CSC580: Probabilistic Graphical Models

Probabilistic Graphical Models

Jason Pacheco

Administrivia

- Homework submission
- Make sure questions are answered in PDF
- Match pages to questions
- Put code in PDF (relevant parts of code at least)
- Doublecheck your submission
- Midterm Exam
- Thursday 10/12
- No coding
- Probably closed-book
- Probability Refresher
- Probabilistic Graphical Models
- Naïve Bayes
- Probability Refresher

- Probabilistic Graphical Models

- Naïve Bayes

Before we learn about probabilistic graphical models, we need to review probability...

Random Events and Probability

Suppose we roll two fair dice...

$>$ What are the possible outcomes?
$>$ What is the probability of rolling even numbers?
$>$ What is the probability of rolling odd numbers?
...probability theory gives a mathematical formalism to addressing such questions...

Definition An experiment or trial is any process that can be repeated with well-defined outcomes. It is random if more than one outcome is possible.

Random Events and Probability

Definition An outcome is a possible result of an experiment or trial, and the collection of all possible outcomes is the sample space of the experiment,

Sample Space

Example (1,1), $(1,2), \ldots,(6,1),(6,2), \ldots,(6,6)$

Definition An event is a set of outcomes (a subset of the sample space),

Example Event Roll at least a single 1

$$
\{(1,1),(1,2),(1,3), \ldots,(1,6), \ldots,(6,1)\}
$$

Random Variables

(Informally) A random variable is an unknown quantity that maps events to numeric values.

Example X is the sum of two dice with values,

$$
X \in\{2,3,4, \ldots, 12\}
$$

Example Flip a coin and let random variable Y represent the outcome,

$$
Y \in\{\text { Heads, Tails }\}
$$

Random Variables and Probability

Capitol letters represent random variables

Lowercase letters are realized values
$X=x$ is the event that X takes the value x

Example Let X be the random variable (RV) representing the sum of two dice with values,

$$
X \in\{2,3,4, \ldots, 12\}
$$

$X=5$ is the event that the dice sum to 5 .

Probability Mass Function

A function $p(X)$ is a probability mass function (PMF) of a discrete random variable if the following conditions hold:
(a) It is nonnegative for all values in the support,

$$
p(X=x) \geq 0
$$

(b) The sum over all values in the support is 1,

$$
\sum_{x} p(X=x)=1
$$

Intuition Probability mass is conserved, just as in physical mass. Reducing probability mass of one event must increase probability mass of other events so that the definition holds...

Probability Mass Function

Example Let X be the outcome of a single fair die. It has the PMF,

$$
p(X=x)=\frac{1}{6} \quad \text { for } x=1, \ldots, 6
$$

Uniform Distribution

Example We can often represent the PMF as a vector. Let S be an RV that is the sum of two fair dice. The PMF is then,

Observe that S does not follow a uniform distribution

$$
p(S)=\left(\begin{array}{c}
p(S=2) \\
p(S=3) \\
p(S=4) \\
\vdots \\
p(S=12)
\end{array}\right)=\left(\begin{array}{c}
1 / 36 \\
1 / 18 \\
1 / 2 \\
\vdots \\
1 / 36
\end{array}\right)
$$

- We use $p(X)$ to refer to the probability mass function (i.e. a function of the RV X)
- We use $p(X=x)$ to refer to the probability of the outcome $X=x$ (also called an "event")
- We will often use $p(x)$ as shorthand for $p(X=x)$

Joint Probability

Definition Two (discrete) RVs X and Y have a joint PMF denoted by $p(X, Y)$ and the probability of the event $\mathrm{X}=\mathrm{x}$ and $\mathrm{Y}=\mathrm{y}$ denoted by $p(X=x, Y=y)$ where,
(a) It is nonnegative for all values in the support,

$$
p(X=x, Y=y) \geq 0
$$

(b) The sum over all values in the support is 1,

$$
\sum_{x} \sum_{y} p(X=x, Y=y)=1
$$

Joint Probability

Let X and Y be binary $R V$ s. We can represent the joint PMF $p(X, Y)$ as a 2×2 array (table):

All values are nonnegative

Joint Probability

Let X and Y be binary $R V$ s. We can represent the joint PMF $p(X, Y)$ as a 2×2 array (table):

The sum over all values is 1 :
$0.04+0.36+0.30+0.30=1$

Joint Probability

Let X and Y be binary $R V$ s. We can represent the joint PMF $p(X, Y)$ as a 2×2 array (table):

$$
P(X=1, Y=0)=0.30
$$

Fundamental Rules of Probability

Given two RVs X and Y the conditional distribution is:

$$
p(X \mid Y)=\frac{p(X, Y)}{p(Y)}=\frac{p(X, Y)}{\sum_{x} p(X=x, Y)}
$$

Multiply both sides by $p(Y)$ to obtain the probability chain rule:

$$
p(X, Y)=p(Y) p(X \mid Y)
$$

The probability chain rule extends to $N \mathrm{RVs} X_{1}, X_{2}, \ldots, X_{N}$:

$$
p\left(X_{1}, X_{2}, \ldots, X_{N}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) \ldots p\left(X_{N} \mid X_{N-1}, \ldots, X_{1}\right)
$$

```
Chain rule valid for any ordering
```

$$
=p\left(X_{1}\right) \prod_{i=2}^{N} p\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

Fundamental Rules of Probability

Law of total probability

$$
p(Y)=\sum_{x} p(Y, X=x): \begin{aligned}
& \mathrm{P}(y) \text { is a marginal distribution } \\
& .
\end{aligned}
$$

Proof $\quad \sum_{x} p(Y, X=x)=\sum_{x} p(Y) p(X=x \mid Y) \quad$ (chain rule)

$$
\begin{array}{ll}
=p(Y) \sum_{x} p(X=x \mid Y) & (\text { distributive property) } \\
=p(Y) & (\text { PMF sums to } 1)
\end{array}
$$

Generalization for conditionals:

$$
p(Y \mid Z)=\sum_{x} p(Y, X=x \mid Z)
$$

Tabular Method

Let X, Y be binary $R V$ s with the joint probability table
$P\left(y_{1}\right)=P\left(x_{1}, y_{1}\right)+P\left(x_{2}, y_{1}\right)$
$P\left(y_{2}\right)=P\left(x_{1}, y_{2}\right)+P\left(x_{2}, y_{2}\right)$
[i.e., sum down columns]

For Binomial use K-by-K probability table.

Y

Tabular Method

Tabular Method

Question: Roll two dice and let their outcomes be $X_{1}, X_{2} \in\{1, \ldots, 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$
p\left(X_{1} \mid X_{2}\right)=\frac{p\left(X_{1}, X_{2}\right)}{p\left(X_{2}\right)}
$$

Which of the following are true?
a) $p\left(X_{1}=1 \mid X_{2}=1\right)>p\left(X_{1}=1\right)$
b) $p\left(X_{1}=1 \mid X_{2}=1\right)=p\left(X_{1}=1\right) \quad$ Outcome of die 2 doesn't affect die 1
c) $p\left(X_{1}=1 \mid X_{2}=1\right)<p\left(X_{1}=1\right)$

Intuition Check

Question: Let $X_{1} \in\{1, \ldots, 6\}$ be outcome of die 1, as before. Now let $X_{3} \in\{2,3, \ldots, 12\}$ be the sum of both dice. Which of the following are true?
a) $p\left(X_{1}=1 \mid X_{3}=3\right)>p\left(X_{1}=1\right)$
b) $p\left(X_{1}=1 \mid X_{3}=3\right)=p\left(X_{1}=1\right)$
c) $p\left(X_{1}=1 \mid X_{3}=3\right)<p\left(X_{1}=1\right)$

Only 2 ways to get $X_{3}=3$, each with equal probability:

$$
\left(X_{1}=1, X_{2}=2\right) \quad \text { or } \quad\left(X_{1}=2, X_{2}=1\right)
$$

SO

$$
p\left(X_{1}=1 \mid X_{3}=3\right)=\frac{1}{2}>\frac{1}{6}=p\left(X_{1}=1\right)
$$

Dependence of RVs

Intuition...
Consider $P(B \mid A)$ where you want to bet on B
Should you pay to know A?
In general you would pay something for A if it changed your belief about B. In other words if,

$$
P(B \mid A) \neq P(B)
$$

Independence of RVs

Definition Two random variables X and Y are independent if and only if,

$$
p(X=x, Y=y)=p(X=x) p(Y=y)
$$

for all values x and y, and we say $X \perp Y$.

Definition RVs $X_{1}, X_{2}, \ldots, X_{N}$ are mutually independent if and only if,

$$
p\left(X_{1}=x_{1}, \ldots, X_{N}=x_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}=x_{i}\right)
$$

$>$ Independence is symmetric: $X \perp Y \Leftrightarrow Y \perp X$
$>$ Equivalent definition of independence: $p(X \mid Y)=p(X)$

Independence of RVs

Definition Two random variables X and Y are conditionally independent given Z if and only if,

$$
p(X=x, Y=y \mid Z=z)=p(X=x \mid Z=z) p(Y=y \mid Z=z)
$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.
$>$ N RVs conditionally independent, given Z, if and only if:

$$
p\left(X_{1}, \ldots, X_{N} \mid Z\right)=\prod_{i=1}^{N} p\left(X_{i} \mid Z\right) \quad \begin{aligned}
& \begin{array}{l}
\text { Sorthand notation } \\
\text { Implies for all } x, y, z
\end{array} \\
& \hline
\end{aligned}
$$

$>$ Equivalent def'n of conditional independence: $p(X \mid Y, Z)=p(X \mid Z)$
$>$ Symmetric: $X \perp Y|Z \Leftrightarrow Y \perp X| Z$

- Probability Refresher

- Probabilistic Graphical Models

- Naïve Bayes

Graphical Models

A variety of graphical models can represent the same probability distribution

Bayes Network

Directed Models

Factor Graph

Markov Random Field

Undirected Models

Graphical Models

A variety of graphical models can represent the same probability distribution

Factor Graph
Markov Random Field

Directed Models

From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent a probability distribution

Graphical Model:

Probability Model:

$p\left(x_{1}, x_{2}, x_{3}\right)=$

$$
p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

Conditional distribution on each RV is dependent on its parent nodes in the graph

Directed Graphical Models

Directed models are generative models...

$$
p\left(C, X_{1}, X_{2}\right)=p(C) p\left(X_{1} \mid C\right) p\left(X_{2} \mid C\right)
$$

The graph and the formula say exactly the same thing. (The graph has very specific semantics.)
...tells how data are generated (called ancestral sampling)
Step 1 Sample root node (prior): $c \sim p(C)$
Step 2 Sample children, given sample of parent (likelihood):

$$
x_{1} \sim p\left(X_{1} \mid C=c\right) \quad x_{2} \sim p\left(X_{2} \mid C=c\right)
$$

Probability Chain Rule

Recall the probability chain rule says that we can decompose any joint distribution as a product of conditionals....

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Valid for any ordering of the random variables...

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{3}\right) p\left(x_{1} \mid x_{3}\right) p\left(x_{4} \mid x_{1}, x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}, x_{4}\right)
$$

For a collection of NRVs and any permutation ρ :

$$
p\left(x_{1}, \ldots, x_{N}\right)=p\left(x_{\rho(1)}\right) \prod_{i=2}^{N} p\left(x_{\rho(i)} \mid x_{\rho(i-1)}, \ldots, x_{\rho(1)}\right)
$$

Conditional Independence

Recall two RVs X and Y are conditionally independent given Z (or $X \perp Y \mid Z$) iff:

$$
p(X \mid Y, Z)=p(X \mid Z)
$$

Idea Apply chain rule with ordering that exploits conditional independencies to simplify the terms

Ex. Suppose $x_{4} \perp x_{1} \mid x_{3}$ and $x_{2} \perp x_{4} \mid x_{1}$ then:

$$
\begin{aligned}
p(x) & =p\left(x_{3}\right) p\left(x_{1} \mid x_{3}\right) p\left(x_{4} \mid x_{1}, x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}, x_{4}\right) \\
& =p\left(x_{3}\right) p\left(x_{1} \mid x_{3}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}\right)
\end{aligned}
$$

Can visualize conditional dependencies using directed acyclic graph (DAG)

General Directed Graphs

Def. A directed graph is a graph with edges $(s, t) \in \mathcal{E}$ (arcs) connecting parent vertex $s \in \mathcal{V}$ to a child vertex $t \in \mathcal{V}$

Def. Parents of vertex $t \in \mathcal{V}$ are given by the set of nodes with arcs pointing to t,

$$
\operatorname{Pa}(t)=\{s:(s, t) \in \mathcal{E}\}
$$

Children of $t \in \mathcal{V}$ are given by the set,

$$
\operatorname{Ch}(t)=\{t:(t, k) \in \mathcal{E}\}
$$

Ancestors are parents-of-parents. Descendants are children-of-children.

Directed PGM = Bayes Network

Model factors are normalized conditional distributions:

$$
p(x)=\prod_{s \in \mathcal{V}} p\left(x_{s} \mid x_{\mathrm{Pa}(s)}\right)
$$

Parents of node s

Directed acyclic graph (DAG) specifies factorized form of joint probability:

$$
p(x)=p\left(x_{3}\right) p\left(x_{1} \mid x_{3}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}\right)
$$

Locally normalized factors yield globally normalized joint probability

Inference

Denote observed data with shaded nodes,

$$
Y_{1}=y_{1} \quad Y_{2}=y_{2}
$$

Infer latent variable C via Bayes' rule:

$$
p\left(c \mid y_{1}, y_{2}\right)=\frac{p(c) p\left(y_{1} \mid c\right) p\left(y_{2} \mid c\right)}{p\left(y_{1}, y_{2}\right)}
$$

- This is (obviously) a simple example
- Models and inference task can get really complicated
- But the fundamental concepts and approach are the same

Bayes' Rule

Posterior represents all uncertainty after observing data...
likelihood function for the parameters

Learning / Training

Model random data with hyperparameters θ :

$$
y \sim p(y \mid \theta)
$$

Sometimes we use:

$$
p(y ; \theta)
$$

Given training data:

$$
\left\{y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} p(y \mid \theta)
$$

Learn parameters, e.g. via maximum likelihood estimation:

$$
\hat{\theta}^{\mathrm{MLE}}=\arg \max _{\theta} \log p\left(y_{1}, \ldots, y_{n} \mid \theta\right)
$$

Other estimators are possible:

```
We will talk more about MLE in coming weeks
```

- Maximum a posteriori (MAP)
- Minimum mean squared error (MMSE)
- Etc.

Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian model and wish to estimate model parameters...

Likelihood Principle Given a statistical model, the likelihood function describes all evidence of a parameter that is contained in the data.

Likelihood Function

Suppose $x_{i} \sim p(x ; \theta)$, then what is the joint probability over N independent identically distributed (iid) observations x_{1}, \ldots, x_{N} ?

$$
p\left(x_{1}, \ldots, x_{N} ; \theta\right)=\prod_{i=1}^{N} p\left(x_{i} ; \theta\right)
$$

- We call this the likelihood function, often denoted $\mathcal{L}_{N}(\theta)$
- It is a function of the parameter θ, the data are fixed
- Measures how well parameter θ describes data (goodness of fit)

How could we use this to estimate a parameter θ ?

Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, maximizes the likelihood function.

$$
\hat{\theta}^{\mathrm{MLE}}=\arg \max _{\theta} \mathcal{L}_{N}(\theta)=\prod_{i=1}^{N} p\left(x_{i} ; \theta\right)
$$

Question How do we find the MLE?
Answer Remember calculus...

Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and doesn't change the answer (logarithm is an increasing function)

$$
\hat{\theta}^{\mathrm{MLE}}=\arg \max _{\theta} \log \mathcal{L}_{N}(\theta)=\sum_{i=1}^{N} \log p\left(x_{i} ; \theta\right)
$$

Derivative is a linear operator so,

$$
\frac{d}{d \theta} \log \mathcal{L}_{N}(\theta)=\underbrace{\sum_{i=1}^{N} \frac{d}{d \theta} \log p\left(x_{i} ; \theta\right)}_{\begin{array}{c}
\text { One term per data point } \\
\text { Can be computed in parallel } \\
\text { (big data) }
\end{array}}
$$

Maximum Likelihood

Example Suppose we have N coin

 tosses with $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(p)$ but we don't know the coin bias p. The likelihood function is,$$
\mathcal{L}_{n}(p)=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{S}(1-p)^{n-S}
$$

where $S=\sum_{i} x_{i}$. The log-likelihood is,

Likelihood function for Bernoulli with $n=20$ and $\sum_{i} x_{i}=12$ heads

$$
\log \mathcal{L}_{n}(p)=S \log p+(n-S) \log (1-p)
$$

Set the derivative of $\log \mathcal{L}_{n}(p)$ to zero and solve,

$$
\hat{p}^{\mathrm{MLE}}=S / n=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Maximum likelihood is equivalent to sample mean in Bernoulli

Discriminative vs Generative modeling

Discriminative model:

- Only models $P(y \mid x, \theta)$-- i.e. doesn't model data x
- Recall linear regression: $y \mid x ; \theta \sim N\left(x^{\top} \theta, \sigma^{2}\right)$
- Logistic regression: $y \mid x ; \theta \sim \operatorname{Bernoulli}\left(\sigma\left(x^{\top} \theta\right)\right)$

Observations

Generative model:

- Models everything including data: $P(k, y)=P(k) P(y \mid k, \theta)$
- e.g., Gaussian mixture model (GMM)
- $\theta=\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K}$
- $k \sim \operatorname{Categorical}(\pi)$ (hidden), i.e. $P(k=l)=\pi_{l}$
- $y \mid k \sim N\left(\mu_{k}, \Sigma_{k}\right)$

Barbershop Example

Suppose you go to a barbershop at every last Friday of the month. You want to be able to predict the waiting time. You have collected 12 data points (i.e., how long it took to be served) from the last year: $S=\left\{x_{1}, \ldots, x_{12}\right\}$

- 1. Modeling assumption: $x_{i} \sim$ Gaussian distribution $N(\mu, 1)$
- $p(x ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2}\right)$
- Observation: this distribution has mean μ
-2. Find the MLE $\hat{\mu}$ from data S
- (2.1) write down the neg. log likelihood of the sample

$$
L_{n}(\mu)=-\ln P\left(x_{1}, \ldots, x_{n} ; \mu\right)=12 \ln \sqrt{2 \pi}+\frac{1}{2} \sum_{i=1}^{12}\left(x_{i}-\mu\right)^{2}
$$

Is this a generative or discriminative model?

Generative model: basic example I (cont'd)

2. Find the MLE $\hat{\mu}$ from data S

- (2.2) compute the first derivative, set it to 0 , solve for λ (be sure to check convexity)

$$
L_{n}^{\prime}(\mu)=\sum_{i=1}^{12}\left(x_{i}-\mu\right)=0 \Rightarrow \mu=\frac{x_{1}+\cdots x_{12}}{12} \text { Sample Mean }
$$

3. The learned model $N(\hat{\mu}, 1)$ is yours!

- Simple prediction: e.g., predict the next wait time by $\mathbb{E}_{X \sim N(\hat{\mu}, 1)}[X]$
- which is $\hat{\mu}=\frac{x_{1}+\cdots x_{12}}{12}$

4. (Optional: Model Checking) Generate some data... Does it look realistic?

(Aside) Categorical Distribution

Distribution on integer-valued RV $X \in\{1, \ldots, K\}$

$$
p(X)=\prod_{k=1}^{K} \pi_{k}^{\mathbf{I}(X=k)} \quad \text { or } \quad p(X)=\sum_{k=1}^{K} \mathbf{I}(X=k) \cdot \pi_{k}
$$

with parameter $p(X=k)=\pi_{k}$ and Kroenecker delta:

$$
\mathbf{I}(X=k)= \begin{cases}1, & \text { If } X=k \\ 0, & \text { Otherwise }\end{cases}
$$

Can also represent X as one-hot binary vector, $X \in\{0,1\}^{K} \quad$ where $\quad \sum_{k=1}^{K} X_{k}=1 \quad$ then $\quad p(X)=\prod_{k=1}^{K} \pi_{k}^{X_{k}}$

Basic Example II

Data $S=\left\{y_{i}\right\}_{i=1}^{n}$, where $y_{i} \in\{1, \ldots, C\}$

Generative Story

$y \sim \operatorname{Categorical}(\pi)$, where $\pi=\left(\pi_{1}, \ldots, \pi_{C}\right) \in \Delta^{C-1}\left(\pi_{c} \geq 0\right.$ and $\left.\pi_{1}+\cdots+\pi_{C}=1\right)$
e.g. $y_{i}=$ the color of i-th ball drawn randomly from a bin (with replacement)
$p(y ; \pi)=\pi_{y}\left(=\prod_{c=1}^{C} \pi_{c}^{I(y=c)}\right)$

Training

(2.1) $L_{n}(\pi)=-\ln P\left(y_{1}, \ldots, y_{n} ; \pi\right)=\sum_{i=1}^{n}-\ln \pi_{y_{i}}=-\sum_{c=1}^{C} n_{c} \ln \pi_{c}$, where $n_{c}=\#\left\{i: y_{i}=c\right\}=\sum_{i=1}^{n} I\left(y_{i}=c\right)$

Basic Example II (Cont'd)

Training

(2.2) minimize ${ }_{\pi \in \Delta^{C-1}} L_{n}(\pi):=-\sum_{c=1}^{C} n_{c} \ln \pi_{c}$

Constrained maximization problem; solve by Lagrange multipliers

$$
\frac{\partial}{\partial \pi}\left(-\sum_{c=1}^{c} n_{c} \ln \pi_{c}-\lambda\left(\sum_{c=1}^{C} \pi_{c}-1\right)\right)=-\frac{n_{c}}{\pi_{c}}-\lambda=0 \Rightarrow \pi_{c}=-\frac{n_{c}}{\lambda}
$$

Combined with the constraint that $\pi_{1}+\cdots+\pi_{C}=1 \Rightarrow \hat{\pi}_{c}=\frac{n_{c}}{n}$, for all c
Test predict label $\operatorname{argmax}_{c} P(y=c ; \hat{\pi})=\operatorname{argmax}_{c} \hat{\pi}_{c}$

- Probability Refresher
- Probabilistic Graphical Models
- Naïve Bayes

What is the joint factorization?

$\mathbf{p}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{p}(\mathbf{a}) \mathbf{p}(\mathbf{b}) \mathbf{p}(\mathbf{c})$

\circlearrowleft_{c}

Are a and b independent $(a \perp b)$?

$$
\mathbf{p}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{p}(\mathbf{a}) \mathbf{p}(\mathbf{b}) \mathbf{p}(\mathbf{c})
$$

$$
p(a, b, c)=p(a) p(b \mid a) p(c \mid a, b)
$$

Note there are no conditional independencies

Case one where c is observed

Is $\mathrm{a} \perp \mathrm{b} \mid \mathrm{c} \quad$?

Case one where c is observed

$$
\mathrm{a} \perp \mathrm{~b} \mid \mathrm{c}
$$

$$
\begin{array}{ll}
p(a, b, c)=p(c) p(a \mid c) p(b \mid c) & (\text { what the graph represents in general) } \\
p(a, b \mid c)=p(a \mid c) p(b \mid c) & (\text { with } c \text { observed) }
\end{array}
$$

This is the definition of $a \perp b \mid c$

Shading \& Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Plates denote replication of random variables

Naïve Bayes for supervised learning

- Motivation: supervised learning for classification
- high-dimensional $x=(x(1), \ldots, x(F))$, modeling $P(x \mid y)$ can be tricky
- In general, $P(x \mid y)=P(x(1) \mid y) \cdot P(x(2) \mid x(1), y) \cdot \ldots \cdot P(x(F) \mid x(1), \ldots, x(F-1), y)$
- A modeling assumption: $x(1), \ldots, x(F)$ are conditionally independent given y
i.e. for all i

$$
x(i) \Perp(x(1), \ldots, x(i-1), x(i+1), \ldots, x(F)) \mid y
$$

(Conditional independence notation: $A \Perp B \mid C$)

- Equivalently $P(x \mid y)=P(x(1) \mid y) \cdot \ldots P(x(F) \mid y)$

Recall : Class Preference Prediction

Define the labeled training dataset $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$

To make this a binary classification we set "Liked" $=\{+2,+1,0\}$ "Nah" $=\{-1,-2\}$

Naïve Bayes: binary-valued features

Training Data $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$,

Generative Story

$y \sim \operatorname{Bernoulli}(\pi)$; for all $j \in[F], x(j) \mid y=c \sim \operatorname{Bernoulli}\left(\theta_{c, j}\right)$ \#parameters $=1+2 F$
Training (denote by $\theta=\left\{\theta_{c, j}\right\}$)
$y_{i} \in\{0,1\}$

$$
\begin{gathered}
\max _{\pi, \theta} \sum_{i=1}^{n} \ln P\left(x_{i}, y_{i} ; \pi, \theta\right)=\sum_{i=1}^{n} \ln P\left(y_{i} ; \pi\right)+\sum_{i=1}^{n} \ln P\left(x_{i} \mid y_{i} ; \theta\right) \\
=\max _{\pi} \sum_{i=1}^{n} \ln P\left(y_{i} ; \pi\right)+\max _{\left\{\theta_{0}, j\right\}} \sum_{i: y_{i}=0} \ln P\left(x_{i} \mid y_{i} ; \theta\right)+\max _{\left\{\theta_{1, j}\right\}} \sum_{i \cdot y_{i}=1} \ln P\left(x_{i} \mid y_{i} ; \theta\right)
\end{gathered}
$$

Key observation: optimal π, optimal $\left\{\theta_{0, j}\right\}$, optimal $\left\{\theta_{1, j}\right\}$ can be found separately
Optimal $\pi: \max _{\pi} \sum_{i=1}^{n} \ln P\left(y_{i} ; \pi\right)=\max _{\pi} n_{0} \ln (1-\pi)+n_{1} \ln (\pi)=>\hat{\pi}=\frac{n_{1}}{n}$

Naïve Bayes: binary-valued features (cont'd)

By the Naïve Bayes modeling assumption,

$$
\begin{aligned}
\max _{\left\{\theta_{0, j}\right\}} \sum_{i: y_{i}=0} \ln P\left(x_{i} \mid y_{i} ; \theta\right)= & \max _{\left\{\theta_{0, j}\right\}} \sum_{j=1}^{F} \sum_{i: y_{i}=0} \ln P\left(x_{i}(j) \mid y_{i} ; \theta_{0, j}\right) \\
& =\sum_{j=1}^{F} \max _{\theta_{0, j}} \sum_{i: y_{i}=0} \ln P\left(x_{i}(j) \mid y_{i} ; \theta_{0, j}\right)
\end{aligned}
$$

Again, can optimize each $\theta_{0, j}$ separately,

- Optimal $\theta_{0, j}: \quad \max _{\theta_{0, j}} \sum_{i: y_{i}=0, x_{i}(j)=1} \ln \theta_{0, j}+\sum_{i: y_{i}=0, x_{i}(j)=0} \ln \left(1-\theta_{0, j}\right)$

$$
\hat{\theta}_{0, j}=\frac{\#\left\{i: y_{i}=0, x_{i}(j)=1\right\}}{\#\left\{i: y_{i}=0\right\}} ; \quad \text { similarly, } \quad \hat{\theta}_{1, j}=\frac{\#\left\{i: y_{i}=1, x_{i}(j)=1\right\}}{\#\left\{i: y_{i}=1\right\}}
$$

Naïve Bayes: binary-valued features (cont'd)

Test Given $\hat{\pi},\left\{\hat{\theta}_{c, j}\right\}$, Bayes optimal classifier

$$
\hat{f}_{B O}(x)=\operatorname{argmax}_{y} P\left(x, y ; \hat{\pi},\left\{\hat{\theta}_{c, j}\right\}\right)=\operatorname{argmax}_{y} \log P\left(x, y ; \hat{\pi},\left\{\hat{\theta}_{c, j}\right\}\right)
$$

- $\log P\left(x, y=0 ; \pi,\left\{\theta_{c, j}\right\}\right)=\ln (1-\pi)+\sum_{j=1}^{F} \ln P\left(x(j) \mid y ; \theta_{0, j}\right)$

$$
\begin{aligned}
& =\ln (1-\pi)+\sum_{j=1}^{F} \ln \left(1-\theta_{0, j}\right) I(x(j)=0)+\ln \left(\theta_{0, j}\right) I(x(j)=1) \\
& =\ln (1-\pi)+\sum_{j=1}^{F} \ln \left(1-\theta_{0, j}\right)+\sum_{j=1}^{F} x(j) \ln \frac{\theta_{0, j}}{1-\theta_{0, j}}
\end{aligned}
$$

- Similarly, $\log P\left(x, y=1 ; \pi,\left\{\theta_{c, j}\right\}\right)=\ln (\pi)+\sum_{j=1}^{F} \ln \left(1-\theta_{1, j}\right)+\sum_{j=1}^{F} x(j) \ln \frac{\theta_{1, j}}{1-\theta_{1, j}}$
- Therefore, $\hat{f}_{B O}(x)=\underbrace{1 \Leftrightarrow \ln \left(\frac{\pi}{1-\pi}\right)+\sum_{j=1}^{F} \ln \left(\frac{1-\theta_{1, j}}{\left.1-\theta_{0, j}\right)}\right.}_{b}+\sum_{j=1}^{p} x(j) \underbrace{\left(\ln \frac{\theta_{1, j}}{1-\theta_{1, j}}-\ln \frac{\theta_{0, j}}{1-\theta_{0, j}}\right)}_{w(j)} \geq 0$
- I.e. Bayes classifier is linear

Naïve Bayes: Discrete (Categorical-valued) features

Data $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$,
$x_{i} \in[W]^{F}$
$y_{i} \in\{0,1\}$

Generative story

$y \sim \operatorname{Bernoulli}(\pi)$; for all $j \in[F], x(j) \mid y=c \sim \operatorname{Categorical}\left(\theta_{c}\right)\left(\theta_{c} \in \Delta^{W-1}\right)$
\#parameters $=1+2 \mathrm{~W}$
Note: in this example, θ_{c} shared across all features!

Training

Similar to previous example, optimal π, optimal θ_{0}, optimal θ_{1} can be found separately, by maximizing the respective part of the likelihood function (exercise)

Optimal π same as previous example

Training

Optimal θ_{c} :

$$
\begin{aligned}
\max _{\theta_{0}} \sum_{i: y_{i}=0} \ln P\left(x_{i} \mid y_{i} ; \theta_{0}\right) & =\max _{\theta_{0}} \sum_{j=1}^{F} \sum_{i: y_{i}=0} \ln P\left(x_{i}(j) \mid y_{i} ; \theta_{0}\right) \\
& =\max _{\theta_{0}} \sum_{w=1}^{W} \sum_{j=1}^{F} \sum_{i: y_{i}=0} I\left(x_{i}(j)=w\right) \ln \theta_{0, w} \\
& =\max _{\theta_{0}} \sum_{w=1}^{W} \ln \theta_{0, w} \#\left\{(i, j): y_{i}=0, x_{i}(j)=w\right\} \\
=>\hat{\theta}_{c, w}=\frac{\#\left\{(i, j): y_{i}=c, x_{i}(j)=w\right\}}{\#\left\{i: y_{i}=c\right\} \times F} &
\end{aligned}
$$

Exercise: how to extend this to variable-length x_{i} 's (e.g. for text classification)?

Test

Bayes optimal classification rule with $\left(\hat{\pi}, \hat{\theta}_{0}, \hat{\theta}_{1}\right)$ (exercise)

Summary

Fundamental rules of Probability:

- Law of total probability: $p(Y)=\sum_{x} p(Y, X=x)$
- Probability chain rule: $p(X \mid Y)=\frac{p(X, Y)}{p(Y)}$
- Conditional probability: $p(X, Y)=p(Y) p(X \mid Y)$

Independence of Random Variables:

- Two RVs are independent if: $p(X=x, Y=y)=p(X=x) p(Y=y)$
- Or: $p(X \mid Y)=p(X)$
- They are conditionally independent if:

$$
p(X=x, Y=y \mid Z=z)=p(X=x \mid Z=z) p(Y=y \mid Z=z)
$$

- Or: $p(X \mid Y, Z)=p(X \mid Z)$

Summary

A Bayes Network expresses a unique probability factorization:

$$
p(x)=\prod_{s \in \mathcal{V}} p\left(x_{s} \mid x_{\mathrm{Pa}(s)}\right)
$$

Inference is performed by Bayes' rule (posterior distribution):

$$
p\left(c \mid y_{1}, y_{2}\right)=\frac{p(c) p\left(y_{1} \mid c\right) p\left(y_{2} \mid c\right)}{p\left(y_{1}, y_{2}\right)}
$$

Summary

Hyperparameters must be estimated (e.g. Maximum Likelihood):

$$
\hat{\theta}^{\mathrm{MLE}}=\arg \max _{\theta} \log p\left(y_{1}, \ldots, y_{n} \mid \theta\right)
$$

High
Likelihood

Low Likelihood (mean)

Low
Likelihood (variance)

Summary

Naïve Bayes classifier assumes features are conditionally independent given class Y:

$$
x(j) \Perp(x(1), \ldots, x(j-1), x(j+1), \ldots, x(D)) \mid y
$$

Joint distribution factorizes as:

$$
p(x, y)=p(y) \prod_{\{j=1\}}^{D} p(x(j) \mid y)
$$

Allows easier fitting of hyperparameters for class conditional distributions (they can be fit independently of each other)

