CSC 580 Principles of Machine Learning

04 Linear Classification; Perceptron

Jason Pacheco

Department of Computer Science

*slides credit: built upon CSC 580 lecture slides by Chicheng Zhang & Kwang-Sung Jun

Administrivia

- HW1 Out
 - Due Friday, Sep. 15 @ 11:59pm
 - Submit PDF on Gradescope
 - Email code to <u>csc480580@gmail.com</u>
 - Late submissions not accepted so get what you have on-time
- Still looking over HW0
 - If you don't hear from me then it means there was no concern
 - I will comment on answers that indicate a student needs some background refresher

Linear classifiers

• Example application: spam filtering using bag-of-words

	free	offer	lecture	CS	Spam?
Email 1	1	1	0	0	+1
Email 2	0	0	1	1	-1

- If $0.124 \cdot x_{\text{free}} + 2.5 \cdot x_{\text{offer}} + \dots 2.31 \cdot x_{\text{lecture}} > 2.12$ then
 - return "spam"
- else
 - return "nonspam"
- end

Linear models: biological motivation

ا يد

- Firing of a neuron depends on:
 - Whether the incoming neurons are firing
 - The strength of the connections
- The McCulloch-Pitts neural model:

 a neuron Implements a linear threshold function
 h_w(x) = sign(⟨w, x⟩)

Math review: inner product between vectors

• Given vector $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = \sum_{i=1}^{d} u_i \cdot v_i$$

• Geometric interpretation:

 $\langle u, v \rangle = ||u||_2 \cdot ||v||_2 \cdot \cos(\theta(u, v))$

where $\theta(u, v) \in [0, \pi]$ is the angle between them

 $||v||_2 \cdot \cos(\theta(u, v)) = (\text{signed}) \text{ length of } v$'s projection onto u

• Observe that $\cos(\theta(u, v)) \in [-1, +1]$

 \Rightarrow Cauchy-Schwarz inequality: $\langle u, v \rangle \in [-||u||_2 ||v||_2, ||u||_2 ||v||_2]$

Linear classifiers: geometric view

- Homogeneous linear classifier $h_w(x) = \operatorname{sign}(\langle w, x \rangle)$
- Scale-insensitive
- Decision boundary: line in 2d, plane in 3d, hyperplane in general

• Non-homogeneous linear classifier $h_{w,b}(x) = \operatorname{sign}(\langle w, x \rangle + b)$

which decision boundary corresponds to offset b > 0? Blue or yellow?

• Sometimes convenient to view non-homogeneous. as homogeneous via feature augmentation $h_{w,b}(x) = \text{sign}(\langle (w, b), (x, 1) \rangle)$

Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)

• For training *homogeneous* linear classifiers

Initialize $w_1 \leftarrow (0, ..., 0)$ For t = 1, 2, ..., n:

Process example $x_t \in \mathbb{R}^d$

Calculate prediction $\hat{y}_t = \operatorname{sign}(w_t \cdot x_t)$

Update: if $\hat{y}_t = y_t, w_{t+1} \leftarrow w_t$; otherwise, $w_{t+1} \leftarrow w_t + y_t x_t$.

• Properties: (1) Online (2) Error-driven

	free	offer	lecture	CS	Spam?
Email 1	1	1	0	0	+1
Email 2	0	0	1	1	-1

Perceptron for nonhomogeneous linear classifiers

- Idea: reduce to training homogeneous linear classifiers
- $h_{w,b}(x) = \operatorname{sign}(\langle (w, b), (x, 1) \rangle) = \operatorname{sign}(\langle \widetilde{w}, \widetilde{x} \rangle)$

2: return SIGN(a)

• Multiple passes over the data

Algorithm 5 PERCEPTRONTRAIN(D, Ma	xIter)	
$w_d \leftarrow o, \text{ for all } d = 1 \dots D$	// initialize weights	
$_{2:} b \leftarrow o$	// initialize bias	# passes
₃ : for iter = 1 MaxIter do		
4: for all $(x,y) \in \mathbf{D}$ do		
$_{5^{:}} \qquad a \leftarrow \sum_{d=1}^{D} w_d x_d + b$	// compute activation for this example	activation = decision
6: if $ya \leq o$ then		value
$w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots$	D // update weights	
$b \leftarrow b + y$	// update bias	
9: end if		
ID: end for		
III: end for		
^{12:} return w_0, w_1, \ldots, w_D, b		

Algorithm 6 PERCEPTRONTEST($w_0, w_1, ..., w_D, b, \hat{x}$) $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ // compute activation for the test example

Perceptron: practical issues

• Hyperparameter: MaxIter = #passes = #epochs

- Data shuffling:
 - A non-random training data sequence +++ ++ --- ---
 - Drawback: only update using the first few examples in each segment
 - Better: permute the data sequence for every pass

Perceptron: convergence properties

Question: Does the Perceptron's iterate *w* converge?

- Important notion: linear separability
- A dataset S is linearly separable if there exists w such that for all $(x, y) \in S$, sign $(\langle w, x \rangle) = y$

For iter = 1,2,.... For $(x, y) \in S$: Calculate prediction $\hat{y} = \operatorname{sign}(w \cdot x)$ if $\hat{y} \neq y, w \leftarrow w + y x$.

Observations:

- Inseparable *c* does not converge
- Separable \Rightarrow converge?

Q: how long does it take to

converge?

Linear classification margins

- Measures easiness of a dataset for linear classification
- Easier dataset ⇒ faster convergence

- Margin of a linear classifier w on S: $margin(S, w) = \begin{cases} \min_{(x,y)\in S} y\langle w, x \rangle, & w \text{ separates } S \\ -\infty, & \text{otherwise} \end{cases}$
- "Wiggle room" of *w* on *S*
- Margin of dataset S: margin(S) = $\max_{w:||w||_2=1} \operatorname{margin}(S, w)$
- See book for definition of margins for nonhomogeneous linear classifiers

The Perceptron convergence theorem

Theorem (Perceptron Convergence Theorem, Novikoff 1962): Suppose the Perceptron algorithm is run on a dataset *S*; Assume:

- margin(S) $\geq \gamma$, i.e. there exists w^* , $||w^*||_2 = 1$, $y\langle w^*, x \rangle \geq \gamma$ for all $(x, y) \in S$
- For all $(x, y) \in S$, $||x||_2 \le 1$

then the Perceptron algorithm makes at most $1/\gamma^2$ updates throughout the process.

Can also be phrased as an *online learning* mistake bound guarantee

Proof of Perceptron Convergence Theorem

- Denote $w^{(k)}$ the value of w after the k-th update; $w^{(0)} = (0, ..., 0)$
- Idea: track the progression of $\langle w^{(k)}, w^* \rangle$ and $\|w^{(k)}\|_2$
- At the *k*-th update:

$$\langle w^{(k)}, w^* \rangle = \langle w^{(k-1)} + yx, w^* \rangle \ge \langle w^{(k-1)}, w^* \rangle + \gamma$$

$$\| w^{(k)} \|_2^2 = \| w^{(k-1)} + yx \|_2^2$$

$$= \| w^{(k-1)} \|_2^2 + 2 \langle w^{(k-1)}, yx \rangle + \| x \|_2^2$$

$$\le \| w^{(k-1)} \|_2^2 + 1$$

Proof of Perceptron Convergence Theorem

• Therefore, if a total of k mistakes are made, then:

$$\langle w^{(k)}, w^* \rangle \ge k \gamma$$
, and $\|w^{(k)}\| \le \sqrt{k}$

Proof of Perceptron Convergence Theorem

• Let *M* = #mistakes made up to time step *n*

 $\langle w_{n+1}, w^* \rangle \ge M \gamma$, and $||w_{n+1}|| \le \sqrt{M}$

• Meanwhile, by Cauchy-Schwarz,

 $\langle w_{n+1}, w^* \rangle \le ||w_{n+1}|| \cdot ||w^*|| = ||w_{n+1}||$

- This implies that $M \ \gamma \leq \sqrt{M} \Rightarrow M \leq 1/\gamma^2$
- This holds for all *n*, which concludes the proof

Practical versions: voting Perceptron

- Naïve Perceptron: return the last iterate $w^{(K)}$
- Drawback:
 - say making one pass, last example is an outlier
 - Last update may ruin a previously trained good model
- A more robust output classifier:

$$h(x) = \operatorname{sign}\left(\sum_{t=1}^{T} h_t(x)\right) = \operatorname{sign}\left(\sum_{k=0}^{K} c^{(k)} h_{w^{(k)}}(x)\right)$$

+

Figure 4.11: inseparable data

Linear classifier at iteration t Number of times t when $h_t = h_{w^{(k)}}$

 $\in \{-1, +1\}$

• Has good predictive performance, but computationally expensive to maintain

Practical versions: averaged Perceptron

•
$$h(x) = \operatorname{sign}(\langle \overline{w}, x \rangle)$$
, where $\overline{w} = \frac{1}{\sum_{k=0}^{K} c^{(k)}} \sum_{k=0}^{K} c^{(k)} w^{(k)}$ is the averaged predictor

• This is equivalent to sign $\left(\left\langle \sum_{k=0}^{K} c^{(k)} w^{(k)}, x \right\rangle \right)$

• Efficient implementation

(avoid extensive bookkeeping when no update)

• Exercise: show that the final output is \overline{w}

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(**D**, *MaxIter*) $w \leftarrow \langle o, o, \dots o \rangle , b \leftarrow o$ // initialize weights and bias 2: $\boldsymbol{u} \leftarrow \langle \boldsymbol{o}, \boldsymbol{o}, \dots \boldsymbol{o} \rangle$, $\boldsymbol{\beta} \leftarrow \boldsymbol{o}$ // initialize cached weights and bias // initialize example counter to one $3: C \leftarrow 1$ 4: **for** $iter = 1 \dots MaxIter$ **do** for all $(x,y) \in \mathbf{D}$ do 5: if $y(\boldsymbol{w} \cdot \boldsymbol{x} + b) \leq o$ then 6: $w \leftarrow w + y x$ // update weights 7: // update bias 8: // update cached weights $u \leftarrow u + y c x$ 9: $\beta \leftarrow \beta + y c$ // update cached bias 10: end if 11: // increment counter regardless of update $c \leftarrow c + 1$ 12: end for 13: 14: end for ^{15:} return $w - \frac{1}{c} u b - \frac{1}{c} \beta$ // return averaged weights and bias $c^{(k)}$ 17

Perceptron: limitations

• The 'XOR' problem: data linearly nonseparable

• E.g. sentiment analysis

"no" + + , ____"excellent" _ _ _ _ + _ _ _ *

• Possible fix: introduce nonlinear feature maps

$$x = (x_1, x_2) \mapsto \phi(x) = (x_1, x_2, x_1x_2, x_1^2, x_2^2)$$
, e.g. containing "mega-feature" $x_{no} \cdot x_{excellent}$

• Later in the course: kernel methods (high/infinite dim ϕ); neural networks (automatically learn ϕ)

Next lecture (9/7)

- Practical issues: feature selection; feature transformation; model performance evaluation
- Assigned reading: CIML Sections 5.1-5.6