

CSC580: Principles of Data Science

Ensemble Methods

Jason Pacheco

Ensemble Methods combine several base models to produce a single model with better predictive accuracy.

Motivation

- Groups of people often make better decisions than a single individual
- Combines opinions of multiple "learners" (models)
- Different models tend to make different (uncorrelated) errors
- Combining models averages out individual errors
- Difference in methods is in how base learners are combined into an ensemble

Tree-Based Models as Ensembles

Assigns simple (constant prediction) model in regions

Example: Gaussian Mixture Model

Can think of GMM as "soft" partitioning of model ensemble

Source: Bishop, PRML

GMM as Model Combination

The model distribution is given by,

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
For $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ the probability of the data is,

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \left[\sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n) \right].$$

- Each datapoint is generated from a different (Gaussian) model
- Compare to Bayesian model averaging

Bayesian Model Averaging

- Consider a set of models $h = 1, \ldots, H$
- Each distribution is given by $p(\mathbf{X}|h)$ (e.g. Gaussian, Student-t, etc.)
- The distribution over the data is given by,

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h).$$

- All data is generated from one model
- As size of dataset increases, uncertainty reduces and $p(h|\mathbf{X})$ concentrates
- Similar considerations apply for predictive distribution p(x|X)

Committee Methods

- Most models you have seen are *deterministic*
- If you train on the same data you get the same model
- Voting requires differing models
- Two ways to get difference in models
 - Change the learning algorithm
 - Change the training dataset

Voting Example

Train multiple classifiers (KNN, decision tree, etc.) call them,

$$f_1, f_2, \ldots, f_m$$

At test time, compute predictions,

$$\hat{y}_1 = f_1, \hat{y}_2 = f_2, \dots, \hat{y}_m = f_m$$

- Assume binary labels $\hat{y} \in \{0,1\}$
- Count number of +1's among y's
- If there are more +1's then vote +1
- Otherwise vote -1

Voting Classifiers

Very unlikely that all classifiers will make the same mistakes

As long as each error is made by a *minority of models* then you will **achieve an optimal classifier!**

Unfortunately, inductive biases of different learning algorithms are highly correlated...

...but ensembles can still be helpful for *reducing variance*

Voting Methods

Naturally extends to multi-class classification

Voting doesn't make sense in:

- Regression
- Ranking
- Etc.

You will rarely see the same output from multiple models

- E.g. two different regression models
- For regression: Take the mean / median

Bagging

Voting methods combine multiple models to produce randomness

Instead of multiple models, use a single model trained on different datasets

Bagging = "Bootstrap Aggregating" uses *bootstrap resampling* to produce multiple datasets from a single training set

Recall: Bootstrap

Suppose we observe data $X_1, X_2, \ldots, X_n \sim P(X; \theta)$:

- 1. Sample new "dataset" X_1^*, \ldots, X_m^* uniformly from X_1, \ldots, X_n with replacement
- **2.** Compute estimate $\hat{\theta}_m(X_1^*, \dots, X_m^*)$
- 2. Repeat B times to get set of estimators $\hat{\theta}_{m,1}, \hat{\theta}_{m,2}, \dots, \hat{\theta}_{m,B}$
- 3. Compute sample mean and sample variance of estimators,

$$\bar{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_{m,b} \qquad \qquad \sigma_{\text{boot}}^2 = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta}_{m,b} - \bar{\theta}_{\text{boot}})^2$$

3. 95% Confidence Interval: $\bar{\theta}_{\text{boot}} \pm 2\sigma_{\text{boot}}$

Assumes Normally-distributed estimates $\hat{\theta}_m$.

Bootstrap Example

Eight subjects who used medical patches to infuse a hormone into the blood using three treatments: placebo, old-patch, new-patch

$\operatorname{subject}$	placebo	old	new	old – placebo	new - old
1	9243	17649	16449	8406	-1200
2	9671	12013	14614	2342	2601
3	11792	19979	17274	8187	-2705
4	13357	21816	23798	8459	1982
5	9055	13850	12560	4795	-1290
6	6290	9806	10157	3516	351
7	12412	17208	16570	4796	-638
8	18806	29044	26325	10238	-2719

Estimate whether relative efficacy is the same under new drug,

$$\theta = \frac{\mathbf{E}[\text{new} - \text{old}]}{\mathbf{E}[\text{old} - \text{placebo}]}$$

Bootstrap B=1,000 samples yields 95% confidence interval, $\theta \in (-0.24, 0.15)$

Bagging

https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f

Boosting Error Analysis

Let *M* models be trained on bootstrap data with committee predictions,

$$y_{\text{COM}}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}).$$

Suppose h(x) is the true regression we wish to predict and each model,

$$y_m(\mathbf{x}) = h(\mathbf{x}) + \epsilon_m(\mathbf{x}).$$

Average sum-of-squares error then takes the form,

$$\mathbb{E}_{\mathbf{x}}\left[\left\{y_m(\mathbf{x}) - h(\mathbf{x})\right\}^2\right] = \mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})^2\right]$$

Where expectation is with respect to the input data x

Boosting Error Analysis

Average error of individual models is therefore,

$$E_{\rm AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

Average error from the committee is given by,

$$E_{\text{COM}} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

Boosting Error Analysis

Let's assume errors are zero-mean and uncorrelated,

$$\mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x}) \right] = 0$$

$$\mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x}) \epsilon_l(\mathbf{x}) \right] = 0, \qquad m \neq l$$

Then we obtain,

$$E_{\rm COM} = \frac{1}{M} E_{\rm AV}.$$

- Committee reduces error by a factor of M
- Relies on errors being uncorrelated, but errors are often correlated
- Even with correlated errors we can still show,

 $E_{\rm COM} \leqslant E_{\rm AV}.$

- Taking a weak learner and producing a strong learner
- Start with a crummy learning algorithm (weak learner)
- Retrain it and upweight examples that it makes errors on
- Do this again...
- ...and again...

Define a strong learning algorithm \mathcal{L} as:

- Given a desired error rate ϵ
- A failure probability δ
- And "enough" training data
- With high probability (at least $1-\delta$)
- ${\cal L}$ learns a classifier f that has error at most ϵ
- Known as probably almost correct (PAC) learning
- But directly building a strong algorithm can be hard
- \bullet Instead, build a weak learner ${\mathcal W}$ and boost it

- Short for "Adaptive Boosting"
- Runs in polynomial time
- Does not have a large number of hyperparameters
- Typically *adapts* to the data that you give it

Intuition Study for an exam using a past exam.

- Grade your past exam
- Retake exam and pay less attention to questions you got right
- Pay more attention to questions that you got wrong
- Regrade and repeat, and repeat, and repeat...

Algorithm 32 AddaBoost(W, D, K)

1: $d^{(0)} \leftarrow \langle \frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N} \rangle$ // Initia 2: for $k = 1 \dots K$ do 3: $f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})$ 4: $\hat{y}_n \leftarrow f^{(k)}(x_n), \forall n$ 5: $\hat{e}^{(k)} \leftarrow \sum_n d_n^{(k-1)} [y_n \neq \hat{y}_n]$ 6: $\alpha^{(k)} \leftarrow \frac{1}{2} \log \left(\frac{1 - \hat{e}^{(k)}}{\hat{e}^{(k)}} \right)$ 7: $d_n^{(k)} \leftarrow \frac{1}{Z} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n$ 8: end for 9: return $f(\hat{x}) = \operatorname{sgn} \left[\sum_k \alpha^{(k)} f^{(k)}(\hat{x}) \right]$

// Initialize uniform importance to each example

// Train kth classifier on weighted data
 // Make predictions on training data
 // Compute weighted training error
 // Compute "adaptive" parameter
 // Re-weight examples and normalize

// Return (weighted) voted classifier

Consider the exponential error function,

$$E = \sum_{n=1}^{N} \exp\left\{-y_n \hat{y}_n\right\}$$

Where \hat{y}_n is a linear combination of base classifiers,

$$\hat{y}_n = \frac{1}{2} \sum_{k=1}^m \alpha_k f_\ell(x_n)$$

We want to minimize *E* with respect to base classifiers $f_{\ell}(x)$ and weights α_{ℓ} ,

$$E = \sum_{n=1}^{N} \exp\left\{-y_n f_{k-1}(x_n) - \frac{1}{2}\alpha_k y_n \hat{y}_k\right\}$$
$$= \sum_{n=1}^{N} d_n^k \exp\left\{-\frac{1}{2}\alpha_k y_n \hat{y}_k\right\}$$

So the error function is given by,

Weights d_n^k can be viewed as constants in optimization

$$E = \sum_{n=1}^{N} d_n^k \exp\left\{-\frac{1}{2}\alpha_k y_n \hat{y}_k\right\}$$

Given \hat{y}_k and α_k the weights can be updated sequentially as,

$$d_n^{k+1} = d_n^k \exp\left\{-\frac{1}{2}\alpha_k y_n \hat{y}_k\right\}$$

- This recovers the weight update in AdaBoost
- Similar analysis can be used to recover updates for α_k
- This shows that AdaBoost minimizes exponential error

$$E = \sum_{n=1}^{N} \exp\left\{-y_n \hat{y}_n\right\}$$

Algorithm 32 AddaBoost(W, D, K)

1: $d^{(0)} \leftarrow \langle \frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N} \rangle$ // Initia 2: for $k = 1 \dots K$ do 3: $f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})$ 4: $\hat{y}_n \leftarrow f^{(k)}(x_n), \forall n$ 5: $\hat{e}^{(k)} \leftarrow \sum_n d_n^{(k-1)} [y_n \neq \hat{y}_n]$ 6: $\alpha^{(k)} \leftarrow \frac{1}{2} \log \left(\frac{1 - \hat{e}^{(k)}}{\hat{e}^{(k)}} \right)$ 7: $d_n^{(k)} \leftarrow \frac{1}{Z} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n$ 8: end for 9: return $f(\hat{x}) = \operatorname{sgn} \left[\sum_k \alpha^{(k)} f^{(k)}(\hat{x}) \right]$

// Initialize uniform importance to each example

// Train kth classifier on weighted data
 // Make predictions on training data
 // Compute weighted training error
 // Compute "adaptive" parameter
 // Re-weight examples and normalize

// Return (weighted) voted classifier

Example: AdaBoost Decision Stump

Decision Stump Tree with a single question (e.g. "is feature x on?")

All week decision stumps must have the form,

$$f(\mathbf{x}) = s(2x_d - 1)$$
 where $s \in \{\pm 1\}$

Now let f_k single feature and s_k its sign, then:

$$f(\mathbf{x}) = \operatorname{sgn}\left[\sum_{k} \alpha_{k} f^{(k)}(\mathbf{x})\right] = \operatorname{sgn}\left[\sum_{k} \alpha_{k} s_{k} (2x_{f_{k}} - 1)\right]$$
$$= \operatorname{sgn}\left[\sum_{k} 2\alpha_{k} s_{k} x_{f_{k}} - \sum_{k} \alpha_{k} s_{k}\right]$$

Example: AdaBoost Decision Stump

$$f(\mathbf{x}) = \operatorname{sgn} [\mathbf{w} \cdot \mathbf{x} + b]$$

where $w_d = \sum_{k:f_k=d} 2\alpha_k s_k$ and $b = -\sum_k \alpha_k s_k$

Thus, AdaBoost with decision stumps is a linear classifier!

Consider boosting a linear classifier,

$$f(\mathbf{x}) = \operatorname{sgn}\left[\sum_{k} \alpha_{k} \operatorname{sgn}\left(\mathbf{w}^{(k)} \cdot \mathbf{x} + b^{(k)}\right)\right]$$

What type of model does this look like?

Tree-Based Models as Ensembles

Assigns simple (constant prediction) model in regions

Random Forest Classifiers

- Training decision trees is expensive
 - Expensive part is choosing tree structure
 - Filling in leaves is cheap
- Idea Use random tree structures and just fill in leaves
 - This is a *random decision tree*
 - A collection of random trees is a random forest
- Approach
 - Generate K (full) binary trees with random features
 - Use training data to assign leaves (classification decisions)

Random Forest

- K trees can be generated in parallel
- Features are selected randomly with replacement
- May have duplicate features, even in single path
- Data is *only* needed to assign leaves

Random Forest : Why does it work?

- Some trees will query on useless features
 - These trees will make essentially random predictions
- But some trees will query on good features
 - These trees will make good predictions
 - Because leaves are estimated based on training data
- If you have enough trees...
 - Random ones will wash out as noise
 - Only good trees affect final classification