace?

Reward +1 for winning, 0 for draw, -1 for losing
Actions Hold (stop receiving cards), Hit (receive another card)

45Credit: David Silver

Example: Blackjack

Policy Hold if sum at least 20, otherwise hit

46Credit: David Silver

Q-functions: motivation
• Issue of 𝑉%: only encodes the quality of states

• But we need to learn what actions are good

• Is there a function that encodes the quality of actions as well?

Action-value functions (Q-functions):

𝑄% 𝑠, 𝑎 = 𝔼 𝐺& 𝑠& = 𝑠, 𝑎& = 𝑎, 𝜋 = 𝑅 𝑠, 𝑎 + 𝛾 R
)!∈0

𝑃 𝑠, 𝑠, 𝑎 𝑉% 𝑠,

The optimal Q function

𝑄∗ 𝑠, 𝑎 = 𝔼 𝐺& 𝑠& = 𝑠, 𝑎& = 𝑎, 𝜋∗ = 𝑅 𝑠, 𝑎 + 𝛾 R
)!∈0

𝑃 𝑠, 𝑠, 𝑎 𝑉∗ 𝑠,

The optimal policy can be extracted from 𝑄∗:
𝜋∗ 𝑠 = argmax

.
𝑄∗(𝑠, 𝑎)

47

Q-values

48

𝑄∗(𝑠, 𝑎)

Q-learning: motivation
• We do not know the state transition nor the reward function.

• Instead of learning these model parameters, we directly attempt to estimate 𝑄∗

• Similar to 𝑉∗, 𝑄∗ also satisfies a Bellman-optimality equation:

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅R
)!
𝑃 𝑠, 𝑠, 𝑎 max

.,
	𝑄∗ 𝑠′, 𝑎′

• We will use this to design our learning rule

49

Recall: 𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑$!∈(𝑃 𝑠% 𝑠, 𝑎 𝑉∗ 𝑠%

Algorithm: Q-learning (deterministic transitions/rewards)

• Assume that we are in the tabular setting: 𝑆 and 𝐴 are both finite

• Initialize: 𝑄 𝑠, 𝑎 = 0, ∀𝑠, 𝑎
• Observe the initial state s

• Repeat:
• Select an action a and execute it (e.g., 𝜖-greedy)
• Receive a reward r
• Observe a new state s’
• Update: 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max

.!
𝑄(𝑠,, 𝑎′)

• s ← 𝑠′

50

(similar to value iteration)

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅$
$!
𝑃 𝑠% 𝑠, 𝑎 max

#%
	𝑄∗ 𝑠′, 𝑎′

Q-learning: update example

51

Q-learning for stochastic transitions/rewards
• Our update equation is problematic: 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max

.!
𝑄(𝑠′, 𝑎,)

• For stochastic worlds:
• Fix 𝑠, 𝑎, (next state, reward) 𝑠′, 𝑟 seen is stochastic
• Even if 𝑄 = 𝑄∗ in the previous iteration, 𝑄 𝑠, 𝑎 will deviate from 𝑄∗(𝑠, 𝑎) after the update
• This results in 𝑄 𝑠, 𝑎 not converging

• How to fix this? Recall:

• We can use the idea of stochastic approximation (also called temporal difference learning in the RL
context)

52

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅$
$!
𝑃 𝑠% 𝑠, 𝑎 max

#%
	𝑄∗ 𝑠′, 𝑎′

Stochastic approximation
• Given a stream of data points 𝑋#, … , 𝑋9 ∼ 𝑁(𝜇, 1)
• How to estimate 𝜇 in an anytime manner?

• Idea 1: at time step 𝑛, output estimate Z𝜇9 = 𝑋9

• Can we do better?

• Idea 2: at time step 𝑛, output estimate Z𝜇9 =
#
9
𝑋# +⋯+ 𝑋9

• This is equivalent to Z𝜇9 = 1 − 𝛼9 Z𝜇9:# + 𝛼9𝑋9, where 𝛼9 =
#
9

53

New data
(correctivenss)

Old estimate
(conservativenss)

Q-learning for nondeterminstic transitions/rewards
• Initialize: 𝑄 𝑠, 𝑎 = 0, ∀𝑠, 𝑎
• Observe the initial state s

• Repeat
• Take an action 𝑎

• e.g., 𝜖-greedy (taking argmax(𝑄(𝑠, 𝑎) w.p. 1 − 𝜖)
• Receive the reward r
• Observe the new state s’

• Update: 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
.!

𝑄 𝑠,, 𝑎,

• 𝑠 ← 𝑠′

54

𝛼 is a hyperparameter! (next slide)

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅$
$!
𝑃 𝑠% 𝑠, 𝑎 max

#%
	𝑄∗ 𝑠′, 𝑎′

The choice of 𝛼
• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max

.!
𝑄 𝑠,, 𝑎,

• For example, 𝛼 = #
#	"	#=>?@A(),.)

.

• Q: Why is this a reasonable choice?

55

Discussion
• Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP,

exploration policy, and step size scheme)

• In practice, it takes a lot of iterations!

• Comparison: Model-based learning vs. Q-learning when choosing actions
• Model-based

• need to look ahead using some estimates of rewards and transition probabilities (Model Predictive
Control)

• Q-learning (model-free)
• just choose the action with the largest Q value

56

Challenge of Q-learning: large state spaces
• Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces

• How to design a Q-learning-style algorithm that can handle large state spaces?

57https://www.microsoft.com/en-us/research/uploads/prod/2018/09/Reinforcement-Learning-with-Rich-Observations-SLIDES.pdf

Q function approximation
• We can use some other function representation (e.g. a neural net) to compactly encode a substitute

for the big table.

• We’ve been thinking states as discrete (the set S), but in fact, they can be a feature vector!

58

encoding of the state

each input unit can be a sensor value
(or more generally, a feature)

Q: why is this a good idea?

Why Q function approximation?
• 1. memory issue

• 2. is able to generalize across states! may speed up the convergence.

• Example: 100 binary features for states. 10 possible actions.

• Q table size = 10 x 2#&& entries

• NN with 100 hidden units:
• 100 x 100 + 100 x 10 = 11k weights (not counting bias for simplicity)

59

Algorithm: fitted Q-learning
Repeat

• observe the state s

• compute 𝑄(𝑠, 𝑎) for each action a (forward pass on the NN)

• select action a (e.g. use 𝜖-greedy) and execute it

• observe the new state s’ and the reward r

• compute 𝑄(𝑠′, 𝑎,) for each action a’ (forward pass on the NN)

• update the NN with the instance
• 𝑥 ← 𝑠
• 𝑦 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max

.!
	𝑄 𝑠,, 𝑎,

60

Calculate Q value you would have put into the Q-table and use it as the training label.
Use the squared loss and perform backpropagation!

(label for Q(s,a))

Fitted Q-learning example: Atari games
• Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)

• Tested Fitted Q-learning on 49 Atari games

• Achieves >=75% of human professional players’ scores on 29 games

• Can significantly outperform human players in many games

61https://www.nature.com/articles/nature14236
https://arxiv.org/pdf/1312.5602.pdf

Fitted Q-learning example: Atari games (cont’d)
• The neural network for fitting Q values

• Convolutional architecture to handle
states as images

• Learning curve: (Space Invaders, 𝜖-greedy with 𝜖 = 0.05)

62

Fitted Q-learning example: Atari games (cont’d)
• Q-network’s last hidden layer extracts useful representations

• Consequently Q-network provides Q-value estimates that generalize across states

63

Fitted Q-learning example: Atari games (cont’d)
• The learned Q functions are sensible

64

Summary
• MDPs: Reward driven philosophy

• Policy evaluation: Bellman consistency equations; fixed point iteration

• Planning in MDPs: value iteration; policy iteration

• Learning in MDPs: Q-learning; function approximation

65

