

CSC580: Probabilistic Graphical Models

Midterm Review

Jason Pacheco

Supervised learning setup: putting it together

iid training data *S* has low generalization error

Generalization error: $L_D(f) = E_{(x,y)\sim D} \ell(y, f(x))$

k-nearest neighbors (k-NN): main concept

Training set: $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$

Inductive bias: given test example *x*, its label should resemble the labels of **nearby points**

Function

- input: *x*
- find the k nearest points to x from S; call their indices N(x)
- output: the majority vote of $\{y_i : i \in N(x)\}$
 - For regression, the average.

k-NN classification example

k-NN classification: pseudocode

• Training is trivial: store the training set

- Time complexity (assuming distance calculation takes O(d) time)
 - $O(m d + m \log m + k) = O(m(d + \log m))$
- Faster nearest neighbor search: k-d trees, locality sensitive hashing

Variations

- Classification
 - Recall the majority vote rule: $\hat{y} = \arg \max_{y \in \{1,...,C\}} \sum_{i \in N(x)} 1\{y_i = y\}$
 - Soft weighting nearest neighbors: $\hat{y} = \arg \max_{y \in \{1,...,C\}} \sum_{i=1}^{m} w_i \ 1\{y_i = y\},\$ where $w_i \propto \exp(-\beta \ d(x, x_i))$, or $\propto \frac{1}{1+d(x, x_i)^{\beta}}$
- Class probability estimates

•
$$\hat{P}(Y = y \mid x) = \frac{1}{k} \sum_{i \in N(x)} 1\{y_i = y\}$$

• Useful for "classification with rejection"

Inductive Bias

Test

How would you label the test examples?

Overfitting vs Underfitting

Optimum

High training error High test error

Low training error Low test error

Low training error High test error

Bayes optimal classifier

Theorem
$$f_{BO}$$
 achieves the smallest 0-1 error among all classifiers.
 $f_{BO}(x) = \arg \max_{y \in \mathcal{Y}} P_D(X = x, Y = y) = \arg \max_{y \in \mathcal{Y}} P_D(Y = y | X = x), \forall x \in \mathcal{X}$

Example Iris dataset classification:

Bayes error rate: alternative form

$$L_{D}(f_{BO}) = P_{D}(Y \neq f_{BO}(X))$$

= $\sum_{x} P_{D}(Y \neq f_{BO}(x) | X = x) P_{D}(X = x)$
= $\sum_{x} (1 - P_{D}(Y = f_{BO}(x) | X = x)) P_{D}(X = x)$
= $\sum_{x} (1 - \max_{y} P_{D}(Y = y | X = x)) P_{D}(X = x)$
= $E [1 - \max_{y} P_{D}(Y = y | X)]$

• Special case: binary classification

$$L_D(f_{BO}) = \sum_x P_D(Y \neq f_{BO}(x), X = x)$$

= $\sum_x \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$

When is the Bayes error rate nonzero?

$$L_D(f_{BO}) = \sum_{x} \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$$

- Limited feature representation
- Noise in the training data
 - Feature noise
 - Label noise
 - Sensor failure
 - Typo in reviews for sentiment classification
- May not be a single "correct" answer
- Inductive bias of the model / learning algorithm

New measures of classification performance

- True positive rate (TPR) = $\frac{TP}{P} = \frac{P(\hat{y}=+1,y=+1)}{P(y=+1)}$ (aka recall, sensitivity)
- True negative rate (TNR) = $\frac{TN}{N}$ (specificity)
- False positive rate (FPR) = $\frac{FP}{N}$
- False negative rate (FNR) = $\frac{FN}{P}$

• Precision =
$$\frac{\text{TP}}{\text{P}-called} = \frac{P(\hat{y}=+1,y=+1)}{P(\hat{y}=+1)}$$
, P - called = TP + FP

Linear Regression

Regression Learn a function that predicts outputs from inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name suggests, uses a *linear function*:

 $y = w^T x + b$

We will add noise later...

Linear Regression

Input-output mapping is not exact, so we will add zero-mean Gaussian noise,

Multivariate Normal (uncorrelated)

$$y = w^T x + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

This is equivalent to the likelihood function,

$$p(y \mid w, x) = \mathcal{N}(y \mid w^T x, \sigma^2)$$

Because Adding a constant to a Normal RV is still a Normal RV,

$$z \sim \mathcal{N}(m, P)$$
 $z + c \sim \mathcal{N}(m + c, P)$

In the case of linear regression $z \to \epsilon$ and $c \to w^T x$

Great, we're done right?

Data – We have this

We need to fit it to data by learning the regression weights

How to do this? What makes *good* weights?

Don't know these; need to learn them

There are several ways to think about fitting regression:

- Intuitive Find a plane/line that is close to data
- Functional Find a line that minimizes the *least squares* loss
- Estimation Find maximum likelihood estimate of parameters

They are all the same thing...

Learning Linear Regression Models

There are several ways to think about fitting regression:

- Intuitive Find a plane/line that is close to data
- Functional Find a line that minimizes the *least squares* loss
- Estimation Find maximum likelihood estimate of parameters

They are all the same thing...

MLE for Linear Regression

Given training data $\{(x_i, y_i)\}_{i=1}^N$ likelihood function is given by,

$$\log \prod_{i=1}^{N} p(y_i \mid x_i, w) = \sum_{i=1}^{N} \log p(y_i \mid x_i, w)$$

Recall that the likelihood is Gaussian:

$$p(y \mid w, x) = \mathcal{N}(y \mid w^T x, \sigma^2)$$

So MLE maximizes the log-likelihood over the whole data as,

$$w^{\text{MLE}} = \arg\max_{w} \sum_{i=1}^{N} \log \mathcal{N}(y_i \mid w^T x_i, \sigma^2)$$

MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,

$$p(\mathcal{Y} \mid \mu) = \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mu, \sigma^2) \quad \text{Variance is known}$$

Log-likelihood function:

$$\mathcal{L}(\mu) = \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} (y_i - \mu)^2 \sigma^{-2} \right) \right)$$
Constant doesn't depend on mean = const. $-\frac{1}{2} \sum_{i=1}^{N} \left((y_i - \mu)^2 \sigma^{-2} \right)$
MLE doe 1) Drop of

MLE estimate is *least squares estimator*:

$$\mu^{\text{MLE}} = -\frac{1}{2\sigma^2} \arg \max_{\mu} \sum_{i=1}^{N} (y_i - \mu)^2 = \arg \min_{\mu} \sum_{i=1}^{N} (y_i - \mu)^2$$

MLE doesn't change when we:
1) Drop constant terms (in µ)
2) Minimize negative log-likelihood

MLE of Linear Regression

Substitute linear regression prediction into MLE solution and we have,

So for Linear Regression, MLE = Least Squares Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE of Linear Regression

Using previous results, MLE is equivalent to minimizing squared residuals,

$$\min_{w} \sum_{i=1}^{N} (y_i - w^T x_i)^2 = \|\mathbf{y} - w^T \mathbf{X}\|^2$$

Some slightly more advanced linear algebra gives us a solution,

$$w = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but...

- We know it has a closed-form and why
- We can evaluate it
- Generally know where it comes from

Basis Functions

- A basis function can be any function of the input features X
- Define a set of m basis functions $\phi_1(x), \ldots, \phi_m(x)$
- Fit a linear regression model in terms of basis functions,

$$y = \sum_{i=1}^{m} w_i \phi_i(x) = w^T \phi(x)$$

- Regression model is *linear in the basis transformations*
- Model is *nonlinear in the data X*

Kernel Functions

A **kernel function** is an inner-product of some basis function computed on two inputs

$$k(x, x') = \boldsymbol{\phi}(x)^{\mathrm{T}} \boldsymbol{\phi}(x') = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

A consequence is that kernel functions are non-negative realvalued functions over a pair of inputs,

$$\kappa(x, x') \in \mathbb{R}$$
 $\kappa(x, x') \ge 0$

Kernel functions can be interpreted as a measure of distance between two inputs

Kernel Functions

Example The *linear basis* $\phi(x) = x$ produces the kernel, $\kappa(x, x') = \phi(x)^T \phi(x') = x^T x'$

It is often easier to directly specify the kernel rather than the basis function...

Example Gaussian kernel models similarity according to an unnormalized Gaussian distribution,

$$\kappa(x, x') = \exp\left(-\frac{1}{2\sigma^2}(x - x')^2\right)$$

Note Despite the name, this is **not** a Gaussian probability density.

Also called a *radial basis function* (RBF)

Kernel Functions

Given any set of data $\{x_i\}_{i=1}^n$ a necessary and sufficient condition of a valid kernel function is that the nxn gram matrix,

$$\mathbf{K} = \begin{pmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \vdots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{pmatrix}$$

Is a symmetric positive semidefinite matrix.

Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual $\boldsymbol{\Phi} = \begin{pmatrix} 1 & \phi_1(x_1) & \dots & \phi_M(x_1) \\ 1 & \phi_1(x_2) & \dots & \phi_M(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \phi_1(x_N) & \dots & \phi_M(x_N) \end{pmatrix} \qquad \mathbf{K} = \begin{pmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \vdots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{pmatrix}$ $y(x) = \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda I)^{-1} \mathbf{y}$ $w = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$ **MxM Matrix Inversion NxN Matrix Inversion O(M³) O(N³)**

Number of training data N greater than basis functions M