
CSC 580 Principles of Machine Learning

Prof. Jason Pacheco
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*some slides are from Daniel Hsu’s lecture under his permission

*some slides are from Prof. Kwang-Sung Jun’s lecture under his permission
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What is machine learning?



What is machine learning?
• Tom Mitchell established Machine Learning Department at CMU (2006).

• A bit outdated with recent trends, but still has interesting discussion (and easy to read).

• A subfield of Artificial Intelligence – you want to perform nontrivial, smart tasks. The difference 
from the traditional AI is “how” you build a computer program to do it.
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AI Task 1: Image classification
• Predefined categories: 𝐶𝐶 = {cat, dog, lion, …}

• Given an image, classify it as one of the set 𝐶𝐶 with the highest accuracy as possible.

• Use: sorting/searching images by category.

• Also: categorize types of stars/events in the Universe (images taken from large surveying telescopes)
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AI Task 2: Recommender systems
• Predict how user would rate a movie

• Use: For each user, pick an unwatched movie with the high predicted ratings.

• Idea: compute user-user similarity or movie-movie similarity, then compute a weighted average.
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AI Task 3: Machine translation
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•  No need to explain how useful it is.



AI Task 4: Board game
• Predict win probability of a move in a given game state (e.g., AlgphaGo)

• Traditionally considered as a “very smart” task to perform.

• Use: From the AI Go player, you can do practice play or even
         learn from it.
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Traditional AI vs Machine Learning (ML)
• Traditional AI: you encode the knowledge (e.g., logic statements), and the machine

executes it, with some more ‘inference’ like if a -> b and b-> c, then a-> c. 
• e.g., if you see some feather texture with two eyes and a beak, classify it as a bird.

• ML: I give you a number of  input and output observations (e.g., animal picture + label), and you give me a 
function (can be a set of logical statements or a neural network) that maps the input to the output 
accurately.

• As the “big data” era comes, data is abundant => far better to learn from data than to encode domain 
knowledge manually.

• “statistical” approach // data-driven approach
• “Every time I fire a linguist, the performance of the speech recognizer goes up.” – 1988, Frederick Jelinek, 

a Czech-American researcher in information theory & speech recognition.

• Note: ML approach to logic-based system: decision tree (simple rules) / inductive logic programming (complex 
rules)
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Work in ML
• The usual CS background is often not sufficient – especially mathematical side, beyond discrete 

math.

• Applied ML
• Collect/prepare data, build/train models, analyze errors

• ML engineer
• Implement/fine-tune ML algorithms and infrastructure

• ML research
• Design/analyze models and algorithms
• Theory: Provide mathematical guarantees. E.g., If I were to achieve 90% accuracy, how many 

data points do we need?  => generalization bound.
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Prereqs
• Math

• linear algebra, probability & statistics, multivariate calculus, reading and writing proofs.
• Q: how many of you are familiar with eigen decomposition?

• Software/programming
• Much ML work is implemented in python with libraries such as numpy and pytorch.
• You need to be fluent at writing functions and using them efficiently.
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Overview of ML methods
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supervised learning

unsupervised learning reinforcement learning
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Supervised Learning



• Training data: dataset comprised of labeled examples: a pair of (input, label)

Basic setting: Supervised learning
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supervised 
learning 

algorithm

function
(”classifier”)

cat!

training testing



Examples function 1: Decision tree
• Task: predict the rating of a movie by a user 

• If age >= 40 then
• if genre = western then

• return 4.3
• else if release date > 1998 then

• return 2.5
• else ..

…
end if

• else if age < 40 then
…

• end if
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Example function 2: Linear
• E.g., Image classification

• Let 𝑥𝑥 be a set of pixel values of a picture (30 by 30 pts) => 900 dimensional vector 𝑥𝑥.

• If 0.124 ⋅ 𝑥𝑥1 − 2.5 ⋅ 𝑥𝑥2 + ⋯+ 2.31 ⋅ 𝑥𝑥900 > 2.12 then 
• return cat

• else
• return dog

• end

• Coefficients: signed “importance weights”
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“linear combination”



Example function 3: Nonlinear
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Gaussian process / KernelsNeural network

(stacked linear models with nonlinear activation functions) (linear in the induced feature space)



Supervised learning: Types of prediction problems
• Binary classification

• Given an email, is it spam or not? (or, the probability of it being spam)

• Multi-class classification
• Image classification with 1000 categories.

• Regression: the label is real-valued (e.g., price)
• Say I am going to visit Italy next month. Given the price trends in the past, what would be the 

price given (the # of days before the departure, day of week)?
• Pricing: predict the lowest price 

• Structured output prediction: more than just a number
• Given a sentence, what is its grammatical parse tree?
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Beyond supervised learning
• Online learning (opp. “batch learning”)

• Immediate updates are needed (e.g., personalized product recommendation)
• Sequential update for fast learning / adapt to changing environment

• Unsupervised learning
• Finds patterns in the data without the help of labels.

• Reinforcement learning
• The environment interacts with your action, transferring you to different states.
• When there are no states: ”bandit” feedback.

• E.g., Amazon recommends you a pair of shoes. You did not click it. Amazon don’t know if you 
would’ve clicked had it recommended speakers or cookware. 

• The dataset is now dependent on the recommendation algorithm => biased data.
• “bandit-logged” data.
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The challenge: How to learn a function
• Okay, we have a training data. Why not learn the most complex function that can work flawlessly for 

the training data and be done with it? (i.e., classifies every data point correctly)
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• Extreme: let’s memorize the data. To predict an unseen data, 
just follow the label of the closest memorized data.

• It does not work.

• You need to learn training dataset but don’t ”over-do” it.

• This is called “regularization” – an important notion.
green: memorization
black: true decision boundary



What to expect in the class
• How to use sklearn, pytorch, tensorflow, fine-tuning deep net algorithms.

• You can learn these on your own; their values likely decay soon

• Algorithm and statistical principles
• Well-studied models and methods.
• Those that give you some “understanding”.
• These are and will be referred/extended/revisited in the future.

• Programming and proofs
• No need to be a guru.
• But you must be familiar enough to (1) follow popular codes and proofs and (2) be able to adapt 

yourself to new programming tools and proofs in the future.
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Logistics



Office Hours
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TA: Yinan Li

Fridays @ 3:00-5:00pm
(1500 – 1700)

Me

Fridays @ 10:30am – 12:30pm
(1030 - 1230)

Undergraduates Only

All office hours online via Zoom – See Piazza for links

Office Hours are for:
• Clarification on lecture material

• Homework questions

• Other questions related to course 
logistics / material / ML

I prefer “Jason” or “Professor”
But NOT “Professor Pacheco”



Electronical Resources
Course Webpage The main ‘hub’ with all lecture slides, schedule, etc.
  http://www.pachecoj.com/courses/csc480-580_fall23/ 

D2L Probably won’t use this for much beyond final grades...
• CSC 480 - https://d2l.arizona.edu/d2l/home/1355962 
• CSC 580 - https://d2l.arizona.edu/d2l/home/1355965 

Piazza mainly for Q&A/discussion ( https://piazza.com/arizona/fall2023/csc480580/home  )

Gradescope submitting the homework ( https://www.gradescope.com/courses/578061 )
• Important Login with School Credentials | University of Arizona (NetID)

Book A Course in Machine Learning by Hal Daumé III
• Web Version: http://ciml.info/ 
• PDF Version: http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf 
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Lecture videos will be made available after each class for review

http://www.pachecoj.com/courses/csc480-580_fall23/
https://d2l.arizona.edu/d2l/home/1355962
https://d2l.arizona.edu/d2l/home/1355965
https://piazza.com/arizona/fall2023/csc480580/home
https://www.gradescope.com/courses/578061
http://ciml.info/
http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf


Syllabus summary
Section Warm up

• Basic supervised learning: decision tree, k-NN, perceptron
• Practical issues in supervised learning: evaluation, feature selection, etc.
• Bias-variance decomposition

Section Learning methods
• Linear & Nonlinear (Kernel) Models
• Probabilistic Modeling, Naïve Bayes, Graphical Models
• Neural Networks & Backpropagation
• Ensemble methods

Section Unsupervised learning

Section Learning theory
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See course webpage for assigned
readings related to each lecture



Syllabus summary
• 08/22: HW0 (calibration) Due 8/29 @ 12pm Noon

• 09/07: HW1 assigned

• 09/26: HW2 assigned

• 10/12: Midterm exam

• 10/31: Project proposal due

• 11/02: HW3 assigned

• 11/16: HW4 assigned

• 12/05: Final project due

• 12/13: Final exam at 6:00pm – 8:00pm (online)

• Due: HW0 is due in 7 days. HW1-4 and is due in 10 
days. 

• NO LATE DAYS
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Grades will be on a 0-100 scale with weights:
• Homework assignments: 35%
• Project Proposal: 5%
• Project: 20%
• Midterm exam: 15%
• Final exam: 15%
• Participation: 10%

Project
• Pick a paper in recent ML venue and 

implement it
• Pioneering new applications of ML (e.g., 

connect to your research)
• Talk to me for other ideas.



Participation

• Stop me at any point to ask questions! There are no bad questions

• Any ideas to encourage participation?

• I strongly encourage off-class discussion in Piazza.
• Students should also attempt to answer questions
• Sometimes answering questions helps us learn better (especially if we’re wrong)

• Lecture videos are for review-you should attend lecture in-person
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400- vs. 500-Level Credit
• This course will be co-convened CSC 480 / 580

• The same assignments will be issued to all students

• Assignments / Exams will have questions designated only for CSC 580 students
• Undergraduates should not answer these questions
• There won’t be extra credit for answering them (I will occasionally have extra credit questions)

• Expectations for the semester project will be higher for CSC 580 students
• More emphasis on novelty
• I.e. if you implement a paper you should make some improvement
• Undergrads may implement an algorithm as-is or apply it to a dataset of their choosing
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Plagiarism
• Case study 1

• Two students turned in a final exam with nearly identical code blocks
• The same number of lines, only variables were renamed and some lines reordered

• Case study 2
• One student turned in a midterm exam with another student’s name on it
• On checking much of the material was nearly identical in both exams
• When confronted both students admitted that they shared exams

• So, what happened?

• No tolerance. You will receive zero credit
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HW0
• Calibration purpose; due on 8/29 12pm. NO LATE DAYS. Will not accept late submissions.

• Will not be part of the homework score unless you don’t make an effort

• I require that you spend some time to figure out an answer to the homework.

• If you failed to figure out, please explain what you have done to find an answer and where you get 
stuck.

• DON’T:  ”I googled it and nothing came up”
• DO: “I read material A, and there is this statement B that seems to help, but when I tried to 

apply, C became an issue due to independence. ..."

• The participation score will be deducted (-2 out of 10pts) if …
• Empty answers
• No nontrivial efforts to solve it.
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HW0 Submission: Gradescope
• Watch the video and follow the instruction: https://youtu.be/KMPoby5g_nE

• Please upload one PDF file.

• If you do it handwritten, then make sure you picture it well. I recommend using TurboScan 
(smartphone app) or similar ones to avoid looking like slanted or showing the background.
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https://youtu.be/KMPoby5g_nE


Useful Background Material
Probability

• http://cs229.stanford.edu/section/cs229-prob.pdf

• Lecture notes: http://www.cs.cmu.edu/~aarti/Class/10701/recitation/prob_review.pdf

Linear Algebra:

• http://cs229.stanford.edu/section/cs229-linalg.pdf

• Short video lectures by Prof. Zico Kolter: http://www.cs.cmu.edu/~zkolter/course/linalg/outline.html

• Handout associated with above video: http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf

Big-O notation:

• http://www.stat.cmu.edu/~cshalizi/uADA/13/lectures/app-b.pdf

• http://www.cs.cmu.edu/~avrim/451f13/recitation/rec0828.pdf

Other resources:

• The matrix cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• The probability and statistics cookbook: http://statistics.zone/

• Calculus cheatsheet: https://tutorial.math.lamar.edu/pdf/calculus_cheat_sheet_all.pdf
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http://cs229.stanford.edu/section/cs229-prob.pdf
http://www.cs.cmu.edu/%7Eaarti/Class/10701/recitation/prob_review.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://www.cs.cmu.edu/%7Ezkolter/course/linalg/outline.html
http://www.cs.cmu.edu/%7Ezkolter/course/linalg/linalg_notes.pdf
http://www.stat.cmu.edu/%7Ecshalizi/uADA/13/lectures/app-b.pdf
http://www.cs.cmu.edu/%7Eavrim/451f13/recitation/rec0828.pdf
https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf
http://statistics.zone/
https://tutorial.math.lamar.edu/pdf/calculus_cheat_sheet_all.pdf
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Questions?
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