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• Probability Refresher

• Probabilistic Graphical Models

• Naïve Bayes

Before we learn about probabilistic 
graphical models, we need to review 

probability…



Random Events and Probability

Suppose we roll two fair dice…

Ø What are the possible outcomes?
Ø What is the probability of rolling even numbers?
Ø What is the probability of rolling odd numbers?

…probability theory gives a mathematical formalism to 
addressing such questions…

Definition An experiment or trial is any process that can be repeated 
with well-defined outcomes.  It is random if more than one outcome is 
possible.



Random Events and Probability

Definition An outcome is a possible result of an 
experiment or trial, and the collection of all possible 
outcomes is the sample space of the experiment,

Example (1,1), (1,2), …, (6,1), (6,2), …, (6,6)

Sample Space

Outcome

Definition An event is a set of outcomes (a subset of the sample 
space),

Example Event Roll at least a single 1
{(1,1), (1,2), (1,3), …, (1,6), …, (6,1)}



Random Variables

Example X is the sum of two dice with values,

(Informally) A random variable is an unknown 
quantity that maps events to numeric values.

Example Flip a coin and let random variable Y 
represent the outcome,



Random Variables and Probability

is the event that X takes the value x

Capitol letters represent
random variables

Lowercase letters are
realized values

Example Let X be the random variable (RV) representing the sum of two 
dice with values,

X=5 is the event that the dice sum to 5.



Probability Mass Function

A function            is a probability mass function (PMF) of a discrete 
random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,

Intuition Probability mass is conserved, just as in physical mass.  
Reducing probability mass of one event must increase probability mass 

of other events so that the definition holds...



Probability Mass Function

Example Let X be the outcome of a single fair die.  It has the PMF,

Example We can often represent the PMF as a vector.  Let S be an 
RV that is the sum of two fair dice.  The PMF is then,

Uniform Distribution

Observe that S does
not follow a uniform

distribution



PMF Notation

•  We use p(X) to refer to the probability mass function (i.e. a 
function of the RV X)

•  We use p(X=x) to refer to the probability of the outcome X=x 
(also called an “event”)

•  We will often use p(x) as shorthand for p(X=x)



Joint Probability

Definition Two (discrete) RVs X and Y have a joint PMF denoted by    
              and the probability of the event X=x and Y=y denoted by
                           where,

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04  0.36

0.30  0.30

0 1

0

1

All values are nonnegative



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04  0.36

0.30  0.30

0 1

0

1

The sum over all values is 1:
0.04 + 0.36 + 0.30 + 0.30 = 1



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04  0.36

0.30  0.30

0 1

0

1

P(X=1, Y=0) = 0.30



Fundamental Rules of Probability

Given two RVs     and     the conditional distribution is:

Multiply both sides by         to obtain the probability chain rule:

The probability chain rule extends to     RVs                          :

Chain rule valid
for any ordering



Fundamental Rules of Probability

Law of total probability

Proof ( chain rule )

( distributive property )

( PMF sums to 1 )

Generalization for conditionals:

• P(y) is a marginal distribution
• This is called marginalization



Tabular Method

P(x1)=P(x1,y1)+P(x1,y2)
P(x2)=P(x2,y1)+P(x2,y2)
 [i.e., sum across rows]

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04  0.36

0.30  0.30

y1 y2

x1

x2

0.34 0.66

P(y2)P(y1)

P(y)

Let X, Y be binary RVs with the joint probability table

P(y1)=P(x1,y1)+P(x2,y1)
P(y2)=P(x1,y2)+P(x2,y2)
 [i.e., sum down columns]

For Binomial use K-by-K 
probability table.



Tabular Method

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04  0.36

0.30  0.30

y1 y2

x1

x2

0.34 0.66

P(y1)

Censored!

We don’t care about 
event Y=y2

P(x|y1)=?



Tabular Method

X

Y=y1

x1

x2

0.34

P(y1)

P(x|y1)
0.04 / 0.34 
 
0.30 / 0.34 
 

These sum to one: 
A conditional probability distribution is 

still a probability distribution

0.04   

0.30   



Intuition Check

Question: Roll two dice and let their outcomes be
for die 1 and die 2, respectively.  Recall the definition of conditional 
probability,

Which of the following are true?

a)

b)

c)

Outcome of die 2 doesn’t affect die 1



Intuition Check

Question: Let                          be outcome of die 1, as before.  Now let 
                              be the sum of both dice.  Which of the following are 
true?

a)

b)

c)

Only 2 ways to get             , each with equal 
probability:

or

so



Dependence of RVs

Intuition…

Should you pay to know A?

In general you would pay something for A if it 
changed your belief about B. In other words if, 

      



Independence of RVs

Definition RVs                          are mutually independent if and only if,

Definition Two random variables    and    are independent if and only if, 

for all values   and   , and we say           . 

Ø Independence is symmetric:
Ø Equivalent definition of independence:



Independence of RVs

Definition Two random variables    and    are conditionally independent 
given    if and only if, 

for all values   ,   , and   , and we say that                  . 

Ø N RVs conditionally independent, given Z, if and only if:

Shorthand notation
Implies for all x, y, z

Ø Equivalent def’n of conditional independence:
Ø Symmetric: 



• Probability Refresher

• Probabilistic Graphical Models

• Naïve Bayes



Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models



Graphical Models

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models
[Source: Erik Sudderth, PhD Thesis]



From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent 
a probability distribution

Probability Model:
Graphical Model:

Conditional distribution on each RV is dependent on its parent 
nodes in the graph



Directed Graphical Models

Directed models are generative models…

…tells how data are generated (called ancestral sampling)

Step 1 Sample root node (prior):

Step 2 Sample children, given sample of parent (likelihood):

c

x2x1

The graph and the formula say exactly the same thing.
(The graph has very specific semantics.)



Probability Chain Rule

Recall the probability chain rule says that we can decompose 
any joint distribution as a product of conditionals….

Valid for any ordering of the random variables…

For a collection of N RVs and any permutation   : 



Conditional Independence

Recall two RVs     and    are conditionally 
independent given     (or                   ) iff:

Idea Apply chain rule with ordering that 
exploits conditional independencies to 

simplify the terms

Ex. Suppose                     and                     then:
Can visualize conditional 

dependencies using directed 
acyclic graph (DAG)



General Directed Graphs

Def. A directed graph is a graph with edges               (arcs) 
connecting parent vertex           to a child vertex           

Def. Parents of vertex          are given by the 
set of nodes with arcs pointing to   ,

Children of          are given by the set,

Ancestors are parents-of-parents.  
Descendants are children-of-children.



Directed PGM = Bayes Network

Model factors are normalized conditional distributions:

Directed acyclic graph (DAG) specifies 
factorized form of joint probability:

Parents of node s

Locally normalized factors yield globally 
normalized joint probability



Inference

Denote observed data with shaded nodes,
c

y2y1

Infer latent variable C via Bayes’ rule:

p(c | y1, y2) =
p(c)p(y1 | c)p(y2 | c)

p(y1, y2)

• This is (obviously) a simple example
• Models and inference task can get really complicated
• But the fundamental concepts and approach are the same

Y1 = y1 Y2 = y2



Bayes’ Rule

likelihood function 
for the parametersprior probability

marginal likelihoodposterior probability

p(c | y) =
p(c)p(y | c)

p(y)

or: evidence
or: partition function

or: normalizer

Posterior represents all uncertainty after observing data…



Learning / Training

Model random data with hyperparameters   :

y2y1

θ θ

y ∼ p(y | θ)
p(y; θ)

Sometimes we use:

Given training data:

{yi}ni=1

i.i.d.
∼ p(y | θ)

Learn parameters, e.g. via maximum likelihood estimation:

θ̂MLE = argmax
θ

log p(y1, . . . , yn | θ)

Other estimators are possible:
• Maximum a posteriori (MAP)
• Minimum mean squared error (MMSE)
• Etc.

We will talk more
about MLE in 
coming weeks



Likelihood (Intuitively)
Suppose we observe N data points from a Gaussian 

model and wish to estimate model parameters…

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function 
describes all evidence of a parameter that is contained in the data.



Likelihood Function

• We call this the likelihood function, often denoted 
• It is a function of the parameter   , the data are fixed
• Measures how well parameter    describes data (goodness of fit)

Suppose                   , then what is the joint probability over N 
independent identically distributed (iid) observations                 ?

How could we use this to estimate a parameter    ?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, 
maximizes the likelihood function.

Question How do we find the MLE?
Answer Remember calculus…

Is            convex?

Unique, closed-
form solution

Gradient-based
optimization

Yes

No

Approach
• Compute derivative
• Set to zero and solve

Still have to compute 
derivative…



Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and 
doesn’t change the answer (logarithm is an increasing function)

Derivative is a linear operator so,
MLE

One term per data point
Can be computed in parallel 

(big data)



Maximum Likelihood
[ Source: Wasserman, L. 2004 ]

Likelihood function for Bernoulli 
with n=20 and                  heads

Example Suppose we have N coin 
tosses with                                           but 
we don’t know the coin bias  .  The 
likelihood function is,

where                  .  The log-likelihood is,

Set the derivative of                  to zero and solve,
Maximum likelihood is 
equivalent to sample 

mean in Bernoulli



Discriminative vs Generative modeling

Discriminative model:
• Only models 𝑃 𝑦 𝑥, 𝜃  -- i.e. doesn’t model data x
• Recall linear regression: 𝑦 ∣ 𝑥; 𝜃 ∼ 𝑁(𝑥!𝜃, 𝜎")
• Logistic regression: 𝑦 ∣ 𝑥; 𝜃 ∼ Bernoulli(𝜎(𝑥!𝜃))

Generative model:
• Models everything including data: 𝑃 𝑘, 𝑦 = 𝑃 𝑘 𝑃(𝑦 ∣ 𝑘, 𝜃)
• e.g., Gaussian mixture model (GMM)

• 𝜃 = 𝜋#,𝜇!, Σ! #$%
&

• 𝑘 ∼ Categorical(𝜋) (hidden), i.e. 𝑃 𝑘 = 𝑙 = 𝜋"
• 𝑦 ∣ 𝑘 ∼ 𝑁(𝜇#, Σ#)
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k

y

Unknowns

Parameters
Observations

x

y



Barbershop Example

Suppose you go to a barbershop at every last Friday of the month. You want to be 
able to predict the waiting time. You have collected 12 data points (i.e., how long it 
took to be served) from the last year: 𝑆 = {𝑥#, … , 𝑥#$}

• 1. Modeling assumption: 𝑥% ∼ Gaussian distribution 𝑁(𝜇, 1)
• 𝑝 𝑥; 𝜇 = %

"'
exp − ()* !

"
• Observation: this distribution has mean 𝜇

• 2. Find the MLE �̂� from data S
• (2.1) write down the neg. log likelihood of the sample
    𝐿+ 𝜇 = − ln𝑃 𝑥%, … , 𝑥+; 𝜇 = 12	ln 2𝜋 + %

"
∑,$%%" 𝑥, − 𝜇 "
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Is this a generative or discriminative model?



Generative model: basic example I (cont’d)

2. Find the MLE �̂� from data S
• (2.2) compute the first derivative, set it to 0, solve for 𝜆
   (be sure to check convexity)
    𝐿+- 𝜇 = ∑,$%%" (𝑥, − 𝜇) = 0 ⇒ 𝜇 = (".⋯("!

%"

3. The learned model 𝑁(�̂�, 1) is yours!
• Simple prediction: e.g., predict the next wait time by 𝔼0~2(4*,%) 𝑋  
• which is J𝜇 = (".⋯("!

%"

4. (Optional: Model Checking) Generate some data... Does it look realistic?
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Sample Mean



(Aside) Categorical Distribution

Distribution on integer-valued RV

with parameter                         and Kroenecker delta:

Can also represent X as one-hot binary vector,

or

where then



Basic Example II

Data 𝑆 = 𝑦% %&#' , where 𝑦% ∈ {1,… , 𝐶}

Generative Story
    𝑦 ∼ Categorical(𝜋), where 𝜋 = 𝜋#, … , 𝜋( ∈ Δ()# (𝜋* ≥ 0	and 𝜋# +⋯+ 𝜋( = 1)
    e.g. 𝑦% = the color of 𝑖-th ball drawn randomly from a bin (with replacement)

    𝑝 𝑦; 𝜋 = 𝜋+ = ∏*&#
( 𝜋*

, +&*

Training
    (2.1) 𝐿' 𝜋 = −ln	𝑃 𝑦#, … , 𝑦'; 𝜋 = ∑%&#' −ln	𝜋+! = −∑*&#( 𝑛*	ln	𝜋*, 
    where 𝑛* = # 𝑖: 𝑦% = 𝑐 = ∑%&#' 𝐼(𝑦% = 𝑐)
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Basic Example II (Cont’d)

Training
(2.2) minimize!∈#!"#	𝐿$ 𝜋 ≔ −∑%&'( 𝑛%	ln	𝜋%

Constrained maximization problem; solve by Lagrange multipliers

𝜕
𝜕𝜋

−/
%&'

(

𝑛%	ln	𝜋% − 𝜆 /
%&'

(

𝜋% − 1 = −
𝑛%
𝜋%
− 𝜆 = 0 ⇒ 𝜋% = −

𝑛%
𝜆

  Combined with the constraint that 𝜋' +⋯+ 𝜋( = 1 ⇒ 7𝜋% =
$$
$

, for all 𝑐

Test predict label argmax0𝑃 𝑦 = 𝑐; +𝜋 = argmax0 +𝜋0
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a
b

c

What is the joint factorization?



p(a,b,c) = p(a)p(b)p(c)

a
b

c



a
b

c

Are a and b independent (          )?

p(a,b,c) = p(a)p(b)p(c)



p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies



Case one where c is observed



Case one where c is observed



Shading & Plate Notation
Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj
D

Plates denote 
replication of 
random variables

Features X are 
conditionally 
independent, 

given Y



Naïve Bayes for supervised learning

• Motivation: supervised learning for classification
• high-dimensional 𝑥 = (𝑥(1), … , 𝑥(𝐹)), modeling 𝑃(𝑥 ∣ 𝑦) can be tricky
• In general, 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ 𝑃 𝑥 2 𝑥 1 , 𝑦 ⋅ … ⋅ 𝑃(𝑥(𝐹) ∣ 𝑥(1), … , 𝑥(𝐹 − 1), 𝑦) 

• A modeling assumption: 𝑥(1), … , 𝑥(𝐹) are conditionally independent given 𝑦
    i.e. for all 𝑖 
                       𝑥(𝑖) ⫫ 𝑥 1 ,… , 𝑥 𝑖 − 1 , 𝑥 𝑖 + 1 ,… , 𝑥 𝐹 ∣ 𝑦
    (Conditional independence notation: 𝐴 ⫫ 𝐵 ∣ 𝐶)

•  Equivalently 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ …𝑃(𝑥(𝐹) ∣ 𝑦)
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Recall : Class Preference Prediction

Define the labeled training dataset 𝑆 = 𝑥K , 𝑦K KLM
N

58

Labels

Features

Feature
Values

Data Point

To make this a binary 
classification we set 
“Liked” = {+2,+1,0}

“Nah” = {-1,-2}



Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥%, 𝑦% %&#
' 	,                 𝑥% ∈ 0,1 -                    𝑦% ∈ {0,1}

Generative Story
    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃*,/) 
    #parameters = 1 + 2𝐹	
Training (denote by 𝜃 = {𝜃*,/})
                                max#,% ∑&'() ln	𝑃 𝑥&, 𝑦&; 𝜋, 𝜃 =∑&'() ln	𝑃 𝑦&; 𝜋 + ∑&'() ln	𝑃 𝑥& ∣ 𝑦&; 𝜃

   =	max# ∑&'() ln	𝑃 𝑦&; 𝜋 + max
{%!,#}	

∑&:.$'/ ln	𝑃 𝑥& ∣ 𝑦&; 𝜃 + max
{%%,#}	

∑&:.$'( ln	𝑃 𝑥& ∣ 𝑦&; 𝜃

   Key observation: optimal 𝜋, optimal {𝜃0,/}	, optimal {𝜃#,/}	can be found separately 
   Optimal 𝜋: max1 ∑%&#' ln	𝑃 𝑦%; 𝜋 = max1 𝑛0ln(1 − 𝜋)+ 𝑛#ln 𝜋  => _𝜋 = '4

'
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Likelihood only related to 𝜃!,# 



Naïve Bayes: binary-valued features (cont’d)

By the Naïve Bayes modeling assumption,
    max
{90,1}	

∑,:=2$> ln	𝑃 𝑥, ∣ 𝑦,; 𝜃 = max
{90,1}	

∑?$%@ ∑,:=2$> ln	𝑃 𝑥,(𝑗) ∣ 𝑦,; 𝜃>,?

     = ∑?$%@ max
90,1	

∑,:=2$> ln	𝑃 𝑥,(𝑗) ∣ 𝑦,; 𝜃>,?

60

Likelihood only related to 𝜃!,# 

Again, can optimize each 𝜃>,?	separately,

• Optimal 𝜃&,':   max
90,1	

∑,:=2$>,	(2 ? $% ln	𝜃>,? + ∑,:=2$>,	(2 ? $> ln	(1 − 𝜃>,?)

               R𝜃>,? =
#{,:	=2$>,	(2 ? $%}

#{,:=2$>}
;    similarly,   R𝜃%,? =

#{,:	=2$%,	(2 ? $%}
#{,:=2$%}



Naïve Bayes: binary-valued features (cont’d)

Test Given &𝜋, { )𝜃S,T}, Bayes optimal classifier 
           R𝑓BC 𝑥 = argmax=	𝑃(𝑥, 𝑦; J𝜋, { R𝜃D,?}) = argmax=	log	𝑃(𝑥, 𝑦; J𝜋, { R𝜃D,?})

• log	𝑃(𝑥, 𝑦 = 0; 𝜋, {𝜃!,#}) = ln	(1 − 𝜋) + ∑#$%& ln	𝑃 𝑥 𝑗 ∣ 𝑦; 𝜃',#
                                                  = ln	(1 − 𝜋) + ∑#$%& ln 1 − 𝜃',# 𝐼 𝑥 𝑗 = 0 + ln 𝜃',# 𝐼 𝑥 𝑗 = 1

                                                  = ln(1 − 	𝜋) + ∑#$%& ln	(1 − 𝜃',#) + ∑#$%& 𝑥(𝑗) ln ($,%
%)($,%

• Similarly, log	𝑃(𝑥, 𝑦 = 1; 𝜋, {𝜃D,?}) = ln(𝜋) + ∑?$%@ ln	(1 − 𝜃%,?) + ∑?$%@ 𝑥(𝑗) ln
9",1
%)9",1

• Therefore, J𝑓*+ 𝑥 = 1 ⇔ ln ,
%),

+ ∑#$%& ln %)(&,%
%)($,%

+ ∑#$%& 𝑥 𝑗 ln (&,%
%)(&,%

− ln ($,%
%)($,%

≥ 0

• I.e. Bayes classifier is linear
61

𝑏 𝑤(𝑗)



Naïve Bayes: Discrete (Categorical-valued) features

Data 𝑆 = 𝑥,, 𝑦, ,$%
+ 	,                 𝑥, ∈ [𝑊]@                    𝑦, ∈ {0,1}

Generative story
    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Categorical(𝜃D)  (𝜃D ∈ ΔE)%)
    #parameters = 1 + 2𝑊
    Note: in this example, 𝜃D shared across all features!

Training
    Similar to previous example, optimal 𝜋, optimal 𝜃>, optimal 𝜃% can be found separately,
    by maximizing the respective part of the likelihood function (exercise)

     Optimal 𝜋 same as previous example
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Likelihood related to 𝜃! 



Naïve Bayes: Discrete features (cont’d)

Training
    Optimal 𝜃D: 
     max

90
	∑,:=2$> ln	𝑃 𝑥, ∣ 𝑦,; 𝜃> = max

90
∑?$%@ ∑,:=2$> ln	𝑃 𝑥,(𝑗) ∣ 𝑦,; 𝜃>

              = max
90

∑F$%E ∑?$%@ ∑,:=2$> 𝐼(𝑥, 𝑗 = 𝑤)	ln	𝜃>,F

            = max
90

∑F$%E ln	𝜃>,F #{(𝑖, 𝑗): 𝑦, = 0, 𝑥, 𝑗 = 𝑤}

     => R𝜃D,F =
#{(,,?):	=2$D,(2 ? $F}

#{,:	=2$D}×@

    Exercise: how to extend this to variable-length 𝑥,’s (e.g. for text classification)?

Test 
Bayes optimal classification rule with ( J𝜋, R𝜃>, R𝜃%) (exercise)
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Likelihood related to 𝜃! 



Summary

Fundamental rules of Probability:
• Law of total probability:
• Probability chain rule:
• Conditional probability: 

p(X | Y ) = p(X,Y )
p(Y )

p(X,Y ) = p(Y )p(X | Y )

p(Y ) =
∑

x
p(Y,X = x)

Independence of Random Variables:
• Two RVs are independent if:
• Or:
• They are conditionally independent if:

• Or: 

p(X = x, Y = y) = p(X = x)p(Y = y)
p(X | Y ) = p(X)

p(X = x, Y = y | Z = z) = p(X = x | Z = z)p(Y = y | Z = z)

p(X | Y, Z) = p(X | Z)



Summary

A Bayes Network expresses a unique probability factorization:

Parents of node s

Inference is performed by Bayes’ rule (posterior distribution):

c

y2y1

p(c | y1, y2) =
p(c)p(y1 | c)p(y2 | c)

p(y1, y2)

c

y2y1



Summary

Hyperparameters must be estimated (e.g. Maximum Likelihood):

y2y1

θ

θ̂MLE = argmax
θ

log p(y1, . . . , yn | θ)

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)



Summary

Naïve Bayes classifier assumes features are conditionally 
independent given class Y:Y

Xj
D

𝑥(𝑗) ⫫ 𝑥 1 ,… , 𝑥 𝑗 − 1 , 𝑥 𝑗 + 1 ,… , 𝑥 𝐷 ∣ 𝑦

Joint distribution factorizes as:

𝑝 𝑥, 𝑦 = 𝑝 𝑦 7
TLM

i

𝑝(𝑥 𝑗 ∣ 𝑦)

Allows easier fitting of hyperparameters for class conditional 
distributions (they can be fit independently of each other)


