CSC 580 Principles of Machine Learning

03 Geometry & Nearest Neighbors

Jason Pacheco

Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Chicheng Zhang & Kwang-Sung Jun

*slides credit: Some material from Enfa Rose George CSC 380 Fall 2021

Motivation

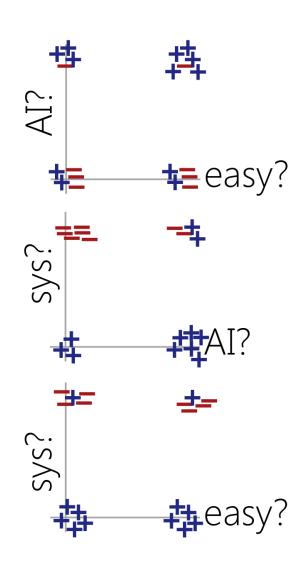
Example Given student course survey data, predict whether Alice likes Algorithms course **Idea** Find a student ``similar'' to Alice & has taken Algorithm course before, say Jeremy

- If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
- Or even better, find *several* similar students

- Prediction = mapping inputs to outputs
- Inputs = features that can be viewed as points in some space (possibly high-dimensional)
- "Similarity" = "distance" in feature space
- Suggests a geometric view of data

Example: Course Recommendation

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	у	y	n	n	n
+1	у	y	n	y	n
+1	n	y	n	y	n
O	n	n	n	n	y
O	у	n	n	y	y
O	n	y	n	y	n
O	у	y	y	y	y
-1	у	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y
		Fe	eatu	res	



ML begins by mapping data to feature vectors

Represented as points in 5dimensional space for this example

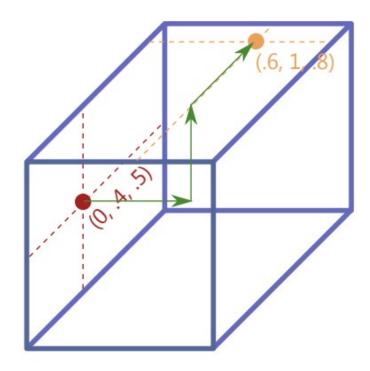
That's too many dimensions to plot...so we look at 2D projections...

Measuring Nearest Neighbors

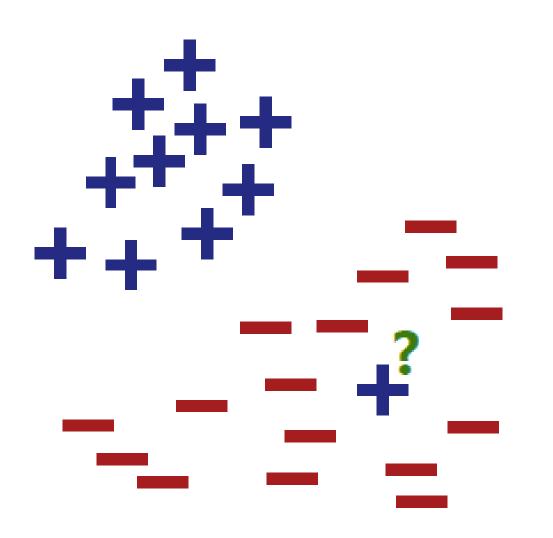
- Oftentimes convenient to work with feature $x \in \mathbb{R}^d$
- Distances in R^d:

notation
$$x(f)$$
: $x = (x(1), ..., x(d))$

- Euclidean distance $d_2(x, x') = \sqrt{\sum_{f=1}^d (x(f) x'(f))^2}$
- Manhattan distance $d_1(x, x') = \sum_{f=1}^{d} |x(f) x'(f)|$
- If we shift a feature, would the distance change?
- What about scaling a feature?
- How to extract features as real values?
 - Boolean features: {Y, N} -> {0,1}
 - Categorical features: {Red, Blue, Green, Black}
 - Convert to {1, 2, 3, 4}?
 - Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)



Nearest Neighbor Classification



Query point ? Will be classified as + but should be -

Inductive Bias Query points belong to same class as closes exemplar seen in training data

Question How can we reduce inductive bias?

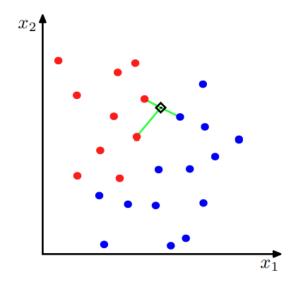
k-nearest neighbors (k-NN): main concept

Training set: $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$

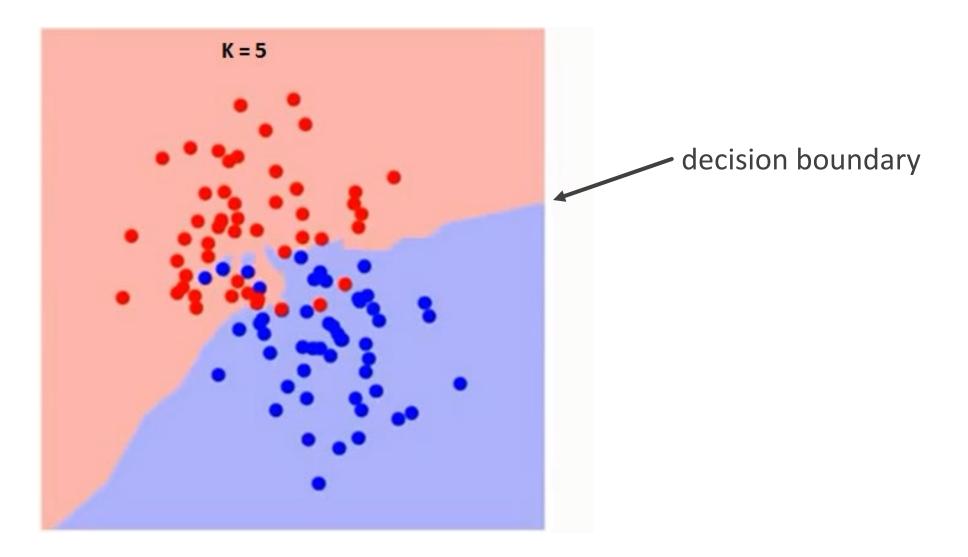
<u>Inductive bias</u>: given test example x, its label should resemble the labels of **nearby points**

Function

- input: *x*
- find the k nearest points to x from S; call their indices N(x)
- output: the majority vote of $\{y_i: i \in N(x)\}$
 - For regression, the average.



k-NN classification example



k-NN classification: pseudocode

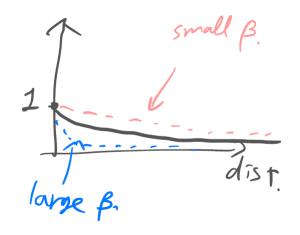
• Training is trivial: store the training set

```
Algorithm 3 KNN-PREDICT(D, K, \hat{x})
• Test:
                                                                   list \longrightarrow 1: S \leftarrow []
                                                                                   _2: for n=1 to N do
                                                   append to list \longrightarrow 3: S \leftarrow S \oplus \langle d(x_n, \hat{x}), n \rangle
                                                                                                                                                // store distance to training example n
                                                                                    4: end for
                                      sort in first coordinate \longrightarrow 5: S \leftarrow \text{SORT}(S)
                                                                                                                                                     // put lowest-distance objects first
                                                                                    6: \hat{y} \leftarrow 0
                                                                                    \tau: for k = 1 to K do
                                                                                    8: \langle dist, n \rangle \leftarrow S_k
                                                                                                                                                  // n this is the kth closest data point
                                                                                    9: \hat{y} \leftarrow \hat{y} + y_n
                                                                                                                             // vote according to the label for the nth training point
                                                                                   10: end for
                         Majority vote of \{y_i: i \in N(x)\} \longrightarrow \text{return } \operatorname{sign}(\hat{y})
                                                                                                                                                 // return +1 if \hat{y} > 0 and -1 if \hat{y} < 0
```

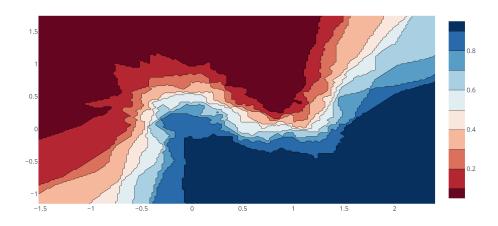
- Time complexity (assuming distance calculation takes O(d) time)
 - $O(m d + m \log m + k) = O(m(d + \log m))$
- Faster nearest neighbor search: k-d trees, locality sensitive hashing

Variations

- Classification
 - Recall the majority vote rule: $\hat{y} = \arg\max_{y \in \{1,\dots,C\}} \sum_{i \in N(x)} 1\{y_i = y\}$
 - Soft weighting nearest neighbors: $\hat{y} = \arg\max_{y \in \{1,\dots,C\}} \sum_{i=1}^m w_i \ 1\{y_i = y\},$ where $w_i \propto \exp(-\beta \ d(x,x_i))$, or $\propto \frac{1}{1+d(x,x_i)^\beta}$



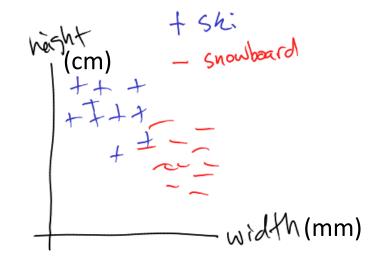
- Class probability estimates
 - $\hat{P}(Y = y \mid x) = \frac{1}{k} \sum_{i \in N(x)} 1\{y_i = y\}$
 - Useful for "classification with rejection"



Feature issue 1: scaling

Features having different scale can be problematic.

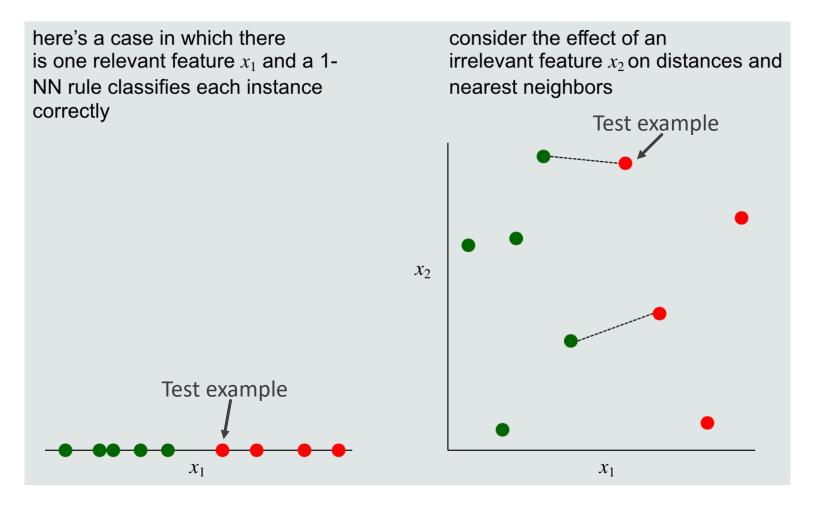
• Ex: ski vs. snowboard classification





• Solution: feature standardization (later in the course)

Feature issue 2: irrelevant features



- Recall: how did we deal with these in decision trees?
- Solution: feature selection (later in the course)

Comparison (feature $x \in \mathbb{R}^d$)

Decision Tree

k-NN

Interpretability

High

Medium (example-based)

 Sensitivity to irrelevant features

Low

High

training time

$$O(\# \text{nodes} \cdot d \cdot (m + m \log m))$$

0

 $\leq \tilde{O}(d \ m^2)$ (when no two points have the same feature)

• test time per example

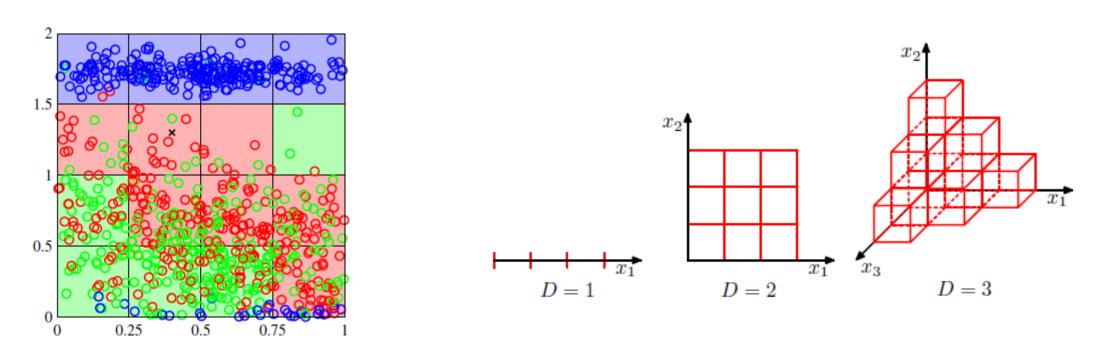
O(depth)

 $O(m(d + \log m))$

Can reduce this with K-d trees or locality sensitive hashing

Curse of Dimensionality - Computation

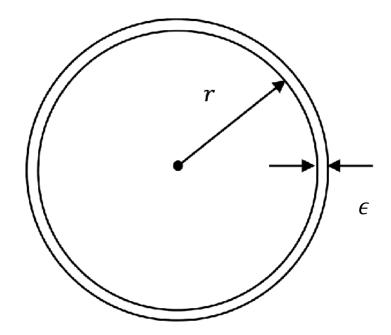
Divide space into regular intervals to avoid computing distances for each data

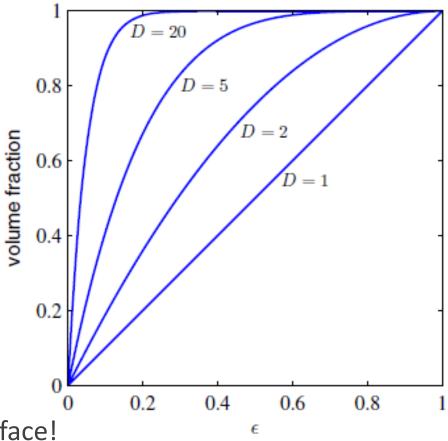


Number of required cells grows exponentially in dimension!

Curse of Dimensionality – Distance Weirdness

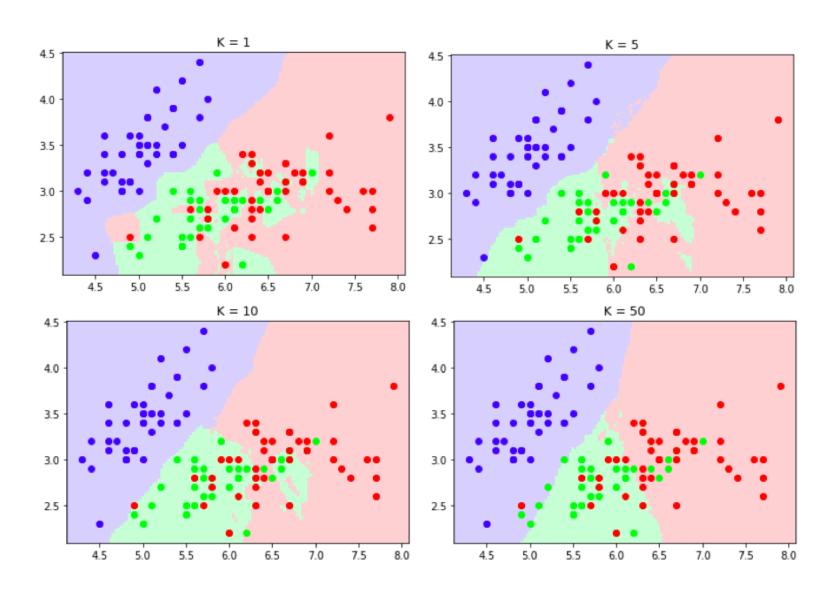
- Consider D-dimensional hypersphere of radius r=1
- What is the fraction of volume within shell of width ϵ ?





- Total volume of hypersphere concentrates onto shell at the surface!
- Distances go to zero!

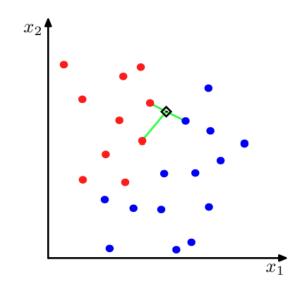
Hyperparameter tuning in k-NN

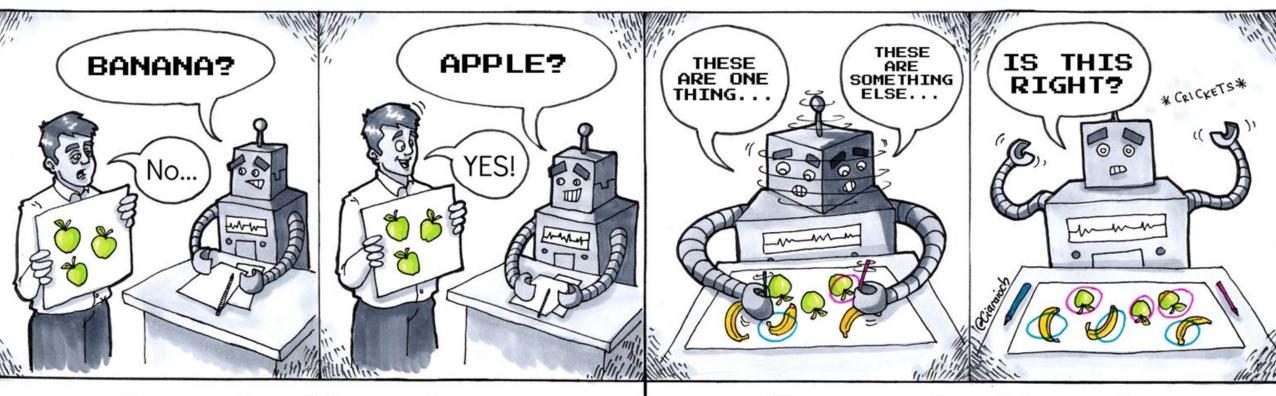


Hyperparameter tuning in k-NN

• Hyperparameter: k

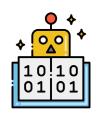
- k = 1:
 - Training error = 0, overfitting
- k = N:
 - Output a constant (majority class) prediction, underfitting



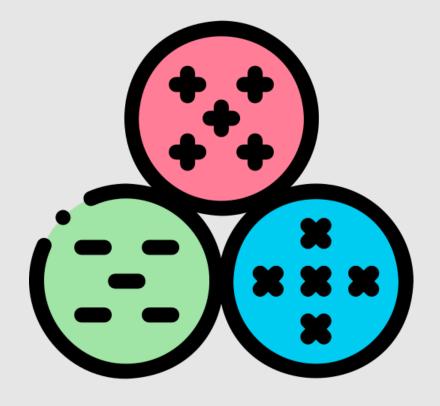


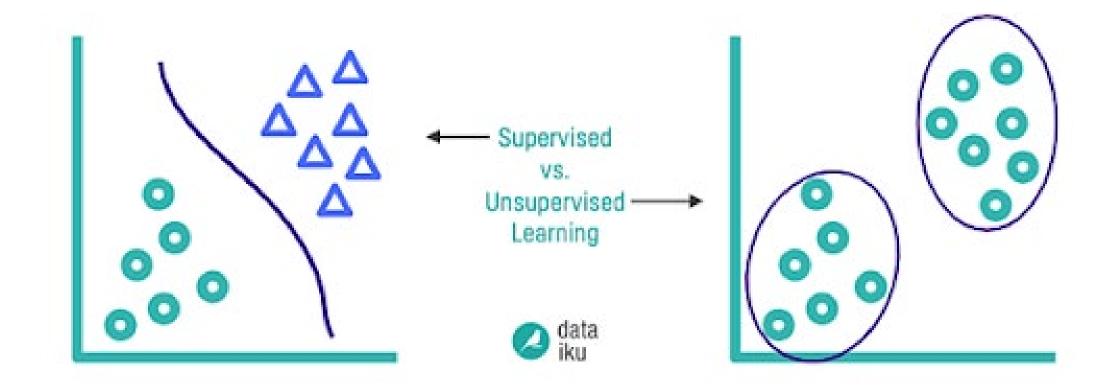
Supervised Learning

Unsupervised Learning

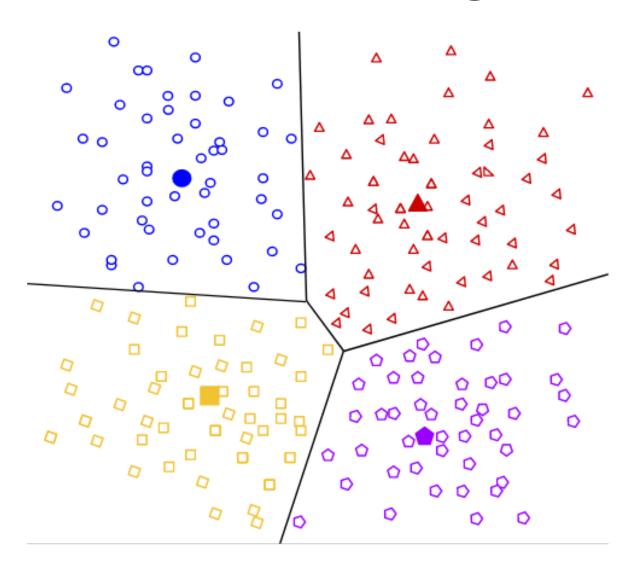


K Means Intuition





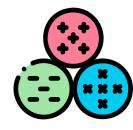
Centroid-based Clustering

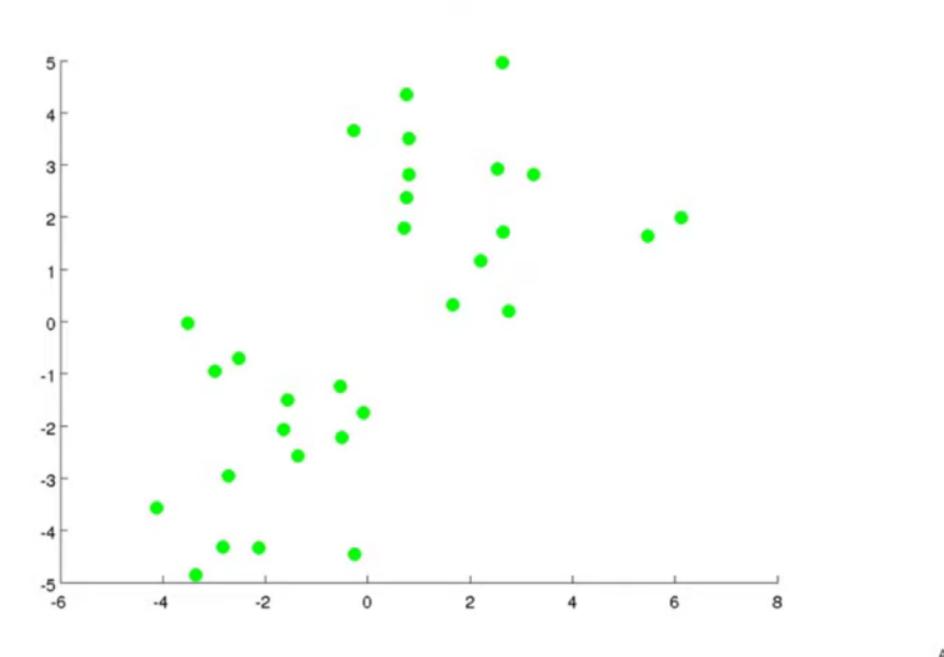


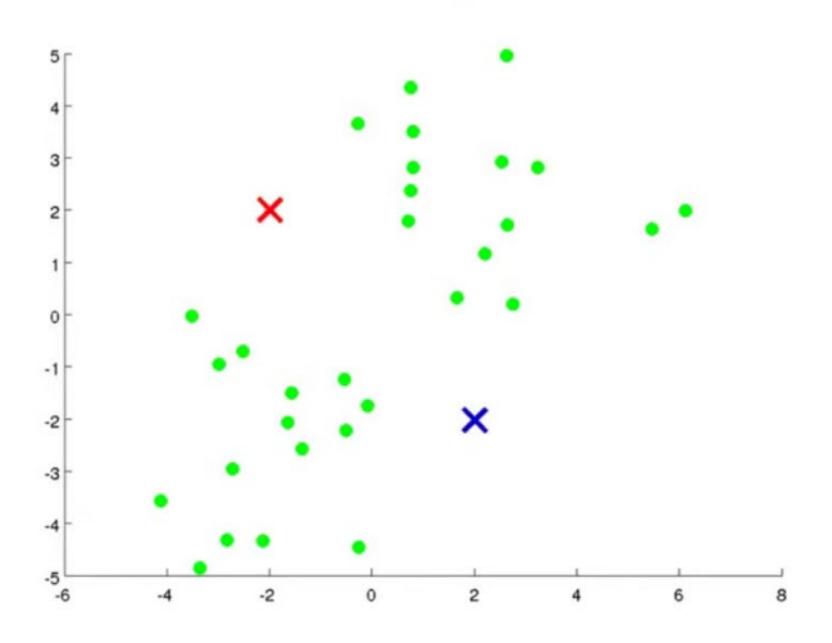
Basic Steps

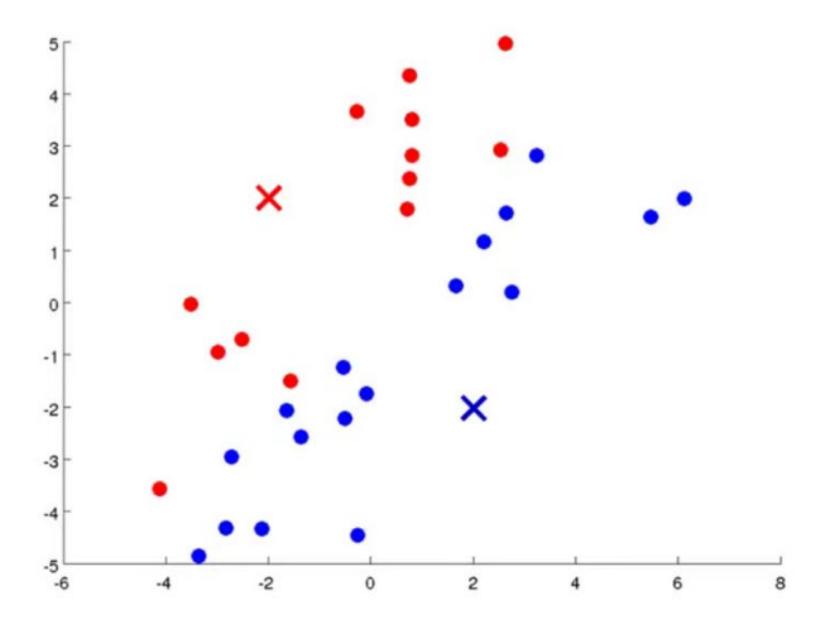
Assign Cluster Centroids

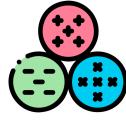
- Until Convergence :
 - Cluster Assignment Step
 - Re-assigning Centroid Step

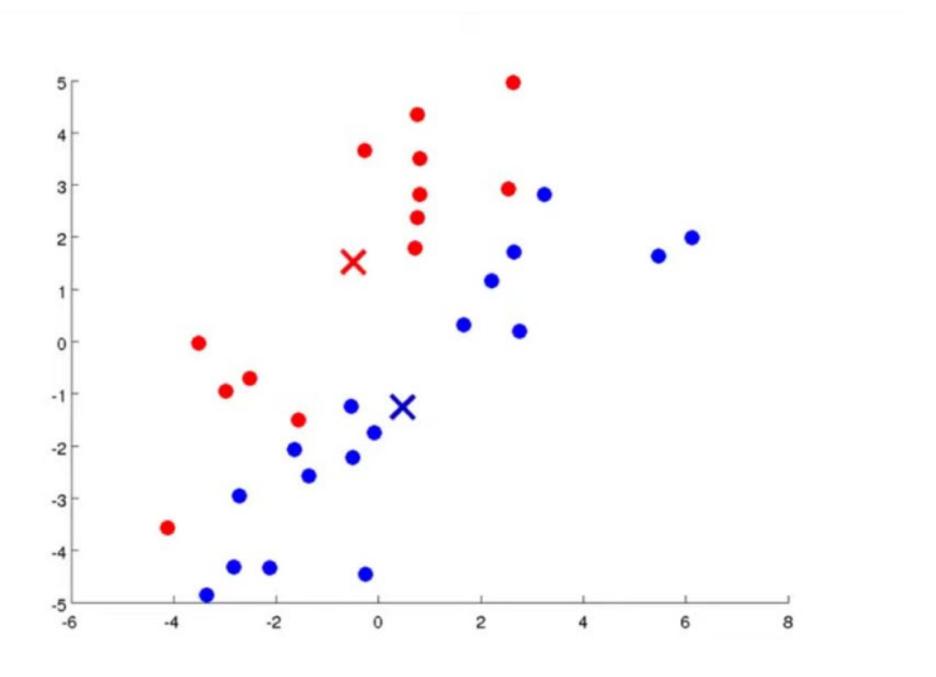


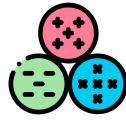


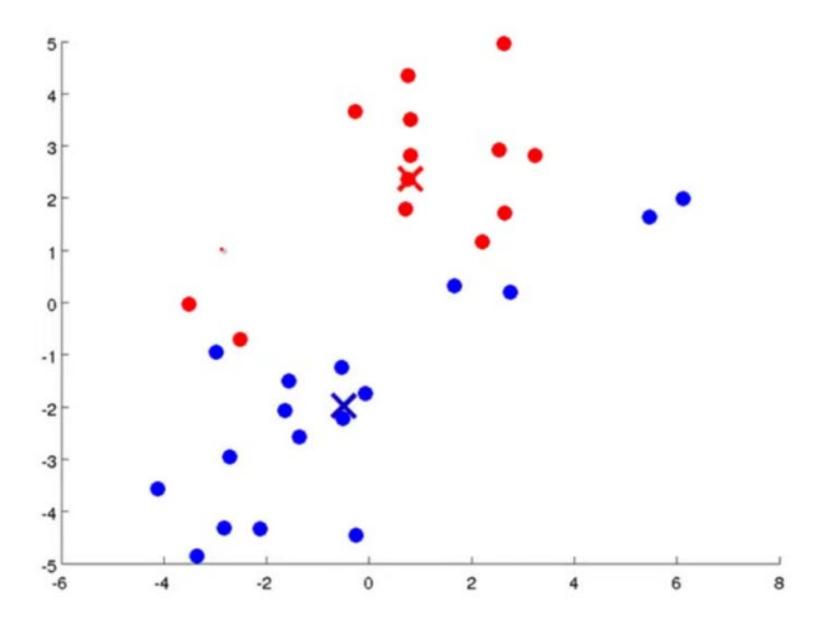


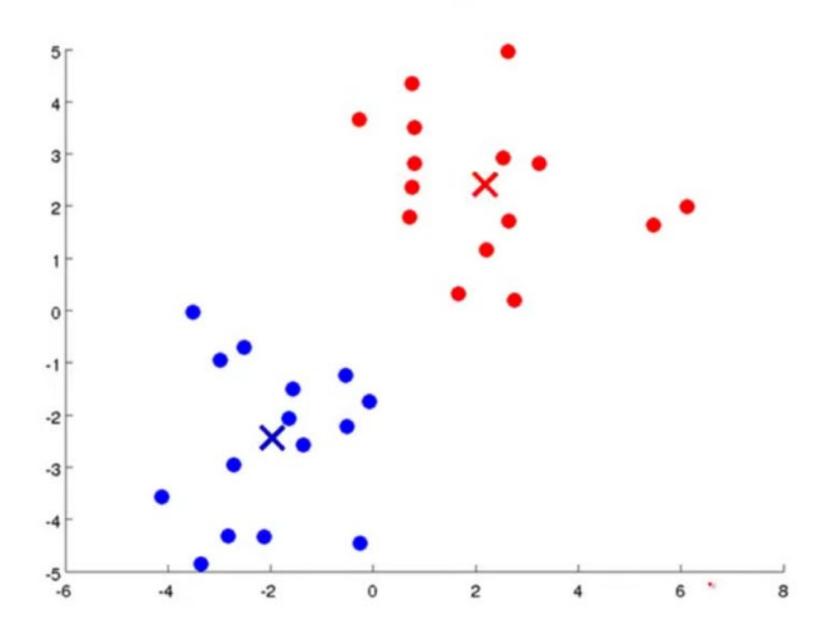


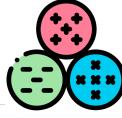


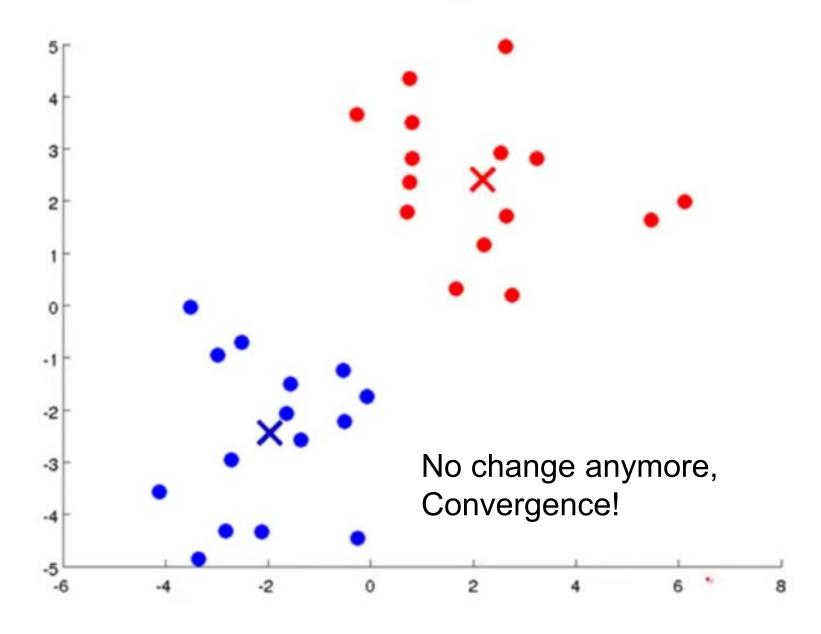








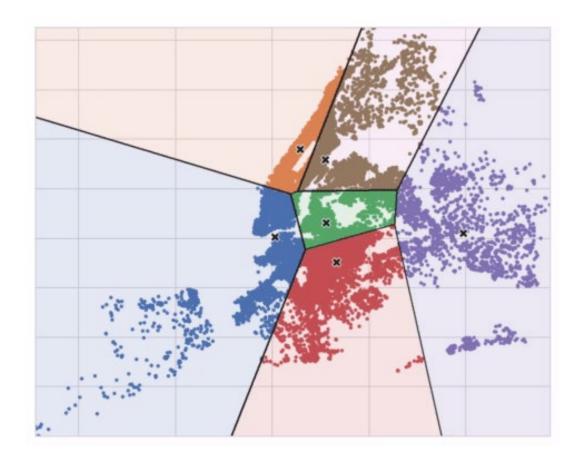




Basic Steps

- Assign Cluster Centroids
- Until Convergence:
 - Cluster Assignment Step
 - Re-assigning Centroid Step

Iterating until Convergence

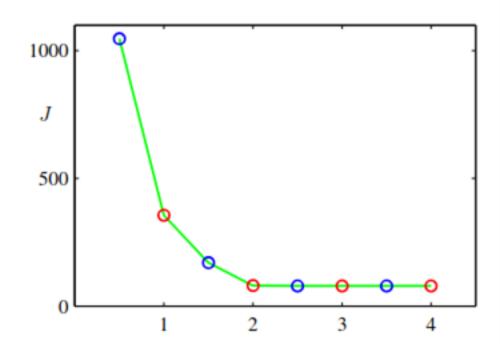


Promise of Convergence

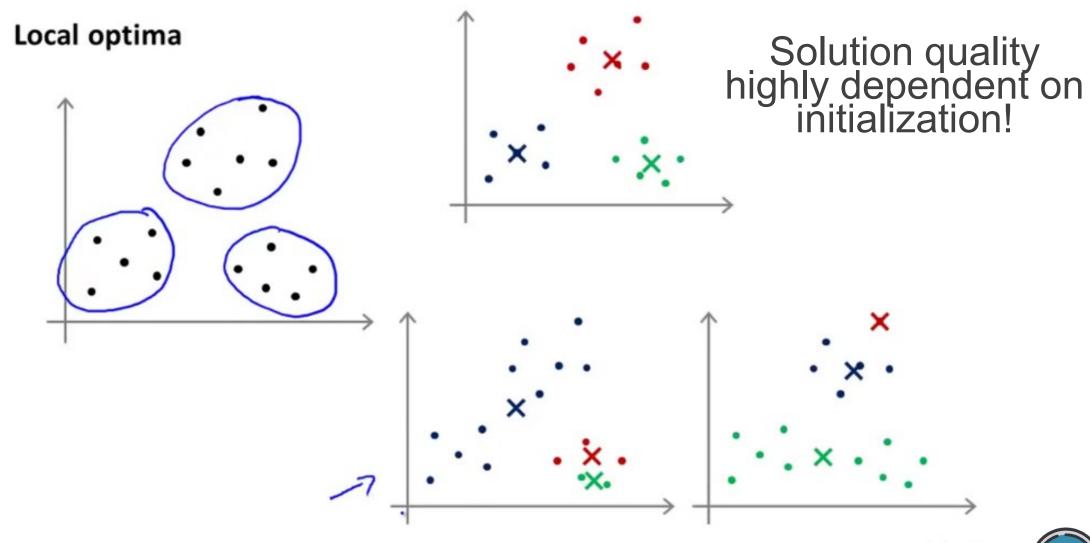
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

But, may converge to a local rather than global minimum of J.

Solution quality highly dependent on initialization!



Plot of the cost function J given by (9.1) after each E step (blue points) and M step (red points) of the K-means algorithm for the example shown in Figure 9.1.



Next lecture (9/7)

• Linear classification; the Perceptron algorithm

• Assigned reading: CIML Chap. 4