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Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

Idea Find a student ``similar’’ to Alice & has taken Algorithm course before, say Jeremy
• If Jeremy likes Algorithms, then Alice is also likely to have the same preference. 
• Or even better, find several similar students

2

• Prediction = mapping inputs to outputs

• Inputs = features that can be viewed as points in some space (possibly high-dimensional)

• “Similarity” = “distance” in feature space

• Suggests a geometric view of data 



Example: Course Recommendation
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Represented as points in 5-
dimensional space for this 

example

That’s too many dimensions 
to plot…so we look at 2D 

projections…

Features

ML begins by mapping data 
to feature vectors



Measuring Nearest Neighbors
• Oftentimes convenient to work with feature 𝑥𝑥 ∈ R𝑑𝑑

• Distances in R𝑑𝑑:

• Euclidean distance 𝑑𝑑2 𝑥𝑥, 𝑥𝑥′ = ∑𝑓𝑓=1𝑑𝑑 𝑥𝑥(𝑓𝑓)  − 𝑥𝑥′ 𝑓𝑓 2

• Manhattan distance 𝑑𝑑1 𝑥𝑥, 𝑥𝑥′ = ∑𝑓𝑓=1𝑑𝑑 𝑥𝑥 𝑓𝑓 − 𝑥𝑥′ 𝑓𝑓

• If we shift a feature, would the distance change?
• What about scaling a feature?

• How to extract features as real values?
• Boolean features: {Y, N} -> {0,1}
• Categorical features: {Red, Blue, Green, Black}

• Convert to {1, 2, 3, 4}?
• Better one-hot encoding: (1,0,0,0), .., (0,0,0,1)  (IsRed?/isGreen?/isBlue?/IsBlack?)
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notation 𝑥𝑥(𝑓𝑓): 𝑥𝑥 = (𝑥𝑥 1 , … , 𝑥𝑥(𝑑𝑑)) 



Nearest Neighbor Classification

Query point ? Will be classified as + 
but should be -
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Inductive Bias Query points belong to 
same class as closes exemplar seen in 

training data

Question How can we reduce 
inductive bias?



𝑘𝑘-nearest neighbors (𝑘𝑘-NN): main concept
Training set: 𝑆𝑆 = { 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚 }

Inductive bias: given test example 𝑥𝑥, its label should resemble the labels of nearby points

Function
• input: 𝑥𝑥

• find the 𝑘𝑘 nearest points to 𝑥𝑥 from 𝑆𝑆; call their indices 𝑁𝑁(𝑥𝑥)

• output: the majority vote of {𝑦𝑦𝑖𝑖: 𝑖𝑖 ∈ 𝑁𝑁(𝑥𝑥)}
• For regression, the average.
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k-NN classification example
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decision boundary



𝑘𝑘-NN classification: pseudocode
• Training is trivial: store the training set

• Test: 

• Time complexity (assuming distance calculation takes 𝑂𝑂(𝑑𝑑) time) 
• 𝑂𝑂 𝑚𝑚 𝑑𝑑 + 𝑚𝑚 log 𝑚𝑚 + 𝑘𝑘 = 𝑂𝑂 𝑚𝑚 𝑑𝑑 + log 𝑚𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing
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list

append to list

sort in first coordinate

Majority vote of {𝑦𝑦𝑖𝑖: 𝑖𝑖 ∈ 𝑁𝑁(𝑥𝑥)} 



Variations
• Classification

• Recall the majority vote rule: �𝑦𝑦 = arg max
𝑦𝑦∈{1,…,𝐶𝐶}

∑𝑖𝑖∈𝑁𝑁 𝑥𝑥 1{𝑦𝑦𝑖𝑖 = 𝑦𝑦}

• Soft weighting nearest neighbors: �𝑦𝑦 = arg max
𝑦𝑦∈{1,…,𝐶𝐶}

∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖 1{𝑦𝑦𝑖𝑖 = 𝑦𝑦},

    where 𝑤𝑤𝑖𝑖 ∝ exp(−𝛽𝛽 𝑑𝑑(𝑥𝑥, 𝑥𝑥𝑖𝑖)), or  ∝ 1
1+𝑑𝑑 𝑥𝑥,𝑥𝑥𝑖𝑖 𝛽𝛽

• Class probability estimates 

• �𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑥𝑥 = 1
𝑘𝑘
∑𝑖𝑖∈𝑁𝑁 𝑥𝑥 1{𝑦𝑦𝑖𝑖 = 𝑦𝑦}

• Useful for “classification with rejection”
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Feature issue 1: scaling
• Features having different scale can be problematic.

• Ex: ski vs. snowboard classification

• Solution: feature standardization (later in the course) 
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Feature issue 2: irrelevant features
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• Recall: how did we deal with these in decision trees?
• Solution: feature selection (later in the course) 

Test example

Test example



Comparison (feature 𝑥𝑥 ∈ R𝑑𝑑)

• Interpretability

• Sensitivity to
irrelevant features

• training time

• test time per example
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Decision Tree 𝑘𝑘-NN

High Medium (example-based)

Low High

𝑂𝑂(#nodes ⋅ 𝑑𝑑 ⋅  (𝑚𝑚 + 𝑚𝑚 log 𝑚𝑚) )

𝑂𝑂(depth) 𝑂𝑂 𝑚𝑚 𝑑𝑑 + log 𝑚𝑚

0
≤ �𝑂𝑂(𝑑𝑑 𝑚𝑚2) (when no two points have the same feature)

Can reduce this with
K-d trees or locality
sensitive hashing



Curse of Dimensionality - Computation
Divide space into regular intervals to avoid computing distances for each data
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Number of required cells grows exponentially in dimension!



Curse of Dimensionality – Distance Weirdness
• Consider D-dimensional hypersphere of radius r=1

• What is the fraction of volume within shell of width 𝜖𝜖?
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𝜖𝜖

• Total volume of hypersphere concentrates onto shell at the surface!

• Distances go to zero!

Intuition about lower dimensions doesn’t extend to high dimensions



Hyperparameter tuning in 𝑘𝑘-NN
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Hyperparameter tuning in 𝑘𝑘-NN
• Hyperparameter: 𝑘𝑘

• 𝑘𝑘 = 1:
• Training error = 0, overfitting

• 𝑘𝑘 = 𝑁𝑁: 
• Output a constant (majority class) prediction, underfitting

• Can use hold-out validation to choose 𝑘𝑘
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K Means Intuition

Icons are used from FlatIcon.com



Image from Dataiku

https://blog.dataiku.com/unsupervised-machine-learning-use-cases-examples


Centroid-based Clustering



Basic Steps

- Assign Cluster Centroids

- Until Convergence :
- Cluster Assignment Step
- Re-assigning Centroid Step



Slides from Andrew Ng | Machine Learning Coursera Lecture 13.2
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No change anymore, 
Convergence!

Slides from Andrew Ng | Machine Learning Coursera Lecture 13.2



Basic Steps

- Assign Cluster Centroids
- Until Convergence :

- Cluster Assignment Step
- Re-assigning Centroid Step



Iterating until Convergence

Animation from Kaggle

https://www.kaggle.com/ryanholbrook/clustering-with-k-means


Promise of Convergence

Plot of the cost function J given by (9.1) 
after each E step (blue points) and M step 
(red points) of the K-means algorithm for 
the example shown in Figure 9.1.

But, may converge to a local 
rather than global minimum of J.

Solution quality highly 
dependent on initialization!



Image from Andrew NG Coursera Machine Learning Course

Solution quality 
highly dependent on 

initialization!



Next lecture (9/7)
• Linear classification; the Perceptron algorithm

• Assigned reading: CIML Chap. 4
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