04 Linear Classification; Perceptron

Jason Pacheco

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

*slides credit: built upon CSC 580 lecture slides by Chicheng Zhang & Kwang-Sung Jun
1

Administrivia

* HW1 Out
* Due Friday, Sep. 15 @ 11:59pm
e Submit PDF on Gradescope
* Email code to csc480580@gmail.com

e Late submissions not accepted so get what you have on-time

* Still looking over HWO
* If you don’t hear from me then it means there was no concern
* | will comment on answers that indicate a student needs some background refresher

mailto:csc480580@gmail.com

Linear classifiers

* Example application: spam filtering using bag-of-words

I S T 7 P

Email 1
Email 2 0 0 1 1 -1

* 1f0.124 - Xfree + 2.5 Xofer + == — 2.31 * Xjecture > 2.12 then
* return “spam”

* else
* return “nonspam”

* end

Linear models: biological motivation

* Firing of a neuron depends on:
 Whether the incoming neurons are firing
* The strength of the connections

e The McCulloch-Pitts neural model:

a neuron Implements a linear threshold function

hy (x) = sign((w, x))

Math review: inner product between vectors

* Given vector u, v € R,

d
(W, v) = Xi=1 Ui - v;

* Geometric interpretation:
(u,v) = [[ullz - V]2 - cos(6(u,v))

where 8(u, v) € [0,] is the angle between them

= (signed) length of v’s projection onto u o]

» Observe that cos(8(u,v)) € [—1, +1]

= Cauchy-Schwarz inequality: (u, v) € [—||ul|2|Iv]]2, ||ull2lv]]2]

Linear classifiers: geometric view :.,
xl\t., Gﬂ,&xﬂ =+
* Homogeneous linear classifier h,, (x) = sign({w, x)) .
g O "\ Q}\;?
 Scale-insensitive N
e Decision boundary: line in 2d, plane in 3d, hyperplane in general - p x”‘xk

Non-homogeneous linear classifier h,, , (x) = sign({w, x) + b)

which decision boundary corresponds to offset b > 0? Blue or yellow?

* Sometimes convenient to view non-homogeneous. as homogeneous via feature augmentatio\n
hy,p (x) = sign({(w, D), (x,1)))

b

~ ~

w X

Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)

* For training homogeneous linear classifiers

o ¢

Initialize w; « (0, ...,0) -
inox SPZ
Fort =12, ..n -m_
d Emaill 1 0
Process example x; € R 9 la . n 1 1
A . ¥
Calculate prediction y, = sign(w; - x¢) P
By lh-ﬂ -
L 1.':..'5 _.-r"'-.
Update: if §, = - o -
pdate: It Yy = Vi, Weyq < Wi, @{S"ﬂ* ~ a
otherwise, Wy, <« Wy + ViXy. Al AR
R .
: : : v AN
* Properties: (1) Online (2) Error-driven | RN

Perceptron for nonhomogeneous linear classifiers

* |dea: reduce to training homogeneous linear classifiers
hy,p(x) = sign({(w, b), (x,1))) = sign({W, X))

Multiple passes over the data

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)
v wy <o, forall d=1...D // initialize weights
2 b4+ o0 // initialize bias # passes
5 foriter = 1 ... Maxlter do

for all (x,y) € D do

¥ . . .
5 a<— 2521 Wy Xg+0b // compute activation for this example activation = decision
6 if ya < o then value

7 Wy «— wy +yxg, forall d=1...D / update weights

8: b<b+y // update bias

9 end if

o end for

«: end for

= return wgy, wy, ..., wp, b

Algorithm 6 PERCEPTRONTEST(Wwg, w1, ..., Wp, b, X)

va YD wy g+ b // compute activation for the test example
= return siGgnN(a)

Perceptron: practical issues

° : = =# h
Hyperparameter: Maxlter = #passes = #epochs o ket

enE Sk

% g9 e g
* Data shuffling: » ok (pon- Qi)

* A non-random training data sequence +++ ++ -— ... ---
* Drawback: only update using the first few examples in each segment

e ik

* Better: permute the data sequence for every pass

% ¢qoc\ng

Perce ptron: convergence

Question:
Does the Perceptron’s iterate w converge?

* Important notion: linear separability
e A dataset S is linearly separable if there exists

w such that for all (x,y) € S, sign({w,x)) =y

oroperties

Foriter=1,2,....
For (x,y) € S:
Calculate prediction y = sign(w - x)
ify=y,wew+yx.

Observations:

- * Inseparable ¢ does not converge
+ e Separable = converge?
A=
5{.-
9,
/. .
Q: how long does it take to
- - converge?

Figure 4.10: separable data Figure 4.11: inseparable data

10

Linear classification margins

Measures easiness of a dataset for linear classification

Easier dataset = faster convergence

Margin of a linear classifier w on S

min y(w, x), w separates S
margin(S,w) = {(x»)ES
—00, otherwise
“Wiggle room” of won §
Margin of dataset S: margin(§) = max margin(S,w)
wi|[wl[z=1

See book for definition of margins for nonhomogeneous linear classifiers

11

The Perceptron convergence theorem

Theorem (Perceptron Convergence Theorem, Novikoff 1962): Suppose the Perceptron
algorithm is run on a dataset S; Assume:

* margin(S) =y, i.e. there exists w*, ||w*||, = 1, y(w*,x) = y forall (x,y) €S
* Forall (x,y) €S, ||x||, <1

then the Perceptron algorithm makes at most 1/y# updates throughout the process.

Can also be phrased as an online learning mistake bound guarantee

Proof of Perceptron Convergence Theorem

« Denote w¥) the value of w after the k-th update; w0 = 0, ...,0)

* |dea: track the progression of (W(k), w™) and ”W(k)”z

e At the k-th update:
(w®, w*) = (wk=D 4 yx, w*) = (wk=D, w*) 4y
2 B 2
[w O = [w = + x|

= W(k_l)

+2(w), yx) + (1213

< [[w&DI|” +1

N N NN

Proof of Perceptron Convergence Theorem

* Therefore, if a total of k mistakes are made, then:

(W w*) > ky,and ||[w®| < Vk

A

”Wt+1”

-

(Wep1, W)

#updates

Proof of Perceptron Convergence Theorem

* Let M = #mistakes made up to time step n

(Wpi1,Ww') = My,and [lw, 4| < VM

* Meanwhile, by Cauchy-Schwarz,

(Wn+11W*> < ”Wn+1”) ”W*” — ”Wn+1”

« Thisimpliesthat M ¥y < VM = M < 1/y?

e This holds for all n, which concludes the proof

Practical versions: voting Perceptron

= . -
. . K + +
« Naive Perceptron: return the last iterate w)
* Drawback: N 0*’
* say making one pass, last example is an outlier
e Last update may ruin a previously trained good model -
€{-1,+1}
* A more robust output classifier: Figure 4.11: inseparable data

K

T
h(x) = sign zht(x) = sign z c(k h,d0(x)
t=1 | k=0 |

Linear classifier at iteration t ~ Number of times t when hy = h)

* Has good predictive performance, but computationally expensive to maintain

16

Practical versions: averaged Perceptron

1

h(x) = sign((,x), where # = s~

This is equivalent to sign({3X_, ¢ w® x))

Efficient implementation

(avoid extensive bookkeeping when no update)

Exercise: show that the final output is w

)ZI;LO c®) w) is the averaged predictor

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(D, MaxlIter)

b+ o
B o

/l'initialize weights and bias
// initialize cached weights and bias
// initialize example counter to one

v w+ {(0,0,...0) ,
= u 4+ (0,0,...0) ,
3 €4 1

4 foriter =1 ... Maxlter do
= forall (x,y) € Ddo

6 if y(w-x+b) <othen

7 w — w X // update weights
8 b« b+ y ™ 209 // update bias
9 U< u+ycx // update cached weights
10: B+—p+yc // update cached bias
1 end if

12: C—c+1 // increment counter regardless of update
3 end for

4 end for

s return w - % ub - % // return averaged weights and bias

kd \
(k) & K
“ (k)
— c Z 28 Z c®
k=0

k=0 I<k

17

Perceptron: limitations

o V4

no
The ‘XOR’ problem: data linearly nonseparable 4 | I

i ‘~ “excellent”

E.g. sentiment analysis

Possible fix: introduce nonlinear feature maps

x = (x1,x3) = p(x) = (x1, X9, X1X5, xlz, x%), e.g. containing “mega-feature” x,, * Xexcellent

Later in the course: kernel methods (high/infinite dim ¢); neural networks (automatically learn ¢)

18

Next lecture (9/7)

* Practical issues: feature selection; feature transformation; model performance evaluation

e Assigned reading: CIML Sections 5.1-5.6

19

	CSC 580 Principles of Machine Learning��04 Linear Classification; Perceptron
	Administrivia
	Linear classifiers
	Linear models: biological motivation
	Math review: inner product between vectors
	Linear classifiers: geometric view
	Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)
	Perceptron for nonhomogeneous linear classifiers
	Perceptron: practical issues
	Perceptron: convergence properties
	Linear classification margins
	The Perceptron convergence theorem
	Proof of Perceptron Convergence Theorem
	Proof of Perceptron Convergence Theorem
	Proof of Perceptron Convergence Theorem
	Practical versions: voting Perceptron
	Practical versions: averaged Perceptron
	Perceptron: limitations
	Next lecture (9/7)

