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Motivation

* Machine learning is a general & useful framework...but it’s not “magic”

* Understand when machine learning will and will not work



Optimal classification with known D

Suppose
* Binary classification: 0-1 loss £(y, V) = I(y # ¥)
* Data Generating distribution D known for every (x, y)

Generalization Error
LD (f) = E(x,y)~DI(y * f(x)) = P(x,y)~D (y ia f(x))

Question
What is the f that minimizes,

Lp(f) = P yy-p(y # f(x))
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Simple case: discrete domain X

Fatn)

y = +1 0.1 0.3 0.05

Which classifier is better?
c fF(D=-1,/2)=-1,3)=-1 = Ly(f))=0.1+0.3+0.05
c LD =-1,£2)=+1,,B)=-1 = Lp(f,) =0.1+0.2+0.05

Is this the best classifier? Why?
* For any x, should choose y that has higher value of Py (x,y)

) =-1Lf2)=+1,f"1)=-1



Bayes optimal classifier

Theorem [z, achieves the smallest 0-1 error among all classifiers.
feo(x) =argmaxPp(X =x,Y =y)=argmaxPp(Y =y |X =x),VxE€X
9 YeY yEY )

Example Iris dataset classification:

— setosa
— versicolor
— virginica

Iris Setosa Iris Versicolor

090 4.5 5.0 55 6.0 6.5 7.0 7.5 8.0
sepal length




Proof of theorem

Step 1 consider accuracy,

* Ap(f) =1-Lp(f) =Pp(Y =f(X)) = Ex Po(X =x,Y = f(x))

* Suffices to show [, has the highest accuracy

Step 2 comparison,

Ap(fs0) = Ap(f) = D Po(X =Y = fro(0)) = Pp(X = .Y = f(2)) = 0

feo(x) = argmaxPr(X = x,Y = y)
YEY

Remarks
e Similar reasoning can be used to prove the theorem with continuous domain X (sum -> integral)

* This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers



1.0

Bayes error rate: alternative form

0.8}

Lp(fo) = PD(Y '_'éfBO(X)) 06|
=2x P (Y # fpo(x) | X = x) Pp(X = x)
=2x(1 = Pp(Y = fgo(x) | X = x)) Pp(X = x)
=2x(1—myaxPD(Y=y|X=x))PD(X=x)

— setosa

— versicolor
—— virginica

probability

0.4}

0.2}

090 4.5 5.0 55 6.0 6.5 7.0 7.5 8.0
sepal length

=E[1—maxPD(Y=y|X)]
y

0.15}
p(x|wl)Prob(wl)

* Special case: binary classification

¢ LD (fBO) — Zx PD (Y + fBO (x);X — X) o1l plx|w2)Prob(w2)
— meln( PD(Y = +1,X = X),PD(Y — —1,X — x))

0.05}

0.005




When is the Bayes error rate nonzero?

Ly (Fao) = z min( Py (Y = +1,X = x),Py(Y = —1,X = x))

Limited feature representation

Noise in the training data
* Feature noise
* Label noise — e.g. typo transcribing reviews
* Sensor failure
* Typo in reviews for sentiment classification

May not be a single “correct” answer

Inductive bias of the model / learning algorithm
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Inductive Bias

Training Test

How would you label the test examples?



Overfitting vs Underfitting

Underfit Optimum
(high bias)

High training error Low training error
High test error Low test error

Source: ibm.com

Overfit

(high variance)

Low training error
High test error



{Over,Under}-fitting

What is the inductive bias of a shallow decision tree?

T2
Shallow tree: ﬂjf Deep tree:  *
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* Underfitting: Can learn something but didn’t
e Overfitting: Pay too much attention to idiosyncrasies to training data, and do not generalize well

* A model that neither overfits nor underfits is expected to do best
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Unbiased model evaluation using test data

Your Boss says: You may run your recommendation system to on our website only if error <= 10%!
 How can we prove that this is satisfied?

* Idea: reserve some data as test data for evaluating predictors

Test: 200
examples

N

predictor f

Training: 800 examples

¢ Ltest(f) — F;tlz(x,y)estestl(y i f(x))

e Law of large numbers = Ltest(f) - Lp (f)



Law of large numbers (LLN)

¢ Ltrain(f )

Suppose vy, ...,

_ 1
average v = ;Z}Ll v; converges to E[v;]asn — oo

Useful in e.g. election poll

Foundations of statistics

Can we apply LLN to conclude that

A

|Stra1 |

v, are independent random variables that are identically distributed, the sample
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Training: 800 examples

Test: 200
examples

Z(xy)EStram (y * f(x)) - LD(f) as |Stra1n| — 007

N

predictor f
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Never touch your test data!

Test: 200
examples

N 7

predictor f

Training: 800 examples

. Iff depends on test examples, Ltest(f) may no longer estimate L (f) accurately

e E.g. indirect dependence:

e adaptive data analysis — choose a new learning algorithm based on seeing that the previous
algorithm produces a high-test-error model



Case Study: MNIST Dataset

All publications use standard train/test split

Type s

Linear classifier

Decision stream with Extremely
randomized trees

K-Nearest Neighbors
K-Nearest Neighbors
Boosted Stumps

Non-linear classifier
Random Forest

Support-vector machine (SVM)
Deep neural network (DNN)

Deep neural network

Deep neural network

Convolutional neural network (CNN)
Convolutional neural network
Convolutional neural network (CNN)
Convolutional neural network
Convolutional neural network

Random Multimodel Deep Learning
{(RMDL)

Convolutional neural network
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Convolutional neural network

Classifier #*

Pairwise linear classifier
single model (depth = 400 levels)

K-NM with rigid transformations
K-NN with non-linear deformation (P2DHMDM)
Product of stumps on Haar features

40 PCA + quadratic classifier
Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)F2!

Virtual SVM, deg-9 poly, 2-pixel jitiered

2-layer 784-800-10

2-layer 784-800-10

6-layer 784-2500-2000-1500-1000-500-10

6-layer 784-40-80-500-1000-2000-10

6-layer 784-50-100-500-1000-10-10

13-layer 64-128(5x)-256(3x)-512-2048-256-256-10
Commitiee of 35 CNNs, 1-20-P-40-P-150-10

Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10
10 NN-10 RNN - 10 CNN
Committee of 20 CNNS with Squeeze-and-Excitation Networks!=%]

Ensemble of 3 CNNs with varying kemnel sizes

What’s the problem with this?

Distortion =

None

None

None
None
None

MNone

Mone

Mone
None
Elastic distortions
Elastic distortions
Mone
MNone
Mone
Elastic distortions

None

None

None

None

Preprocessing =

Deskewing
None

None
Shiftable edges
Haar features

None

Simple statistical pixel
importance

Deskewing
None
None
None
Expansion of the training data
Expansion of the training data
None
Width normalizations

Expansion of the training data
None

Data augmentation

Data augmentation consisting
of rotation and translation

Hundreds of publications compare to each other

Error
rate #
(%)
7.610]

2 7128

0.31E7

0 27138
0.25122]
02307

0.21124)

0.18127

0.17140]

0.09141)



Supervised learning setup

training data § / E] \ e X y \
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* Goal: design learning algorithm A such that its output f on \ _7
iid training data S has low generalization error @

Generalization error: L (f) = E(xyy~p (¥, f (X))
16



Terminologies

* Model: the predictor f ng yes
e Often from a model class F, Gike)  [takenOtherSys?]

ﬂD Yes

* e.g. F = {decision trees}, {linear classifiers}

|m0m|r1g?} likedOtherSys?|

i&d &

* E.g. for decision tree f: tree structure, questions in nodes, labels in leaves

e Parameter: specifics of f

e For linear classifier: linear coefficients

* Hyperparameter: specifics of learning algorithm A
* E.g.in DecisionTreeTrain, constrain to output tree of depth < h
* Tuning hyperparameters often results in {over, under}-fitting

h(x;, w)

17



Hyperparameter tuning using validation set

E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

For each hyperparameter h € {1, ..., H}:
* Train Tree;, using DecisionTreeTrain by constraining

x2

the tree depth to be h

Choose one from Treey, ..., Treey

ldea 1: choose Treej, that minimizes training error

|ldea 2: choose Treej, that minimizes test error

ldea 3: further split training set to training set and validation set (development/hold-out set), (1)

A
!l  mEm EEHE
!mEm EEE
{mEE EEE
lmEE EEE
{aEE EEE
‘"  mmm mEEE
| |

——F 21

......
.....

train Treey’s using the (new) training set; (2) choose Treey, that minimizes validation error

Training: 700 examples

Dev:100
examples

Test: 200
examples
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Hyperparameter tuning using validation set

* E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

loss

validation

8
N
8
¥

-

hyperparameter

e Law of large numbers => Validation error closely approximates test error & generalization error

19



Model Selection / Assessment

Partition your data into Train-Validation-Test sets

Validation Test

Fit Each Model Evaluate / Select  Assess Model
Model

* |deally, Test set is kept in a “vault” and only peek at it once model is selected
* Training-Validation-Test splits work if you have enough data (“data rich”)

* As a general rule 50% Training, 25% Validation, 25% Test (very loose rule)

Source: Hastie, Tibishrani, Freidman



Overfitting vs Underfitting

Underfitting performs poorly on both training and validation...

I |
Error Under- I Over-
y I . a -
fitting I fitting Validation
' set

Training
set

“sweet spot”

“\* :

Source: ibm.com Number of
fterations

...overfitting performs well on training but not on validation



KNN Model Selection / Assessment

Validation Test

1. Train a set of models K=1,...,K™®* on training data:
model 1 (D21), .. model g _ jomax (D)
2. Evaluate model accuracy on validation data:

Error(modelg—1, D¥*), ..., Error(modelg— gmax, DY)

3. Select model with lowest validation error:

K* = arg ming Error(modelg, D¥)

3. Evaluate model error on test: What are some drawbacks

of this approach?
Error(model g+, D)



Cross-Validation

| | | I | run 1 N-fold Cross Validation Partition training

data into N “chunks” and for each run
I | | I I run 2 select one chunk to be validation data
I | | I I run 3
For each run, fit to training data (N-1
I | | I I run 4
chunks) and measure accuracy on
validation set. Average model error
across all runs.

Drawback Need a lot of training data to partition.

Source: Bishop, C. PRML



Hyperparameter tuning: cross-validation

Main idea: split the training / validation data in multiple ways

For hyperparameter h € {1, ..., H}
* Fork e {1,..,K}
e train f; with S \ fold,,
* measure error rate ey, ; of £ on fold,,

_ 1
« Compute the average error of the above: érr = EZ’,§=1 en k

Choose h = arg min érr"

h
Train f using S (all the training points) with hyperparameter h

k = |S|: leave one out cross validation (LOOCV)

Training set S
fold,, e foldg

[ ]
N
[ 1

B
[ ]

run 1

rn 2

run 3

run 4

runs
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An example real-world machine learning pipeline

* Any step can go wrong
e E.g. data collection, data representation

* Debugging pipeline: run oracle experiments
* Assuming the downstream tasks are perfectly done,
is this step achieving what we want?

* General suggestions:
* Build the stupidest thing that could possibly work
* Decide whether / where to fix it

; real world increase
goal revenue

,  real world better ad
mechanism display
learning classify

> problem click-through

interaction w/

4 data collection current system

5  collected data query, ad, click
data bow?. 4 click

6 representation ow", & clc

- select model decision trees,
family depth 20

8 select training subset from
data april’16

9 train model & final decision

hyperparams

tree

10

11

predict on test
data

evaluate error

subset from
may’16
zero/one loss
for £ click

12

deploy!

(hope we
achieve our
goal)
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Next lecture (8/31)

* Geometric view of machine learning; nearest neighbor methods
* Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)

* HW1 will be assigned
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