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Motivation
• Machine learning is a general & useful framework…but it’s not “magic”

• Understand when machine learning will and will not work
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Optimal classification with known 𝐷𝐷
Suppose

• Binary classification: 0-1 loss ℓ 𝑦𝑦, �𝑦𝑦 = 𝐼𝐼 𝑦𝑦 ≠ �𝑦𝑦
• Data Generating distribution 𝐷𝐷 known for every (𝑥𝑥,𝑦𝑦)
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predictor 𝒇𝒇

𝑓𝑓(𝑥𝑥)

test

, cat

𝑦𝑦𝑥𝑥

𝐿𝐿𝐷𝐷(𝑓𝑓) =  E 𝑥𝑥,𝑦𝑦 ∼𝐷𝐷𝐼𝐼 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥) = 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∼𝐷𝐷 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥)

𝐼𝐼 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥)

Question
What is the 𝑓𝑓 that minimizes,

                                  𝐿𝐿𝐷𝐷 𝑓𝑓 = 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∼𝐷𝐷 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥)

Generalization Error

Generalization Error



Simple case: discrete domain 𝒳𝒳

𝑃𝑃𝐷𝐷 𝑥𝑥, 𝑦𝑦  𝑥𝑥 = 1 𝑥𝑥 = 2 𝑥𝑥 = 3
𝑦𝑦 = −1 0.2 0.2 0.15
𝑦𝑦 = +1 0.1 0.3 0.05
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Which classifier is better?

• 𝑓𝑓1 1 = −1, 𝑓𝑓1 2 = −1,𝑓𝑓1 3 = −1    ⇒  𝐿𝐿𝐷𝐷 𝑓𝑓1 = 0.1 + 0.3 + 0.05
• 𝑓𝑓2 1 = −1, 𝑓𝑓2 2 = +1, 𝑓𝑓2 3 = −1  ⇒  𝐿𝐿𝐷𝐷 𝑓𝑓2 = 0.1 + 0.2 + 0.05

Is this the best classifier?  Why?

• For any 𝑥𝑥, should choose 𝑦𝑦 that has higher value of 𝑃𝑃𝐷𝐷 𝑥𝑥,𝑦𝑦  

• 𝑓𝑓∗ 1 = −1, 𝑓𝑓∗ 2 = +1, 𝑓𝑓∗ 3 = −1



Bayes optimal classifier

Theorem 𝑓𝑓𝐵𝐵𝐵𝐵 achieves the smallest 0-1 error among all classifiers.
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𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 = arg max
𝑦𝑦∈𝒴𝒴

𝑃𝑃𝐷𝐷(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦) = arg max
𝑦𝑦∈𝒴𝒴

𝑃𝑃𝐷𝐷 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥) ,∀𝑥𝑥 ∈ 𝒳𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica



Proof of theorem
Step 1 consider accuracy,

• 𝐴𝐴𝐷𝐷 𝑓𝑓 = 1 − 𝐿𝐿𝐷𝐷 𝑓𝑓 = 𝑃𝑃𝐷𝐷 𝑌𝑌 = 𝑓𝑓 𝑋𝑋 = ∑𝑥𝑥 𝑃𝑃𝐷𝐷 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑓𝑓 𝑥𝑥  
• Suffices to show 𝑓𝑓𝐵𝐵𝐵𝐵 has the highest accuracy

Step 2 comparison, 

𝐴𝐴𝐷𝐷 𝑓𝑓𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐷𝐷 𝑓𝑓 = �
𝑥𝑥

𝑃𝑃𝐷𝐷 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 − 𝑃𝑃𝐷𝐷 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑓𝑓 𝑥𝑥 ≥ 0

Remarks 

• Similar reasoning can be used to prove the theorem with continuous domain 𝒳𝒳 (sum -> integral)

• This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers
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𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 = arg max
𝑦𝑦∈𝒴𝒴

𝑃𝑃𝐷𝐷(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦)



Bayes error rate: alternative form
𝐿𝐿𝐷𝐷 𝑓𝑓𝐵𝐵𝐵𝐵 = 𝑃𝑃𝐷𝐷 𝑌𝑌 ≠ 𝑓𝑓𝐵𝐵𝐵𝐵 𝑋𝑋

                                = ∑𝑥𝑥 𝑃𝑃𝐷𝐷 𝑌𝑌 ≠ 𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 ∣ 𝑋𝑋 = 𝑥𝑥 𝑃𝑃𝐷𝐷 𝑋𝑋 = 𝑥𝑥
                                = ∑𝑥𝑥(1 − 𝑃𝑃𝐷𝐷 𝑌𝑌 = 𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 ∣ 𝑋𝑋 = 𝑥𝑥 )𝑃𝑃𝐷𝐷(𝑋𝑋 = 𝑥𝑥)

                                = ∑𝑥𝑥 1 − max
𝑦𝑦

 𝑃𝑃𝐷𝐷 𝑌𝑌 = 𝑦𝑦 ∣ 𝑋𝑋 = 𝑥𝑥 𝑃𝑃𝐷𝐷 𝑋𝑋 = 𝑥𝑥

                                = E 1 − max
𝑦𝑦

 𝑃𝑃𝐷𝐷 𝑌𝑌 = 𝑦𝑦 ∣ 𝑋𝑋

• Special case: binary classification 
• 𝐿𝐿𝐷𝐷 𝑓𝑓𝐵𝐵𝐵𝐵 = ∑𝑥𝑥 𝑃𝑃𝐷𝐷 𝑌𝑌 ≠ 𝑓𝑓𝐵𝐵𝐵𝐵 𝑥𝑥 ,𝑋𝑋 = 𝑥𝑥
                    = ∑𝑥𝑥 min( 𝑃𝑃𝐷𝐷 𝑌𝑌 = +1,𝑋𝑋 = 𝑥𝑥 ,𝑃𝑃𝐷𝐷 𝑌𝑌 = −1,𝑋𝑋 = 𝑥𝑥 )
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When is the Bayes error rate nonzero?

• Limited feature representation  

• Noise in the training data
• Feature noise
• Label noise – e.g. typo transcribing reviews
• Sensor failure
• Typo in reviews for sentiment classification

• May not be a single “correct” answer

• Inductive bias of the model / learning algorithm
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𝐿𝐿𝐷𝐷 𝑓𝑓𝐵𝐵𝐵𝐵 = �
𝑥𝑥

min( 𝑃𝑃𝐷𝐷 𝑌𝑌 = +1,𝑋𝑋 = 𝑥𝑥 ,𝑃𝑃𝐷𝐷 𝑌𝑌 = −1,𝑋𝑋 = 𝑥𝑥 )



Inductive Bias

Training
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How would you label the test examples?

Test



Overfitting vs Underfitting

Source: ibm.com



{Over,Under}-fitting

Shallow tree:      Deep tree: 

• Underfitting: Can learn something but didn’t

• Overfitting: Pay too much attention to idiosyncrasies to training data, and do not generalize well

• A model that neither overfits nor underfits is expected to do best 
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What is the inductive bias of a shallow decision tree?



Unbiased model evaluation using test data
Your Boss says: You may run your recommendation system to on our website only if error <= 10%!

• How can we prove that this is satisfied? 

• Idea: reserve some data as test data for evaluating predictors

• 𝐿𝐿test 𝑓𝑓 = 1
|𝑆𝑆test|

∑ 𝑥𝑥,𝑦𝑦 ∈𝑆𝑆test 𝐼𝐼 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥)

• Law of large numbers ⇒ 𝐿𝐿test 𝑓𝑓 → 𝐿𝐿𝐷𝐷 𝑓𝑓
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Test: 200 
examplesTraining: 800 examples

predictor �𝒇𝒇



Law of large numbers (LLN)
• Suppose 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 are independent random variables that are identically distributed, the sample 

average �̅�𝑣 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑣𝑣𝑖𝑖 converges to E[𝑣𝑣1] as 𝑛𝑛 → ∞

• Useful in e.g. election poll

• Foundations of statistics

• Can we apply LLN to conclude that

• 𝐿𝐿train 𝑓𝑓 = 1
|𝑆𝑆train|

∑ 𝑥𝑥,𝑦𝑦 ∈𝑆𝑆train 𝐼𝐼 𝑦𝑦 ≠ 𝑓𝑓(𝑥𝑥) → 𝐿𝐿𝐷𝐷 𝑓𝑓  as 𝑆𝑆train → ∞? 
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Test: 200 
examplesTraining: 800 examples

predictor �𝒇𝒇



Never touch your test data!

• If 𝑓𝑓 depends on test examples, 𝐿𝐿test 𝑓𝑓  may no longer estimate 𝐿𝐿𝐷𝐷 𝑓𝑓  accurately 

• E.g. indirect dependence:
• adaptive data analysis – choose a new learning algorithm based on seeing that the previous 

algorithm produces a high-test-error model
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Test: 200 
examplesTraining: 800 examples

predictor �𝒇𝒇



Case Study: MNIST Dataset
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All publications use standard train/test split Hundreds of publications compare to each other

What’s the problem with this?



Supervised learning setup

• Goal: design learning algorithm 𝒜𝒜 such that its output 𝑓𝑓 on 
   iid training data 𝑆𝑆 has low generalization error
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supervised 
learning 

algorithm 𝒜𝒜
predictor 𝒇𝒇

𝑓𝑓(𝑥𝑥)

training

test

𝐷𝐷

, cat

ℓ 𝑦𝑦, 𝑓𝑓(𝑥𝑥)

𝑦𝑦𝑥𝑥

Generalization error: 𝐿𝐿𝐷𝐷(𝑓𝑓) =  E 𝑥𝑥,𝑦𝑦 ∼𝐷𝐷 ℓ 𝑦𝑦, 𝑓𝑓(𝑥𝑥)

training data 𝑆𝑆 



Terminologies
• Model: the predictor 𝑓𝑓 

• Often from a model class ℱ ,
•  e.g. ℱ = {decision trees}, {linear classifiers}

• Parameter: specifics of 𝑓𝑓
• E.g. for decision tree 𝑓𝑓: tree structure, questions in nodes, labels in leaves
• For linear classifier: linear coefficients

• Hyperparameter: specifics of learning algorithm 𝒜𝒜 
• E.g. in DecisionTreeTrain, constrain to output tree of depth ≤ ℎ
• Tuning hyperparameters often results in {over, under}-fitting
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Hyperparameter tuning using validation set
• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … ,𝐻𝐻}?

• For each hyperparameter ℎ ∈ {1, … ,𝐻𝐻}:
• Train Treeℎ  using DecisionTreeTrain by constraining
    the tree depth to be ℎ

• Choose one from Tree1, … , Tree𝐻𝐻

• Idea 1: choose Treeℎ  that minimizes training error

• Idea 2: choose Treeℎ  that minimizes test error

• Idea 3: further split training set to training set and validation set (development/hold-out set), (1) 
train Treeℎ’s using the (new) training set; (2) choose Treeℎ that minimizes validation error
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Test: 200 
examplesTraining: 700 examples Dev:100 

examples



Hyperparameter tuning using validation set
• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … ,𝐻𝐻}?

• Law of large numbers => Validation error closely approximates test error & generalization error
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hyperparameter



Model Selection / Assessment
Partition your data into Train-Validation-Test sets

Fit Each Model Evaluate / Select
Model

Source: Hastie, Tibishrani, Freidman

Assess Model

• Ideally, Test set is kept in a “vault” and only peek at it once model is selected
• Training-Validation-Test splits work if you have enough data (“data rich”)
• As a general rule 50% Training, 25% Validation, 25% Test (very loose rule)



Overfitting vs Underfitting
Underfitting performs poorly on both training and validation…

…overfitting performs well on training but not on validation

Source: ibm.com



KNN Model Selection / Assessment

1. Train a set of models K=1,…,Kmax on training data:

2. Evaluate model accuracy on validation data:

3. Select model with lowest validation error:

3. Evaluate model error on test: What are some drawbacks
of this approach?



Cross-Validation

Source: Bishop, C. PRML

N-fold Cross Validation Partition training 
data into N “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (N-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.

Drawback Need a lot of training data to partition.



Hyperparameter tuning: cross-validation
• Main idea: split the training / validation data in multiple ways

• For hyperparameter ℎ ∈ {1, … ,𝐻𝐻}
• For 𝑘𝑘 ∈ {1, … ,𝐾𝐾}

• train 𝑓𝑓𝑘𝑘ℎ with 𝑆𝑆 ∖ fold𝑘𝑘
• measure error rate 𝑒𝑒ℎ,𝑘𝑘 of 𝑓𝑓𝑘𝑘ℎ on fold𝑘𝑘

• Compute the average error of the above: �errℎ = 1
𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝑒𝑒ℎ,𝑘𝑘

• Choose �ℎ = arg min
ℎ

�errℎ

• Train 𝑓𝑓 using 𝑆𝑆 (all the training points) with hyperparameter �ℎ

• 𝑘𝑘 = |𝑆𝑆|: leave one out cross validation (LOOCV)
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Training set 𝑆𝑆
fold1,  … ,  fold5



An example real-world machine learning pipeline
• Any step can go wrong

• E.g. data collection, data representation

• Debugging pipeline: run oracle experiments
• Assuming the downstream tasks are perfectly done, 
   is this step achieving what we want?

• General suggestions:
• Build the stupidest thing that could possibly work
• Decide whether / where to fix it
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Next lecture (8/31)
• Geometric view of machine learning; nearest neighbor methods

• Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)

• HW1 will be assigned
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