CSC 580 Principles of Machine Learning

16 Reinforcement learning (RL)

Jason Pacheco

Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun & Chicheng Zhang

Reinforcement learning references

- "Reinforcement learning" by Sutton & Barto (available online)
- RL course by David Silver:

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

Outline

- Background / Markov Decision Processes (MDPs)
- Planning in MDPs
- Reinforcement Learning in MDPs

Background / Markov Decision Processes

Source: David Silver

Reinforcement Learning (RL)

- Task of an agent embedded in an environment
- repeat forever:
 - 1) sense world (=state)
 - 2) reason
 - 3) take an action (this changes the state)
 - 4) get feedback (usually a real-valued <u>reward</u>),
 - 5) learn from the feedback

Characteristics of RL

How does RL differ from other ML frameworks?

- There is no supervisor, only a reward signal
- Feedback is not instantaneous (decisions lead to delayed reward)
- Data is not i.i.d. (it is sequential, time matters)
- The agent's actions affect subsequent data it receives

Examples of RL

- Fly stunt maneuvers in a helicopter (reward: not crashing)
- Manage an investment portfolio (reward: \$)
- Play many different video games (reward: score)
- Make a humanoid robot walk (reward: distance traveled)
- Defeat world champion in Backgammon (reward: win/lose)
- Defeat world champion in Go! (reward: win/lose)

Examples

- https://www.youtube.com/watch?v=TmPfTpjtdgg
- https://www.youtube.com/watch?v=0JL04JJjocc
- https://www.youtube.com/watch?v=gn4nRCC9TwQ

- Environment model ${\mathcal M}$
- Set of states *S*
- Set of actions A
- at each time t, agent observes state $s_t \in S$, then chooses action $a_t \in A$
- then receives a reward r_t and moves to state s_{t+1} ; repeat.

- A **policy** is the agent's behavior
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy:

$$\pi(a \mid s) = P(A_t = a \mid S_t = s)$$

Goal:

Learn a policy $\pi: S \rightarrow A$ for choosing actions that maximizes expected cumulative (discounted) reward

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0] \text{ where } 0 \leq \gamma < 1$$

for every possible starting state s_0

The intention behind the RL formulation

- Note that the formulation is **reward-driven**.
- Example: Robot learning: move a dish from one place to another
 - We can assign reward +10 when it accomplishes the task
 - We can also assign reward +1 when it picks up the dish successfully
- *Evaluative* feedback (cf. Instructive feedback supervised learning)

Main Hypothesis:

All goals can be described by the maximization of expected cumulative reward.

(from David Silver's lecture)

Goal	Reward
Walk	Forward displacement
Escape maze	-1 if not out yet; 0 if out
Robots for recycling soda cans	+1 if a new can collected; -10 if run into things; 0 otherwise.
Win chess	0 if not finished; +1 if win; -1 if lose

The grid world: Learning to Navigate

• The grid world

- State s: the location of the agent
- Each arrow represents an <u>action</u> a and the associated number represents <u>reward</u> r(s, a) (assume that it is deterministic for now).

The structure of returns

• Define return at time step *t*:

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

• The goal of RL: find a policy π that maximizes its return at the start:

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots] = \mathbb{E}_{\pi}[G_0]$$

• *G_t* satisfies the following recurrence:

$$G_t = r_t + \gamma(r_{t+1} + \gamma r_{t+2} + \cdots) = r_t + \gamma G_{t+1}$$

Current return Immediate reward Future return

Value Function

- Prediction of future reward
- Used to evaluate goodness / badness of states
- And therefore, to select actions, e.g.

$$V^{\pi}(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \pi]$$

• We explicitly notate that the value depends on the policy

Value function for a policy

- Given a policy $\pi: S \to A$, define its value function $V^{\pi}(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, \pi]$
- Important property (<u>Bellman consistency equation</u>):

$$V^{\pi}(s) = \mathbb{E}[G_0 | s_0 = s, \pi]$$

= $\mathbb{E}[r_0 | s_0 = s, \pi] + \gamma \mathbb{E}[G_1 | s_0 = s, \pi]$
= $R(s, \pi(s)) + \gamma \mathbb{E}_{s'|s, \pi(s)}[V^{\pi}(s')]$
where $R(s, a) = \mathbb{E}[r_t | s_t = s, a_t = a]$

- <u>Fact</u>: there is a policy π^* such that $\pi^* = \arg \max_{\pi} V^{\pi}(s)$ for all s
 - π^* is called the *optimal policy*
- $V^*(s)$:= the value function achieved by the optimal policy optimal value function

* Note: We assume deterministic policies for simplicity; <u>nondeterministic policy</u> would assign probabilities to actions given state; i.e., $p(a|s) =: \pi(a|s) = V^{\pi}(s) = \sum_{a \in A} \pi(a|s) (R(s,a) + \gamma \mathbb{E}_{s'|s,a}[V^{\pi}(s')])$

Value function for a policy π

• Suppose π is shown by red arrows, $\gamma = 0.9$

 $V^{\pi}(s)$ values are shown in red

• The <u>Bellman consistency equation:</u>

 $V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$

* stochastic policy: $V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$

Policy evaluation

- How to compute V^{π} given MDP \mathcal{M} and policy π ?
- Recall Bellman consistency equation:

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

=
$$\sum_{a} \pi(a|s) R(s,a) + \gamma \cdot \sum_{s'} \left(\sum_{a} \pi(a|s) P(s'|s,a) \right) V^{\pi}(s')$$

$$R^{\pi}(s) \qquad M^{\pi}(s,s')$$

• In matrix form (denote by
$$V^{\pi} = (V^{\pi}(s))_{s \in S} \in \mathbb{R}^{|S|}$$
, etc):
 $V^{\pi} = R^{\pi} + \gamma M^{\pi} V^{\pi}$

(recall the vector/matrix notation here)

- A linear system! How to solve it?
 - Gaussian elimination
- Is this efficient?
 - Time complexity: $O(|S|^3)$

Policy evaluation (cont'd)

Fixed point iteration for policy evaluation Initialize: V^{π} arbitrarily (e.g., all zero).

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

- While V^{π} does not change much from the previous iteration
 - $W^{\pi} \leftarrow V^{\pi}$
 - For each $s \in S$
 - $V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) \cdot \gamma W^{\pi}(s') \right)$
- This is called synchronous update
- Asynchronous update: remove $W^{\pi} \leftarrow V^{\pi}$ and perform in-place updates for V^{π}
 - Preferred method.

Fixed point iteration: an illustration

- Episodic MDP (i.e., terminal states involved) with $\gamma=1$
- Shaded squares are terminal states
- 4 actions
- Actions to the wall end up with the same state.
- Rewards are -1 until the terminal state is reached.
- The policy π : take an action uniformly at random.

Side Q: what's the optimal policy under this reward setting?

Example

- Synchronous updates.
- Values are propagated!

 v_k for the Random Policy

k = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>k</i> = 3	0.0-2.4-2.9-3.0-2.4-2.9-3.0-2.9-2.9-3.0-2.9-2.4-3.0-2.9-2.40.0
k = 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>k</i> = 10	0.0-6.1-8.4-9.0-6.1-7.7-8.4-8.4-8.4-8.4-7.7-6.1-9.0-8.4-6.10.0
<i>k</i> = 2	0.0-1.7-2.0-2.0-1.7-2.0-2.0-2.0-2.0-2.0-2.0-1.7-2.0-2.0-1.70.0	$k = \infty$	0.0-1420221418202020201814222014.0.0
$V^{\pi}(s) \leftarrow \sum_{a} \pi(a s) \left(R(s,a) + \right)$	$+ \gamma \sum_{s'} P(s' s,a) \cdot W$	$\pi(s')$	

Planning in MDPs

Planning in MDPs

- Given: full specification of \mathcal{M} , (specifically R(s, a) and P(s'|s, a) are known)
- Goal: find optimal policy π^* of ${\mathcal M}$
- Recall: $V^*(s)$ is the value function of the optimal policy.
- Claim: To find the optimal policy, it suffices to find $V^*(s)$ for every state s
- Why?

$$\pi^*(s_t) = \arg \max_{a \in A} R(s_t, a) + \gamma \sum_{s \in S} P(s_{t+1} = s | s_t, a) V^*(s)$$

• How to find $V^*(s)$?

Bellman optimality equation

• Fact: $V^*(s) = \max_{\pi} V^{\pi}(s)$ satisfies the following equation:

$$V^*(s) = \max_{a} \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^*(s') \right) \qquad \underbrace{(v_*)}_{max} s$$

- This is known as the <u>Bellman optimality equation</u>
- Intuition:
 - $R(s, a) + \gamma \cdot \sum_{s'} P(s'|s, a) V^*(s')$ is the return achieved by: (1) taking action a; and (2) behave optimally afterwards
 - Optimal behavior = optimal action *a* + optimal behavior afterwards
- Issue: Bellman optimality equation has <u>no closed form solution</u>. (unlike computing V^{π} !)
- However, V^* can still be seen as a fixed point

Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

$$V^*(s) = \max_a \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^*(s') \right)$$

Initialize V(s) arbitrarily

While $\{V(s)\}_{s \in S}$ is not much different from the previous iteration's $\{V(s)\}_{s \in S}$

• For each $s \in S$

•
$$V(s) \leftarrow \max_{a} R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \cdot V(s')$$

• End For

End While

Algorithm: Policy iteration

• The idea:

estimate optimal value V^* and optimal policy π^* simultaneously & iteratively

- Observe:
 - π^* is greedy wrt V^*
 - V^* is the value function of π^*
- Can we obtain a pair (π, V) that exhibit the above properties?

Algorithm:

- Start from an arbitrary policy π (e.g., assign actions randomly)
- Repeat the following:
 - [Policy evaluation] $V \leftarrow V^{\pi}$ (either solve the linear system or iterative method)
 - **[Policy improvement]** Update the policy: $\pi \leftarrow \text{greedy}(V)$ For every $s \in S$, $\pi(s) \leftarrow \arg \max_{a} r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s')$

Policy iteration with inexact policy evaluation

Suppose we perform fixed-point iteration for evaluating V^{π} , with $\pi(a \mid s) = 1/4$, $\forall s, a$

| **↓** | | | |

|-2.0|-2.0|-1.7| 0.0|

what you get if you apply the policy improvement step

	v_k for the	Greedy Policy			
	Random Policy	w.r.t. v_k		· · · · · · · · · · · · · · · · · · ·	
k = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	<i>k</i> = 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \leftarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow \\ \downarrow & \leftarrow & \leftarrow \\ \to & \leftarrow \\ \bullet & \leftarrow & \leftarrow \\ \bullet & \leftarrow & \leftarrow \\ \bullet & \leftarrow \\ \bullet & \leftarrow & \leftarrow \\ \leftarrow & \leftarrow & \leftarrow \\ \bullet & \leftarrow & \leftarrow \\ \leftarrow & \leftarrow \\ \leftarrow & \leftarrow & \leftarrow \\ \leftarrow \\$
<i>k</i> = 1	0.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.00.0	$\begin{array}{c c} \leftarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow \\ \hline \uparrow & \leftarrow & \leftarrow & \leftarrow \\ \leftarrow & \leftarrow & \leftarrow & \leftarrow \\ \leftarrow & \leftarrow & \leftarrow$	<i>k</i> = 10	0.0-6.1-8.4-9.0-6.1-7.7-8.4-8.4-8.4-8.4-7.7-6.1-9.0-8.4-6.10.0	$ \begin{array}{c} \leftarrow \leftarrow \leftarrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$
<i>k</i> = 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \leftarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow & \downarrow \\ \uparrow & \leftarrow & \leftarrow & \downarrow \\ \uparrow & \leftarrow & \leftarrow & \downarrow \\ \leftarrow & \leftarrow & \leftarrow & \leftarrow & \downarrow \end{array}$	$k = \infty$	0.0-1420221418202020201814222014.0.0	$\begin{array}{c} \leftarrow \leftarrow \leftarrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow$

Algorithm: Modified policy iteration

- From previous slide: inexact value functions are still useful!
- Start from an arbitrary policy π (e.g., assign actions randomly)
- [(Inexact) Policy evaluation] $V \leftarrow \text{take } k$ fixed-point iterations for computing V^{π} (so $V \approx V^{\pi}$) This is <u>not a valid value function</u> anymore (no
 - corresponding π that achieves this value in general)

• [Policy improvement] Update the policy:

For every
$$s \in S$$
, $\pi(s) = \arg \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$

Summary

- Policy evaluation: just evaluates the value function for a given π
 - closed form / fixed-point iteration
- Planning:
 - Policy iteration: policy evaluation + policy improvement
 - Modified policy iteration: only k steps of policy evaluation
 - Value iteration: k=1
- Recall: so far, we are in the **planning** setting, where we are already given a **model** of the world: i.e. know P(s'|s, a) and P(r | s, a)
- What if we don't? This is called the **"learning in MDPs"** problem

Learning in MDPs

Learning in MDPs: basic setup

• Given:

• Goal:

- MDP $\mathcal M$ (unknown)
- The ability to interact with ${\mathcal M}$ for T steps
 - Obtaining trajectory $s_0, a_0, r_0, \dots, s_T, a_T, r_T$

- (Online learning) maximize cumulative reward E[Σ^T_{t=0} γ^t r_t]
 Useful in applications where every action taken has real-world consequences (e.g. medical treatment)
- (Batch learning) output a policy $\hat{\pi}$ such that $V^{\hat{\pi}}$ is competitive with V^*
 - Useful in applications where experimentations are affordable (e.g. laboratory rats, simulators)

Learning in MDPs: A Taxonomy of Approaches

• Model-based RL:

Repeat:

- $\hat{\mathcal{M}} \leftarrow \text{Estimate } \mathcal{M} \text{ based on data (e.g. by MLE)}$
- Plan according to $\widehat{\mathcal{M}}$
- Model-free RL: do not estimate $\widehat{\mathcal{M}}$ explicitly
 - Direct policy search
 - E.g. policy gradient (REINFORCE)
 - Value-based methods
 - E.g. Q-learning (this lecture)
 - Actor-critic: combination of the two ideas

Unique challenges in RL I: Temporal Credit Assignment

- Performance measure:
 - focuses on the quality of *a sequence of interdependent states / actions*
- Aim for maximization of *long-term rewards*
- E.g.
 - Daily exercise: short term long term ++
 - Stay up all night playing video games: short term + long term --
 - Chess tactics: sacrifice pieces
- Different from supervised learning: correct classification on every individual examples
- Need to answer questions like: "what is the key step that caused me to lose this game?" temporal credit assignment

Unique challenges in RL II: Exploration

- Learning agent's data is induced by its own actions
 - This is another key difference with supervised learning
- How to collect *useful* data?
 - The exploration challenge

- Uniform exploration: take actions uniformly at random
- Caveat: uniform exploration may fail because of some hard-to-reach states
 - E.g. RiverSwim [Strehl & Littman, 2008]

Unique challenges in RL II: Exploration (cont'd)

- Extra challenge in the *online learning* setting
 - Need to take good actions that yield high rewards
 - Balance *exploration* vs. *exploitation*
 - Not an issue in the batch learning setting

- Popular idea:
 - ϵ -greedy: w.p. 1ϵ , choose action that is believed to be optimal based on the information collected so far; otherwise, choose actions uniformly at random.
 - Again, ϵ -greedy may fail in some hard MDP environments

Monte Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from complete episodes (no bootstrapping)
- MC uses the simplest idea: value = mean return
- Caveat: Can only apply MC to episodic MDPs (must terminate)

Monte Carlo Reinforcement Learning

Goal: learn V^{π} from episodes of experience under policy π :

 $S_1, A_1, R_2, \dots, S_k \sim \pi$

Recall that *return* is total discounted reward:

$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

And recall that the *value function* is expected return:

$$V^{\pi}(s) = E_{\pi}[G_t \mid S_t = s]$$

MC policy evaluation uses empirical mean return instead of expected return

First-Visit MC Policy Evaluation

- To evaluate s
- The **first** time-step *t* that *s* is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate value by mean return $V(s) \leftarrow S(s)/N(s)$
- By the law of large numbers $V(s) \rightarrow V^{\pi}$ as $N(s) \rightarrow \infty$

Every-Visit MC Policy Evaluation

- To evaluate s
- Every time-step t that s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate value by mean return $V(s) \leftarrow S(s)/N(s)$
- Again, $V(s) \rightarrow V^{\pi}$ as $N(s) \rightarrow \infty$

Example: Blackjack

Objective: Have your card sum be greater than the dealer's without going over 21

- States (200 of them)
 - Current sum (12-21)
 - Dealer's showing card (Ace-10)
 - Do I have a useable ace?

Reward +1 for winning, 0 for draw, -1 for losing

Actions Hold (stop receiving cards), Hit (receive another card)

Example: Blackjack

Policy Hold if sum at least 20, otherwise hit

Credit: David Silver

Q-functions: motivation

- Issue of V^{π} : only encodes the quality of states
 - But we need to learn what actions are good
- Is there a function that encodes the quality of actions as well?

Action-value functions (Q-functions):

$$Q^{\pi}(s,a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi] = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

The optimal Q function

$$Q^*(s,a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi^*] = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^*(s')$$

The optimal policy can be extracted from Q^* :

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Q-values

r(s, a) (immediate reward) values

 $V^*(s)$ values

 $Q^*(s,a)$ values

Q-learning: motivation

- We do not know the state transition nor the reward function.
- Instead of learning these model parameters, we directly attempt to estimate Q^*
- Similar to V^* , Q^* also satisfies a <u>Bellman-optimality equation</u>:

$$Q^{*}(s, a) = R(s, a) + \gamma \cdot \sum_{s'} P(s' \mid s, a) \max_{a'} Q^{*}(s', a')$$

Recall: $Q^{*}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{*}(s')$

• We will use this to design our learning rule

Algorithm: Q-learning (deterministic transitions/rewards)

- Assume that we are in the tabular setting: *S* and *A* are both finite
- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s
- Repeat:
 - Select an action a and execute it (e.g., ϵ -greedy)
 - Receive a reward r
 - Observe a new state s'

• Update:
$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
 (similar to value iteration)

• s ← s′

$$Q^{*}(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^{*}(s',a')$$

Q-learning: update example

r(s, a) (immediate reward) values

$$Q(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} Q(s_2, a')$$
$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$
$$\leftarrow 90$$

Q-learning for stochastic transitions/rewards

- Our update equation is problematic: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$
- For stochastic worlds:
 - Fix *s*, *a*, (next state, reward) *s*', *r* seen is stochastic
 - Even if $Q = Q^*$ in the previous iteration, Q(s, a) will deviate from $Q^*(s, a)$ after the update
 - This results in Q(s, a) not converging
- How to fix this? Recall:

$$Q^{*}(s, a) = R(s, a) + \gamma \cdot \sum_{s'} P(s' \mid s, a) \max_{a'} Q^{*}(s', a')$$

• We can use the idea of stochastic approximation (also called temporal difference learning in the RL context)

Stochastic approximation

- Given a *stream* of data points $X_1, ..., X_n \sim N(\mu, 1)$
- How to estimate μ in an *anytime* manner?
- Idea 1: at time step n, output estimate $\hat{\mu}_n = X_n$
- Can we do better?
- Idea 2: at time step *n*, output estimate $\hat{\mu}_n = \frac{1}{n}(X_1 + \dots + X_n)$
- This is equivalent to $\hat{\mu}_n = (1 \alpha_n)\hat{\mu}_{n-1} + \alpha_n X_n$, where $\alpha_n = \frac{1}{n}$ Old estimate New data (conservativenss) (correctivenss)

Q-learning for nondeterminstic transitions/rewards

- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s

$$Q^{*}(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^{*}(s',a')$$

- Repeat
 - Take an action *a*
 - e.g., ϵ -greedy (taking $\operatorname{argmax}_a Q(s, a)$ w.p. 1ϵ)
 - Receive the reward r
 - Observe the new state s'

• Update:
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)$$

• $s \leftarrow s'$

α is a hyperparameter! (next slide)

The choice of α

- $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$
- For example, $\alpha = \frac{1}{1 + \# \operatorname{times}(s,a)}$.
- Q: Why is this a reasonable choice?

Discussion

- Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP, exploration policy, and step size scheme)
- In practice, it takes a lot of iterations!
- Comparison: Model-based learning vs. Q-learning when choosing actions
 - Model-based
 - need to look ahead using some estimates of rewards and transition probabilities (Model Predictive Control)
 - Q-learning (model-free)
 - just choose the action with the largest Q value

Challenge of Q-learning: large state spaces

• Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces states

• How to design a Q-learning-style algorithm that can handle large state spaces?

https://www.microsoft.com/en-us/research/uploads/prod/2018/09/Reinforcement-Learning-with-Rich-Observations-SLIDES.pdf

Q function approximation

- We can use some other function representation (e.g. a neural net) to compactly encode a substitute for the big table.
- We've been thinking states as discrete (the set S), but in fact, they can be a feature vector!

each input unit can be a sensor value (or more generally, a feature)

Q: why is this a good idea?

Why Q function approximation?

- 1. memory issue
- 2. is able to *generalize across states*! may speed up the convergence.
- Example: 100 binary features for states. 10 possible actions.
- Q table size = 10×2^{100} entries
- NN with 100 hidden units:
 - 100 x 100 + 100 x 10 = 11k weights (not counting bias for simplicity)

Algorithm: fitted Q-learning

Repeat

- observe the state s
- compute Q(s, a) for each action a (forward pass on the NN)
- select action a (e.g. use ϵ -greedy) and execute it
- observe the new state s' and the reward r
- compute Q(s', a') for each action a' (forward pass on the NN)
- update the NN with the instance
 - $x \leftarrow s$
 - $y \leftarrow (1 \alpha)Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a')\right)$ (label for Q(s,a))

Calculate Q value you would have put into the Q-table and use it as the training label. Use the squared loss and perform backpropagation!

Fitted Q-learning example: Atari games

- Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)
- Tested Fitted Q-learning on 49 Atari games

- Achieves >=75% of human professional players' scores on 29 games
- Can significantly outperform human players in many games

https://arxiv.org/pdf/1312.5602.pdf https://www.nature.com/articles/nature14236

Fitted Q-learning example: Atari games (cont'd)

- The neural network for fitting Q values
 - Convolutional architecture to handle states as images

• Learning curve: (Space Invaders, ϵ -greedy with $\epsilon = 0.05$)

Fitted Q-learning example: Atari games (cont'd)

- Q-network's last hidden layer extracts useful representations
- Consequently Q-network provides Q-value estimates that generalize across states

Fitted Q-learning example: Atari games (cont'd)

• The learned Q functions are sensible

Summary

- MDPs: Reward driven philosophy
- Policy evaluation: Bellman consistency equations; fixed point iteration
- Planning in MDPs: value iteration; policy iteration
- Learning in MDPs: Q-learning; function approximation