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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

What if we could learn a basis function so that a simple linear 
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I
reused these from the SVM slides



Neural Networks

• Flexible nonlinear transformations of data
• Resulting transformation is easily fit with a linear model
• Relatively efficient learning procedure scales to massive data
• Apply to many Machine Learning / Data Science problems

• Regression
• Classification
• Dimensionality reduction
• Function approximation
• Many application-specific problems



Neural Networks
Forms of NNs are used all over the place nowadays…

AI Chat Bots Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron
In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output
• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
• The perceptron is just logistic regression in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…
…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Modern Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks add many hidden layers

…and have many trillions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a
numer in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce
a constant bias parameter



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and ridge 
functions like the rectified linear unit (ReLU),



Multilayer Perceptron

Final layer is typically a linear 
model…for classification this is 

a Logistic Regression

Recall that for multiclass 
logistic regression with K 

classes,

Vector of activations from
previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 
on the output…need to tweak 

(learn) all parameters 
simultaneously to improve 

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron
Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters
in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!



Learning algorithm intuition

• Gradient descent: Move in direction of greatest improvement

• “Knob turning”

• ”knob” = weight of an edge

• If a neuron increases the probability of an incorrect prediction, its 
knobs will be turned down. 

• If a neuron increases the probability of a correct prediction, its knobs 
will be turned up. 

17



Training Multilayer Perceptron
Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super 
(13,002) high dimensional…but we proceed as if…
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Deep learning, a field of machine learning

Dog 90%
Mop 10%

Learning algorithm
(backpropagation)
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Deep learning with backpropagation

Input neurons Output neurons
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Deep learning with backpropagation
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Deep learning with backpropagation
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Deep learning with backpropagation
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Oops!

Deep learning with backpropagation
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Decrease signal on ”synapses” 
that fired incorrectly!

Deep learning with backpropagation
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Increase signal on ”synapses” 
that did not fire sufficiently!

Deep learning with backpropagation
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Collection of all 
weights and biases in 

the network
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One training example
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Partial derivative of the cost 
function C for each 

parameter (weight or bias) in 
the network
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Learning rate, which 
is a hyper parameter



Training Multilayer Perceptron

For each training example, 
predict label and adjust 

weights…

• How to score final layer output?
• How to adjust weights?



Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class…

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Computing the Derivative

So we need to compute derivatives of a super complicated 
function…

Dropped bias terms
for simplicity

• Tells us how much to turn the “tuning knob” (i.e. weight)
• But how do we compute derivatives for edge weights not directly 

connected to the output layer?
• Backpropagation!



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Computing the Derivative

Recall the derivative chain rule

Differentiate g with
respect to w

Derivative of f at its
argument g(w)

e.g. treat g(w) as a variable

Alternatively we can write this as…



Derivative Chain Rule

Example Derivative of the logistic function,



Backpropagation

Backpropagation is the procedure of repeatedly applying the 
derivative chain rule to compute the full derivative

Example

This is simply the derivative chain rule applied through the 
entire network, from the output to the input



Backpropagation

• Implementation-wise all we need is a function that computes 
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the 
network and moving backwards

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer 
perceptron that approximates f(x) with arbitrary accuracy.

• Specific cases for arbitrary depth (number of hidden layers) and 
arbitrary width (number of nodes in a layer)

• Not a constructive proof (doesn’t guarantee you can learn parameters)

• Corollary : The multilayer perceptron is a universal turing machine

• Also means it can easily overfit training data (regularization is critical)



Regularization



Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk.  - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks



L2 Regularization

Formalize the regularized cost function as,

Consider an L2 penalty,

Gradient (derivative) with respect to w is given by,

Take a single step in the direction of the gradient,



L2 Reguilarization (Weight Decay)

Written another way, a single gradient step is:

• Can see this is a modification to the learning rule (gradient descent)
• “Shrinks” the weight by constant factor on each step
• Then perform usual gradient step

Learning Rate
(how big of a step)

Regularization
Strength (Coefficient)



Regularization : Weight Decay



L1 Regularization

(Sub-)gradient given by,

J̃(w) = J(w) + α∥w∥1

• Very different effect from L2 weight decay
• Regularization contribution no longer scales linearly with each w
• Constant addition with sign equal to sign(w)
• Has a sparsity-inducing property (forces some weights to w=0)



L1 Regularization

Consider the case where                        There are two possible cases, 

:
• Optimal value is just wi=0
• Contribution of J(w;X,y) is “overwhelmed” by L1 regularizer

:
• Shifts wi in the direction of 0 by distance equal to a/H

Similar process for w<0 but in opposite direction. 



(Goodfellow 2016)

Sparse Representations

L1 regularization induces sparse 
parameterization – many parameters 0

Representational sparsity enforces 
many data elements 0 (or close to it)

Sparse Parameterization

Sparse Representation

Accomplished by same set of 
mechanisms as sparse param – norm 

penalty on representation

e.g. L1 penalty



(Goodfellow 2016)

Parameter Tying / Sharing

• Introduces inductive bias 
• There should be dependencies among parameters
• Parameters should be close / similar

• Can use previously-trained model on similar task

• Parameter norm penalty is one way

• Hard constraints force sets of parameters to be equal
• Known as parameter sharing
• Only subset of unique parameters needs to be stored in memory



(Goodfellow 2016)

Dataset Augmentation

• Train on more data (always more data)
• What if we don’t have more data? (Make up more)
• Easiest for classification
• Generate new (x,y) pairs by transforming x in dataset for each y
• Not readily applicable to many other tasks

• E.g. hard for density estimation unles we’ve solved the density estimation prob.
• Particularly effective for object recognition

• Translation
• Scaling
• Rotation
• …



(Goodfellow 2016)

Dataset Augmentation

Affine Distortion Noise Elastic Deformation

Horizontal flip Random Translation Hue Shift



(Goodfellow 2016)

Dataset Augmentation

• Need to avoid transformations that change class

• For example mirror “b” to produce “d”

• Rotation turns “6” into “9”

• Some transformations are not easy to perform, e.g. out-of-
plane rotation



(Goodfellow 2016)

Label Smoothing

• Many datasets have some mistakes in labels y
• Inject noise in labels at output

• Assume label is correct with probability 1-e (for some small e)
• Otherwise any other label is assigned

• Can incorporate this into cost function analytically
• Label smoothing regularizes model based on softmax

• Replaces hard assignment with 1-e and e/(k-1) ; for k labels
• Can use standard cross-entropy loss with soft targets



(Goodfellow 2016)

Learning Curves – Early Stopping

Figure 7.3

Early stopping: terminate while validation set
performance is better



(Goodfellow 2016)



(Goodfellow 2016)

Early Stopping

• Think of it as efficient hyperparameter selection algorithm (number of 
training steps)

• Requires almost no change to underlying training procedure
• Contrast with weight decay that requires hyperparameter tuning

• Can be used alone or in conjunction with other regularization
• Can conclude with a training stage that includes all training data

• Initialize model and retrain for same number of steps
• Same number of parameter updates or epochs?

• Continue from current parameters
• How many training steps?
• Periodically check validation set (which is now part of training)



(Goodfellow 2016)

Dropout

Figure 7.6Provides ensemble of exponentially 
many ANNs - all subnetworks formed 
by removing subset of edges / nodes

Each time we load a minibatch, 
randomly remove set of edges / nodes

Includes input and hidden nodes – typically 
different probabilities of dropping each



(Goodfellow 2016)

Dropout
• Srivastava et al. (2014) showed more effective than weight decay and 

other “simple” regularization methods

• Computationally very cheap; O(n) computation per example per update
• Doesn’t significantly limit type of model that can be used

• Can slow training and require larger model sizes

• Less effective when very few training examples available

• ”Fast Dropout” – Don’t stochastically drop edges; estimate average



Regularization

• L1+L2 (elastic net) regularization

• Dropout Each iteration randomly selects a small number of 
edges to temporarily exclude from the network (weights=0)

• Data Augmentation Synthetically expand training data by 
applying random transformations

• Early stopping Just as it sounds…stop the network before 
reaching a local minimum…dumb-but-effective



Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/ 

https://playground.tensorflow.org/




Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,
• Single hidden layer (50 nodes)
• Use stochastic gradient descent
• Maximum of 10 learning iterations
• Small L2 regularization alpha=1e-4

http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction



Convolutional Neural Networks



NNs for images

• Fully-connected (FC) layers do not scale well to images (width x height x 
#channels)

• Need for smaller number of parameters

• Note: FCs can learn (pattern, location) combinations in images 
• The learned patterns do not generalize to different spatial locations.

• Can we capture local patterns (e.g. existence of a wheel in an image) regardless of 
the spatial location in the image and leverage them for better classification?

• low level: edge of some orientation, a patch of some color
• high level: shape of a wheel
• i.e. can we learn a group of neurons that detect patterns at all locations?

• Encodes inductive bias

65

𝑎(") 𝑎("$%)



Convolutional neural networks (CNN)
• A.K.A. ConvNet architecture
• A set of neural network architecture that consists of

• convolutional layers
• pooling layers
• fully-connected (FC) layers

66(Stanford CS231n)



Convolution for single-channel images
Consider one filter with weights {𝑤",$} with size F x F

• For every F x F region of the image, perform inner product (= element wise 
product, then sum them all) 

• Q: given a w x h image, after convolution with a F x F filter, what is the size of 
the resulting image?

• Terminologies: filter size, receptive field size, kernel.

67Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285


Define the convolution of filter f on image I as: 

𝐼 ∗ 𝑓 𝑥 =&
!

&
"

𝑓 𝑥 −𝑚, 𝑦 − 𝑛 𝐼(𝑚, 𝑛)

Convolution: Some Intuition

68

Many ML libraries actually implement cross-correlation:

𝑓 ∗ 𝐼 𝑥 =&
!

&
"

𝑓 𝑥, 𝑦 𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)

Learning finds good values for the convolution filter…



Convolutional layer for multi-channel images

Input: w (width) x h (height) x c (#channels)
• E.g. 32 x 32 x 3
• 3 channels: R, G, and B

A convolutional filter on such image is of 
shape F x F x c

• Only spatial structure in the first two 
dimensions

• Denoted by {𝑤#,%,&} 

69image from Stanford CS231n



Convolutional layer: visual explanation
• Consider one filter with weights {𝑤",$,%} with 5 x 5 x 3

• Imagine a sliding 3D window.
• Convolution:  For every 5 x 5 region of the image, perform inner product (= element wise 

product, then sum them all) 
• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤",$,%
(ℓ) } for ℓ ∈ [𝐾] => 

output is 28 x 28 x 𝐾

70(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

filter weights
(depth=1 here)



Convolutional Layer: Why is it useful?

The set of weights represent a pattern (i.e., diagonal edge). The 
activation map represents ‘where the pattern has occurred’.

71image from Stanford CS231n



Convolutional Layers Beyond the First Layer

Generalization: conv layer as the 2nd  layer or more
• Input volume (3d object with size w x h x d): 

• the d (called depth) is not necessarily 3
• Output volume: size w’ x h’ x d’, where d’ is the number of filters at the 

current layer.

Interpretation: patterns over the patterns.
• Each filter now convolves and combines d’ 

activation maps for each spatial location.
• e.g., combinations of particular edges and textures

72



Convolutional Layer: More Details
Stride length S
• Skip input regions; Move the sliding window of a filter not by 1 but by S. 
• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides
• To ensure the spatial dimension is maintained

(otherwise, patterns at the corners are not detected well)
• If we use P=1, then the activation map will be 30 x 30, 

not 28 x 28 in our example!

73
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Convolutional Layer: More Details
Stride length S
• Skip input regions; Move the sliding window of a filter not by 1 but by S. 
• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels with value 0 around the 
input image.
• To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not 

detected well)
• If we use P=2, then the activation map will be 32 by 32 not 28 by 28 in our example!

Rules (same goes for height)
• W: input volume width,   F: filter width
• The output width K = floor((W – F + 2P)/S) + 1
• E.g., W=32, F=5, P=0, S=1     =>    K = 28
• E.g., W=32, F=5, P=2, S=1     =>    K = 32 75

(usually, the filter has the same width and height)



Strides and padding: animations

76Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285


Convolutional Layer: Summary

Input 𝑊'×𝐻'×𝐷'   (width, height, depth)

Hyperparameters # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆, 
zero-padding 𝑃

Output 𝑊(×𝐻(×𝐷(
𝑊( =

)!*+,(-
.

+ 1,        
𝐻( =

/!*+,(-
.

+ 1,     
𝐷( = 𝐾

77

More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)



Comparison: FC vs Conv

• Conv layer allows parsimonious representations:
• Inter-layer connections are local  
• parameter is shared across spatial locations.

• In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)
• Each filter has 11*11*3 weights with 1 bias   =>   364 parameters 
• 364*96 = 34,944 total parameters are used to compute the output 55*55*96 = 290,400

• What if we didn’t do parameter sharing? I.e., for each region of image, use independent filter 
parameter w.

• roughly, 290,400 * 364 = 105,705,600

• What if we use FC to compute the same number of outputs? (the parsimony of local connections)
• 230,187 * 290,400 = 66,846,304,800 parameters

• Conv layer can be seen as imposing inductive bias specialized for images

• This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up 
while training!  =>  useless filters are ‘squeezed out’ or ‘crowded out’ by useful filters.

78



Pooling layer
• The role: Summarize the input and scale down the spatial size.

• has the effect of routing the region with the most activation.
• Recall depth slice: take the matrix at a particular depth.
• Max pooling: run a particular filter that computes maximum, for each depth slice.

• Variation: average pooling (but not popular).
• Recommended: Filter size F=2, stride length S=2.  (F=3, S=2 is also commonly use – overlapping 

pooling).
• Note: There are no parameters  for this layer!

79figure from Stanford CS231n



Typical architectural patterns in CNN

80
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CNN examples



LeNet-5

• Proposed in “Gradient-based learning applied to document 
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and 
Patrick Haffner, in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (MNIST) and use 
backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected 
layers 

• Input size: 32x32x1
• Convolution kernel size: 5x5
• Pooling: 2x2

83



LeNet-5

84
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

(depth 1)

5 by 5 filters
K=6
stride 1

2x2 pooling
stride 2

5 by 5 by 6 filters
K=16
stride 1

2x2 pooling
stride 2



• Won the ImageNet competition  with top-5 test error rate of 16.4% 
(second place was 26.2%).

• Almost just an extension of LeNet-5. But, uses ReLU for the first time.

85
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.

(1000 classes)

https://en.wikipedia.org/wiki/AlexNet

AlexNet (2012)



VGGNet (2014): 7.3% error on ImageNet

86

• Mimic large convolutional filters with multiple small (3x3) convolutional filters
• Every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]



ResNet (2016): 3.5% error on ImageNet

• Proposed in “Deep residual learning for image recognition” by He, 
Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings 
of the IEEE conference on computer vision and pattern recognition,. 
2016.

• Apply very deep networks with repeated residual blocks.

• Structure: simply stacking residual blocks, but the network is very 
deep.

• Let’s see the motivation.

87



88
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



Deep nets seem to suffer

89
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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(slides from Kaiming He)

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



Skip connections for better optimization

• Skip connections

• 𝐹(𝑥) encodes residual representations, which has previously 
been explored in early works

• When backprop’ing, by the chain rule, gradients will ‘flow’ 
directly to the previous layer.

• Recall: when the computation graph splits, the gradient 
is a summation of the gradients of the branches.

• In contrast, plain CNNs suffer from vanishing gradient 
problem

91

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



ResNet

• VGG-style scheme: halve the special 
size, double the # of filters

• Max pool appears only once.

• Use conv layer with stride 2 occasionally 
to reduce the spatial dimension => called 
“bottleneck” blocks.

92http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



ResNet in PyTorch
Torchvision implementation: 
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

93

https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html


ImageNet nowadays

Top-5 accuracy is boring

SoTA top-1 accuracy is around 90.88%

94
https://paperswithcode.com/sota/image-classification-on-imagenet
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Autoencoder



Unsupervised Learning Review

• Recall: unlabeled data.
• Q: what is the main goal of unsupervised learning?
• Examples: clustering, PCA.

• Recall PCA can be used for  
‘representation learning’ = 
learning useful (and compact) 
features.

• NNs can be used to do 
generalizations of PCA.

96

(learned features = projected feature vector)



Introductory Example

• Suppose you have a number in {0,1,2,3,4,5,6,7}
• What would be a compact representation (say, for 

computers)?

• Q: how many bits do we need?

97



Early Observations

Train a neural net by 
imposing squared loss on all 
the output units & 
backpropagation.

Q: What do the hidden 
values look like?

98p107, Tom Mitchell, “Machine Learning”



Autoencoder using deep networks

99
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

How to use it: 
 - Encoder: for dimensionality reduction
 - Decoder: generate new samples from the distribution by varying the input ‘code’



PCA as a linear neural network

100

linear = no activation



PCA as a linear NN

• k units in the hidden layer.
• The PCA can be represented as a NN
    (with constant bias added in each layer):

• Encoder: ℎ =
−	𝑣' −
…

−	𝑣& −
⋅ 𝑥 +

−𝑣'4𝜇
…

−𝑣&4𝜇

• Decoder: A𝑥 =
| |
𝑣' … 𝑣&
| |

⋅ ℎ +
|
𝜇
|

101

1 1



Autoencoder using deep networks

102
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

What about images?



Training autoencoders

• Given:
• data 𝑥!, … , 𝑥" ∈ ℝ#, 
• Embedding dimension 𝑘 (𝑘 ≪ 𝑑)

• Goal: obtain 
• Encoder network 𝑓$: ℝ# → ℝ%
• Decoder network 𝑔&: ℝ% → ℝ#
• Such that for every 𝑖, 𝑥' ≈ 𝑔&(𝑓$(𝑥'))

• Most commonly used formulation (can be straightforwardly trained 
by gradient-based methods): 

  minimize!,# ∑$%&' 𝑥$ − 𝑔# 𝑓! 𝑥$
( 

103Reconstruction error 



Autoencoder for images

• Encoder: conv-conv-pool-conv-conv-pool-…, 
• Decoder: conv-conv-pool-…?? It will reduce the spatial dimension 

rather than increasing it.
• How to do the opposite of pooling (or conv with stride length >= 2)?

104
Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



“Un”pooling

105(fig. from Stanford cs231n)



Max unpooling

106(fig from Stanford cs231n)

The network must be symmetric!



Transposed convolution

• Other names: upconvolution, fractionally strided convolution, 
backward strided convolution, deconvolution (don’t use this 
name)

• Recall: 3 x 3 convolution with stride 2 pad 1.

107(fig from Stanford cs231n)



Transposed convolution

108(fig from Stanford cs231n)
Disclaimer: this is not the inverse of convolution!
Rather, it’s just a variation of the convolution.



1D transposed convolution

109(fig from Stanford cs231n)



1D transposed convolution: matrix form

110(fig from Stanford cs231n)



Resources

3Blue1Brown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk 

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/ 

Prof. Stephen Bethard often teaches an excellent class:
ISTA 457 / INFO 557

“The Deep Learning Book” by Goodfellow et al.
https://www.deeplearningbook.org/ 

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
https://www.deeplearningbook.org/

