

# **CSC380: Principles of Data Science**

### **Classical Statistics and Estimation**

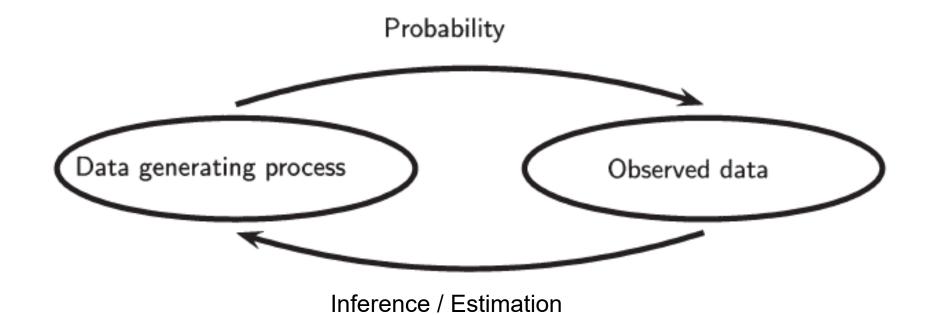
# Prof. Jason PachecoTA: Enfa Rose GeorgeTA: Saiful Islam Salim

## **Probability and Statistics**

- Probability provides a mathematical formalism to reason about randomness
- Statistics deals with data and encompasses
  - Data collection / organization
  - Interpretation of data
  - Answering questions from data (statistical inference, hypothesis testing)
  - Fitting models to data (estimation)
- Statistics *uses* probability to address these tasks

### **Probability and Statistics**

#### Probability describes how to generate data



Statistics describes how data were generated

[Source: Wasserman, L. 2004]

- Parameter Estimation
  - Method of Moments
  - Maximum Likelihood Estimation
- Confidence Intervals
  - Overview
  - Bootstrap confidence intervals
- Estimator Properties
  - Estimator Bias / Mean Squared Error
  - Law of Large Numbers / Central Limit Theorem

### Parameter Estimation

- Method of Moments
- Maximum Likelihood Estimation
- Confidence Intervals
  - Overview
  - Bootstrap confidence intervals
- Estimator Properties
  - Estimator Bias / Mean Squared Error
  - Law of Large Numbers / Central Limit Theorem

### **Intuition Check**

Suppose that we toss a coin 100 times. We don't know if the coin is fair or biased...

<u>Question 1</u> Suppose that we observe 52 heads and 48 tails. Is the coin fair? Why or why not?

Question 2 Now suppose that out of 100 tosses we observed 73 heads and 27 tails. Is the coin fair? Why or why not?

<u>Question 3</u> How might we estimate the bias of the coin with 73 heads and 27 tails?



## **Estimating Coin Bias**

We can model each coin toss as a Bernoulli random variable,

$$X \sim \text{Bernoulli}(\pi) = \pi^X (1 - \pi)^{1 - X}$$
 where  $X \in \{0, 1\}$ 

Recall that  $\pi$  is the coin bias (probability of heads) and that,

$$\mathbf{E}[X] = \pi$$

Suppose we observe N coin flips  $x_1, \ldots, x_N$ , estimate  $\pi$  as,

$$\hat{\pi} = \frac{1}{N} \sum_{n=1}^{N} x_n \approx \mathbf{E}[X] = \pi$$

This is the <u>empirical mean</u> or <u>sample mean</u>

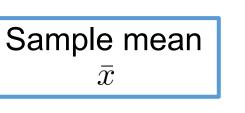
### **Estimating Gaussian Parameters**

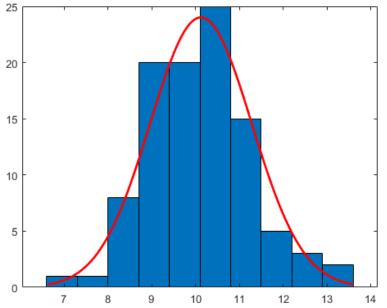
Suppose we observe the heights of N student at UA, and we model them as Gaussian:

$$\{x_i\}_i^N \sim \mathcal{N}(\mu, \sigma^2)$$

How can we estimate the **mean**?

$$\hat{\mu} = \frac{1}{N} \sum_{i} x_i \approx \mu$$





How can we estimate the variance?

$$\hat{\sigma^2} = \frac{1}{N} \sum_{i} (x_i - \hat{\mu})^2 \approx \sigma^2$$

Variance estimator uses our previous mean estimate. This is a **plug-in estimator.** 

### Parameter Estimation

We have a <u>model</u> in the form of a probability distribution, with unknown **parameters of interest**  $\theta$ ,

 $p(X;\theta)$ 

Observe data, typically independent identically distributed (iid),

 ${x_i}_i^N \stackrel{iid}{\sim} p(\cdot;\theta)$ 

Compute an estimator to approximate parameters of interest,

 $\hat{\theta}(\{x_i\}_i^N) \approx \theta$ 

Many different types of estimators, each with different properties

## Definitions

A **statistic** is a function of the data that does not depend on any unknown parameter.

### Examples

- Sample mean  $\bar{x}$
- Sample variance  $s^2\,$
- Sample STDEV  $\boldsymbol{s}$
- Standardized scores  $(x_i \bar{x})/s$
- Order statistics  $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$
- Sample (noncentral) moments  $\bar{x}^m = \frac{1}{n} \sum_{i=1}^n x_i^m$

An **estimator**  $\hat{\theta}(x)$  is a statistic used to infer the unknown parameters of a statistical model.

### **Intuition Check**

Suppose that we toss a coin 100 times. We observe 52 heads and 48 tails...

<u>Question 1</u> I define an estimator that is *always*  $\hat{\theta} = 0$ , regardless of the observation. Is this an estimator? Why or why not?

<u>Question 2</u> Is the estimator above a **good** estimator? Why or why not?

<u>Question 3</u> What are some properties that could define a **good** estimator?



### Two Desirable Estimator Properties

Consistency Given enough data, the estimator converges to the true parameter value

$$\lim_{n \to \infty} \hat{\theta}(x_1, \dots, x_n) \to \theta$$

This convergence can be measured in a number of ways: in probability, in distribution, absolutely

> Efficiency It should have low error with the least data, e.g.  $MSE(\hat{\theta}) = \mathbf{E}[(\hat{\theta} - \theta)^2]$ 

Mean squared error should be small

### Method of Moments

A simple way to estimate parameters...

Suppose we have K parameters  $\theta = (\theta_1, \ldots, \theta_K)$  with j<sup>th</sup> moment,

$$\alpha_j(\theta) = \mathbf{E}_{\theta}[X^j]$$

and the jth sample moment,

$$\hat{\alpha}_j(x) = \frac{1}{n} \sum_{i=1}^n x_i^j$$

...match moments to sample moments

### Method of Moments

### Defines a system of K equations and K unknowns

**9.3 Definition.** The method of moments estimator  $\hat{\theta}_n$  is defined to be the value of  $\theta$  such that

$$\begin{aligned}
\alpha_1(\widehat{\theta}_n) &= \widehat{\alpha}_1 \\
\alpha_2(\widehat{\theta}_n) &= \widehat{\alpha}_2 \\
&\vdots &\vdots \\
\alpha_k(\widehat{\theta}_n) &= \widehat{\alpha}_k.
\end{aligned}$$
(9.4)

## MoM Example: Estimating Coin Bias

Remember how we estimated coin bias...

We can model each coin toss as a Bernoulli random variable,

$$X \sim \text{Bernoulli}(\pi) = \pi^X (1 - \pi)^{1 - X}$$
 where  $X \in \{0, 1\}$ 

Recall that  $\pi$  is the coin bias (probability of heads) and that,

$$\mathbf{E}[X] = \pi$$

Suppose we observe N coin flips  $x_1, \ldots, x_N$ , estimate  $\pi$  as,

$$\hat{\pi} = \frac{1}{N} \sum_{n=1}^{N} x_n \approx \mathbf{E}[X] = \pi$$

... this is method of moments with a change of notation

## MoM Example: Estimating Coin Bias

Remember how we estimated coin bias...

We can model each coin toss as a Bernoulli random variable,

$$X \sim \text{Bernoulli}(\theta) = \theta^X (1 - \theta)^{1 - X}$$
 where  $X \in \{0, 1\}$ 

Recall that  $\theta$  is the coin bias (probability of heads) and that,

$$\alpha_1(\theta) = \mathbf{E}_{\theta}[X] = \theta$$

Suppose we observe N coin flips  $x_1, \ldots, x_N$ , estimate  $\theta$  as,

$$\hat{\alpha}_1 = \frac{1}{N} \sum_{n=1}^N x_n \qquad \qquad \alpha_1(\hat{\theta}) = \hat{\theta} = \hat{\alpha}_1$$

... this is method of moments with a change of notation

### MoM Example: Estimating Normal Parameters

**9.5 Example.** Let  $X_1, \ldots, X_n \sim \text{Normal}(\mu, \sigma^2)$ . Then,  $\alpha_1 = \mathbb{E}_{\theta}(X_1) = \mu$ and  $\alpha_2 = \mathbb{E}_{\theta}(X_1^2) = \mathbb{V}_{\theta}(X_1) + (\mathbb{E}_{\theta}(X_1))^2 = \sigma^2 + \mu^2$ . We need to solve the equations<sup>1</sup>

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$\widehat{\sigma}^2 + \widehat{\mu}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

This is a system of 2 equations with 2 unknowns. The solution is

$$\widehat{\mu} = \overline{X}_n$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

[Source: Wasserman, L. 2004]

## **Intuition Check**

# Suppose that we toss a coin 100 times. We observe 73 heads and 27 tails...

<u>Question</u> Let  $\theta$  be the coin bias (probability of heads). What is a more likely estimate? What is your reasoning?

A:  $\hat{\theta} = 0.73$ , strong preference for heads

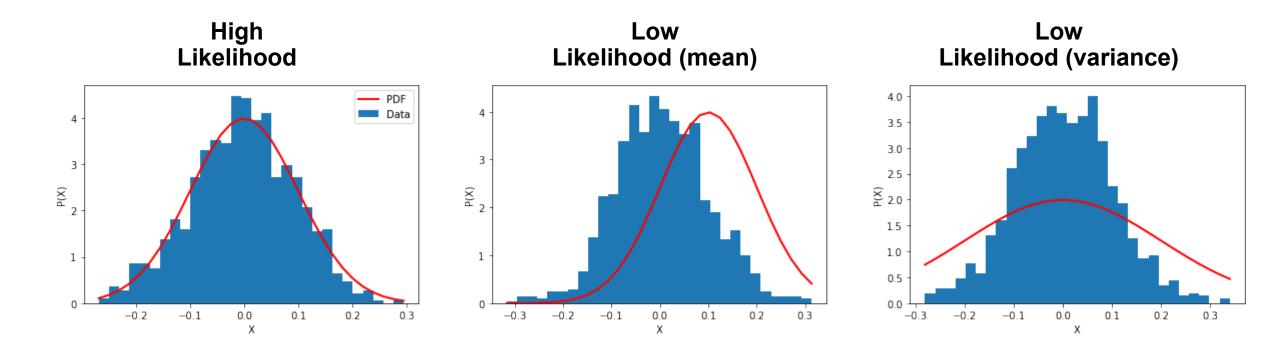
**B:**  $\hat{\theta} = 0.50$ , fair coin (we observed unlucky outcomes)

**Likelihood (informally)** Probability of the observed outcomes from model with parameters  $\hat{\theta}$ 



## Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian model and wish to estimate model parameters...



**Likelihood Principle** Given a statistical model, the likelihood function describes all evidence of a parameter that is contained in the data.

## Likelihood Function

Suppose  $x_i \sim p(x; \theta)$ , then what is the **joint probability** over N *independent identically distributed* (iid) observations  $x_1, \ldots, x_N$ ?

$$p(x_1, \dots, x_N; \theta) = \prod_{i=1}^N p(x_i; \theta)$$

- We call this the **likelihood function**, often denoted  $\mathcal{L}_N(\theta)$
- It is a function of the parameter  $\theta$ , the data are fixed
- Describes how well parameter  $\theta$  describes data (goodness of fit)

How could we use this to estimate a parameter  $\theta$ ?

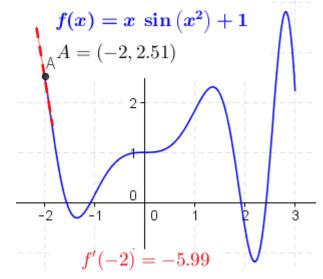
 $\Lambda T$ 

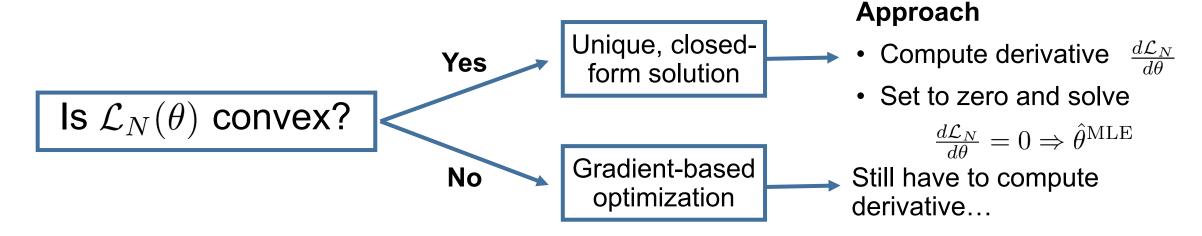
Maximum Likelihood Estimator (MLE) as the name suggests, maximizes the likelihood function.

$$\hat{\theta}^{\text{MLE}} = \arg\max_{\theta} \mathcal{L}_N(\theta) = \prod_{i=1}^N p(x_i; \theta)$$

**Question** How do we find the MLE?

Answer Remember calculus...





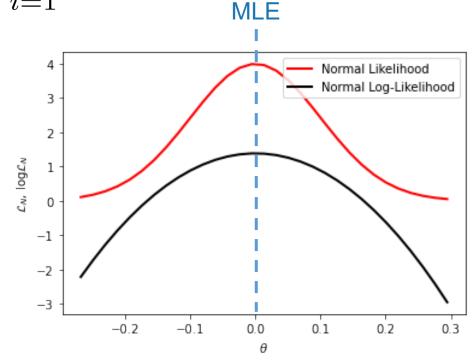
Maximizing log-likelihood makes the math easier (as we will see) and doesn't change the answer (logarithm is an increasing function)

$$\hat{\theta}^{\text{MLE}} = \arg\max_{\theta} \log \mathcal{L}_N(\theta) = \sum_{i=1}^N \log p(x_i; \theta)$$

 $\Lambda I$ 

Derivative is a linear operator so,

$$\frac{d}{d\theta} \log \mathcal{L}_N(\theta) = \sum_{i=1}^N \frac{d}{d\theta} \log p(x_i; \theta)$$
One term per data point
Can be computed in parallel
(big data)



**Example** Suppose we have N coin tosses with  $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$  but we don't know the coin bias p. The likelihood function is,

$$\mathcal{L}_n(p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^S (1-p)^{n-S}$$

where  $S = \sum_{i} x_{i}$ . The log-likelihood is,

$$\log \mathcal{L}_n(p) = S \log p + (n - S) \log(1 - p)$$

Set the derivative of  $\log \mathcal{L}_n(p)$  to zero and solve,

$$\hat{p}^{\text{MLE}} = S/n = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Maximum likelihood is equivalent to sample mean in Bernoulli

[Source: Wasserman, L. 2004]

Likelihood function for Bernoulli with n=20 and  $\sum_i x_i = 12$  heads

**Example** Let  $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$  with parameters  $\theta = (\mu, \sigma)$  and the likelihood function (ignoring some constants) is:

$$\mathcal{L}_n(\mu,\sigma) = \prod_i \frac{1}{\sigma} \exp\left\{-\frac{1}{2\sigma^2}(X_i - \mu)^2\right\}$$

$$= \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum_i (X_i - \mu)^2\right\}$$

$$= \sigma^{-n} \exp\left\{-\frac{nS^2}{2\sigma^2}\right\} \exp\left\{-\frac{n(\overline{X}-\mu)^2}{2\sigma^2}\right\}$$

Where  $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$  and  $S^{2} = \frac{1}{n} \sum_{i} (X_{i} - \bar{X})^{2}$  are sample mean and sample variance, respectively.

Continuing, write log-likelihood as:

$$\ell(\mu,\sigma) = -n\log\sigma - \frac{nS^2}{2\sigma^2} - \frac{n(\overline{X}-\mu)^2}{2\sigma^2}.$$

Solve zero-gradient conditions:

$$\frac{\partial \ell(\mu, \sigma)}{\partial \mu} = 0 \quad \text{and} \quad \frac{\partial \ell(\mu, \sigma)}{\partial \sigma} = 0,$$

To obtain maximum likelihood estimates of mean / STDEV:

$$\hat{\mu}^{\text{MLE}} = \bar{X} = \frac{1}{n} \sum_{i} X_i \qquad \qquad \hat{\sigma}^{\text{MLE}} = S = \sqrt{\frac{1}{n} \sum_{i} (X_i - \bar{X})^2}$$

### **Maximum Likelihood Properties**

1) The MLE is a **consistent** estimator:

$$\lim_{n \to \infty} \hat{\theta}_n^{\text{MLE}} \xrightarrow{P} \theta_*$$

Roughly, converges to the true value with high probability.

2) The MLE is a **asymptotically efficient**: roughly, has the lowest mean squared error among all consistent estimators.

3) The MLE is a **asymptotically Normal**: roughly, the estimator (which is a random variable) approaches a Normal distribution (more later).

4) The MLE is a functionally invariant: if  $\hat{\theta}^{\text{MLE}}$  is the MLE of  $\theta$  then  $g(\hat{\theta}^{\text{MLE}})$  is the MLE of  $g(\theta)$ .

### **Intuition Check**

Compare the results of two coin flip experiments...

Experiment 1 Flip 100 times and observe 73 heads, 27 tails

Experiment 2 Flip 1,000 times and observe 730 heads, 270 tails

<u>Question</u> The MLE estimate of coin bias for both experiments is equivalent  $\hat{\theta} = 0.73$ . Which should we trust more? Why? /

**Takeaway** The estimate  $\hat{\theta}(X)$  is a function of random data. So, it is a random variable. It has a distribution.

### Administrative Items

- HW2 Due tonight @ 11:59pm
- HW3 Out first thing tomorrow
- Lecture title slides had wrong class number (oops!)

- Parameter Estimation
  - Method of Moments
  - Maximum Likelihood Estimation
- Confidence Intervals
  - Overview
  - Bootstrap confidence intervals
- Estimator Properties
  - Estimator Bias / Mean Squared Error
  - Law of Large Numbers / Central Limit Theorem

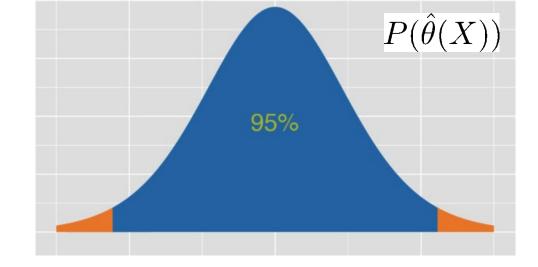
### **Confidence Intervals**

**Intuition** Find an interval such that we are *pretty sure* it encompasses the true parameter value.

Given data  $X_1, \ldots, X_n$  and confidence  $\alpha \in (0, 1)$  find interval (a, b) such that,

 $P(\theta \in (a, b)) \ge 1 - \alpha$ 

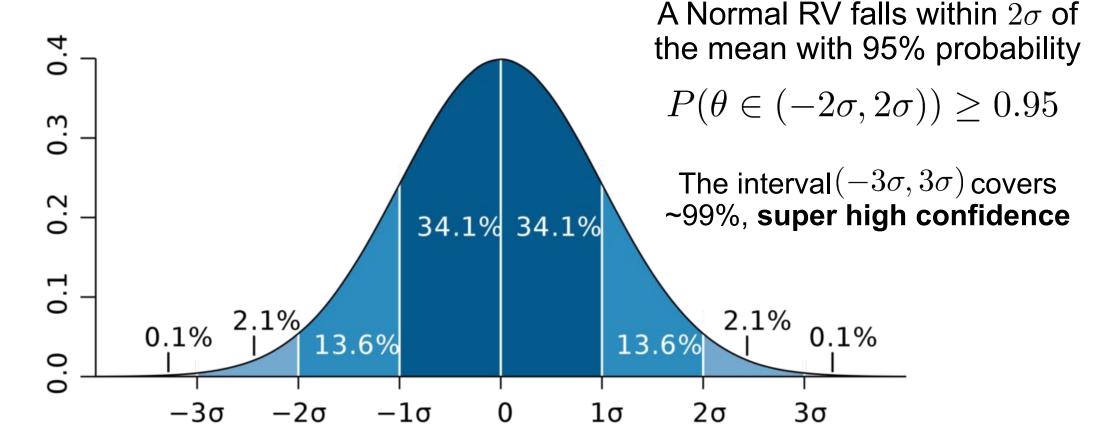
In English the interval (a,b) contains the true parameter value  $\theta$  with probability at least  $1-\alpha$ 



- Intervals must be computed from data  $a(X_1, \ldots, X_n)$  and  $b(X_1, \ldots, X_n)$
- Interval (a,b) is **random**, parameter  $\theta$  is **not random** (it is fixed)
- Requires that we know the distribution of the estimator  $\hat{ heta}$

## Confidence Intervals of the Normal Distribution

Many estimators follow a normal distribution with enough data (central limit theorem)



For various reasons, 95% has become standard confidence level

## Warning

<u>Question</u> How should we interpret a confidence interval (e.g. 95%)?

 $P(\theta \in (a(X), b(X))) \ge 0.95$ 

<u>Hint</u> Think about what is random and what is not...

This is NOT a probability statement about  $\theta$ .

Wrong The true parameter value lies in the interval (a,b) with probability at least 95%

**Right** Interval (a,b) contains the true parameter value with probability at least 95%

This is commonly misinterpreted

# Warning

<u>Question</u> How should we interpret a confidence interval (e.g. 95%)?  $P(\theta \in (a(X), b(X))) \ge 0.95$ 

<u>Hint</u> Think about what is random and what is not...

Wrong In this experiment there is a 95% chance that our interval contains the true parameter value.

**Right** If I repeat this experiment <u>many times</u> the interval will contain the true parameter value 95% of the time. True but use

True but useless... we only have one dataset (one experiment)

This is commonly misinterpreted

### Interpretation

On day 1, you collect data and construct a 95 percent confidence interval for a parameter  $\theta_1$ . On day 2, you collect new data and construct a 95 percent confidence interval for an unrelated parameter  $\theta_2$ . On day 3, you collect new data and construct a 95 percent confidence interval for an unrelated parameter  $\theta_3$ . You continue this way constructing confidence intervals for a sequence of unrelated parameters  $\theta_1, \theta_2, \ldots$  Then 95 percent of your intervals will trap the true parameter value. There is no need to introduce the idea of repeating the same experiment over and over.

### **Bootstrap Confidence Intervals**

Suppose we observe data  $X_1, X_2, \ldots, X_n \sim P(X; \theta)$ :

- 1. Sample new "dataset"  $X_1^*, \ldots, X_m^*$  uniformly from  $X_1, \ldots, X_n$  with replacement
- **2.** Compute estimate  $\hat{\theta}_m(X_1^*, \dots, X_m^*)$
- 2. Repeat B times to get set of estimators  $\hat{\theta}_{m,1}, \hat{\theta}_{m,2}, \dots, \hat{\theta}_{m,B}$
- 3. Compute sample mean and sample variance of estimators,

$$\bar{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_{m,b} \qquad \qquad \sigma_{\text{boot}}^2 = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta}_{m,b} - \bar{\theta}_{\text{boot}})^2$$

**3. 95% Confidence Interval:**  $\bar{\theta}_{\text{boot}} \pm 2\sigma_{\text{boot}}$ 

#### Assumes Normally-distributed estimates $\hat{\theta}_m$ .

### Bootstrap Example

**Example** Suppose we have LSAT scores and GPA for 15 law students and wish to estimate the correlation between LSAT and GPA:

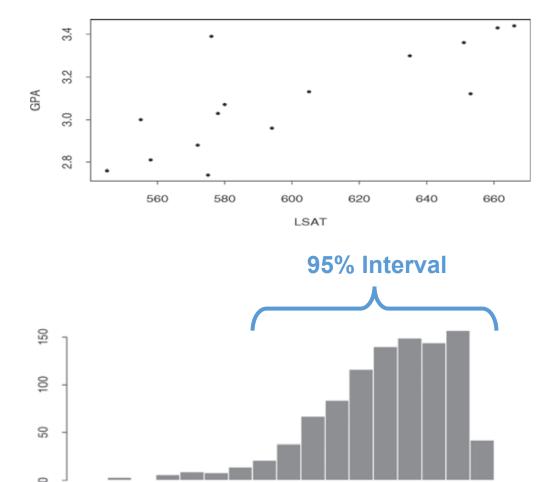
| LSAT | 576  | 635  | 558  | 578  | 666  | 580  | 555  | 661  |
|------|------|------|------|------|------|------|------|------|
|      | 651  | 605  | 653  | 575  | 545  | 572  | 594  |      |
|      |      |      |      |      |      |      |      |      |
| GPA  | 3.39 | 3.30 | 2.81 | 3.03 | 3.44 | 3.07 | 3.00 | 3.43 |
|      | 3.36 | 3.13 | 3.12 | 2.74 | 2.76 | 2.88 | 3.96 |      |

95% Bootstrap confidence interval from B=1000 estimates of the **correlation**,

 $.78 \pm .274 \Rightarrow (.51, 1.00)$ 

**Q** Should we trust this confidence interval? Why or why not?

[Source: Wasserman, L. 2004]



0.8

1.0

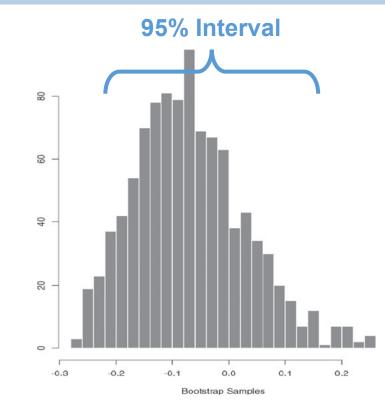
0.2

0.4

## **Bootstrap Example**

Eight subjects who used medical patches to infuse a hormone into the blood using three treatments: placebo, old-patch, new-patch

| subject | placebo | old   | new   | old - placebo | new - old |
|---------|---------|-------|-------|---------------|-----------|
| 1       | 9243    | 17649 | 16449 | 8406          | -1200     |
| 2       | 9671    | 12013 | 14614 | 2342          | 2601      |
| 3       | 11792   | 19979 | 17274 | 8187          | -2705     |
| 4       | 13357   | 21816 | 23798 | 8459          | 1982      |
| 5       | 9055    | 13850 | 12560 | 4795          | -1290     |
| 6       | 6290    | 9806  | 10157 | 3516          | 351       |
| 7       | 12412   | 17208 | 16570 | 4796          | -638      |
| 8       | 18806   | 29044 | 26325 | 10238         | -2719     |



Estimate whether relative efficacy is the same under new drug,

$$\theta = \frac{\mathbf{E}[\text{new} - \text{old}]}{\mathbf{E}[\text{old} - \text{placebo}]}$$

**Bootstrap** B=1,000 samples yields 95% confidence interval,

 $\theta \in (-0.24, 0.15)$ 

**Q** Is this more trustworthy than in previous example?

- Parameter Estimation
  - Method of Moments
  - Maximum Likelihood Estimation
- Confidence Intervals
  - Overview
  - Bootstrap confidence intervals
- Estimator Properties
  - Estimator Bias / Mean Squared Error
  - Law of Large Numbers / Central Limit Theorem

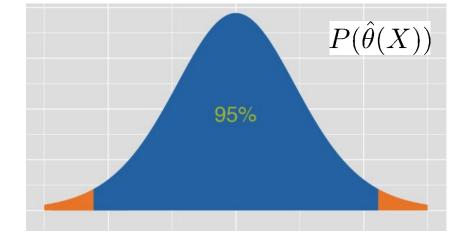
# **Estimator Mean**

An estimator  $\hat{\theta}(X)$  is a RV so we can compute its moments

**Example** Let  $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$ and estimate  $\hat{p}$  be the sample mean,

$$\hat{p} = \frac{1}{N} \sum_{i} X_i$$

**Question** What is the expected value of  $\hat{p}$ ?



$$\mathbf{E}[\hat{p}(X)] = \mathbf{E}\left[\frac{1}{N}\sum_{i}X_{i}\right] \stackrel{(a)}{=} \frac{1}{N}\sum_{i}\mathbf{E}\left[X_{i}\right] \stackrel{(b)}{=} \frac{1}{N}Np = p$$

(a) Linearity of Expectation Operator

(b) Mean of Bernoulli RV = p

**Conclusion** On average  $\hat{p} = p$  (it is unbiased)

## **Unbiased Estimator**

**Definition** Estimator  $\hat{\theta}(X)$  is an **unbiased estimator** of  $\theta$  if,  $\mathbf{E}[\hat{\theta}(X)] = \theta$ 

**Ex.** Let  $X_1, \ldots, X_N$  be drawn (iid) from any distribution with  $Var(X) = \sigma^2$  and,

$$\hat{\mu} = \frac{1}{N} \sum_{i} X_i \qquad \qquad \hat{\sigma}^2 = \frac{1}{N} \sum_{i} (X_i - \hat{\mu})^2$$

Then the sample variance is a **biased estimator**,

Source of bias: plug-in mean estimate

$$\mathbf{E}[\hat{\sigma}^2] = \frac{1}{N} \sum_{i} \mathbf{E}\left[ (X_i - \hat{\mu})^2 \right] = \text{boring algebra} = \frac{N - 1}{N} \sigma^2$$

Correcting bias yields unbiased variance estimator:

$$\hat{v} = \frac{N}{N-1}\hat{\sigma}^2 = \frac{1}{N-1}\sum_{i}(X_i - \hat{\mu})^2$$

## **Estimator Variance**

**Example** Let  $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$  and estimate  $\hat{p}$  be the sample mean. Calculate the variance of  $\hat{p}$ :

$$\mathbf{Var}(\hat{p}) = \mathbf{Var}\left(\frac{1}{N}\sum_{i}X_{i}\right) \stackrel{(a)}{=} \frac{1}{N^{2}}\mathbf{Var}\left(\sum_{i}X_{i}\right) \stackrel{(b)}{=} \frac{1}{N^{2}}\sum_{i}\mathbf{Var}\left(X_{i}\right)$$
$$\stackrel{(c)}{=} \frac{1}{N^{2}}\sum_{i}p(1-p) = \frac{1}{N}p(1-p) = \frac{1}{N}\mathbf{Var}(X)$$

(a)  $Var(cX) = c^2 Var(X)$  (b) Independent RVs (c) Var(X) = p(1-p) for Bernoulli

In General Variance of sample mean  $\bar{X}$  for RV with variance  $\sigma^2$ ,

STDEV of sample mean decreases as  $\sqrt{N}$ 

$$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{N}$$

Decreases linearly with number of samples N

## **Bias-Variance Tradeoff**

Is an unbiased estimator "better" than a biased one? It depends...

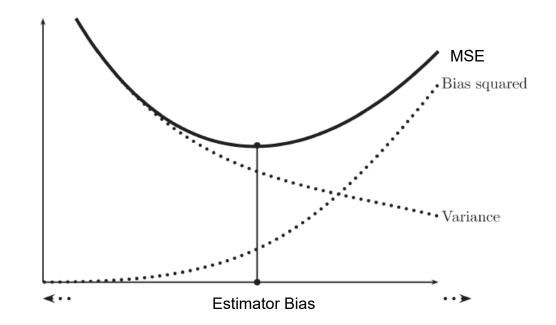
Evaluate the quality of estimate  $\hat{\theta}$  using **mean squared error**,

$$MSE(\hat{\theta}) = \mathbf{E}\left[(\hat{\theta} - \theta)^2\right] = bias^2(\hat{\theta}) + \mathbf{Var}(\hat{\theta})$$

• MSE for unbiased estimators is just,  

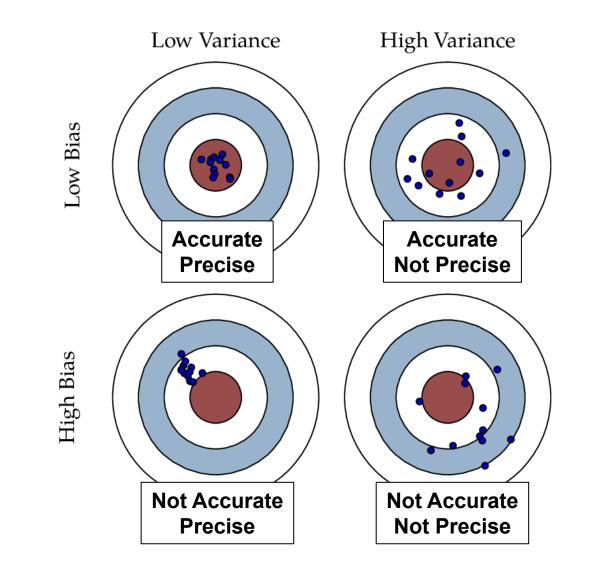
$$MSE(\hat{\theta}) = \mathbf{Var}(\hat{\theta})$$

- Bias-variance is fundamental tradeoff in statistical estimation
- MSE increases as **square** of bias
- Estimators with small bias (but low variance) can have lower MSE than unbiased estimators



### **Bias-Variance Tradeoff**

Suppose an archer takes multiple shots at a target...



## **Bias-Variance Decomposition**

$$\begin{split} \text{MSE}(\hat{\theta}) &= \mathbf{E} \left[ (\hat{\theta}(X) - \theta)^2 \right] \\ &= \mathbf{E} \left[ \left( \hat{\theta} - \mathbf{E}[\hat{\theta}] + \mathbf{E}[\hat{\theta}] - \theta \right)^2 \right] \\ &= \mathbf{E}[(\hat{\theta} - \mathbf{E}[\hat{\theta}])^2] + 2(\mathbf{E}[\hat{\theta}] - \theta)\mathbf{E}[\hat{\theta} - \mathbf{E}[\hat{\theta}]] + \mathbf{E}[(\hat{\theta} - \theta)^2] \\ &= \left( \mathbf{E}[\hat{\theta}] - \theta \right)^2 + \mathbf{E}[(\hat{\theta} - \mathbf{E}[\hat{\theta}])^2] \\ &= \text{bias}^2(\hat{\theta}) + \text{Var}(\hat{\theta}) \end{split}$$

# Law of Large Numbers (LLN)

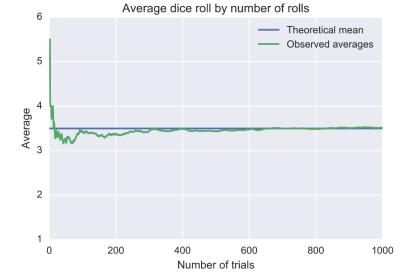
We now know the **sample mean** is an unbiased estimator, namely:

$$\mathbf{E}[\bar{X}_N] = \frac{1}{N} \sum_i \mathbf{E}[X_i] = \mathbf{E}[X]$$

But, expected value is not always high probability. Will we achieve the true mean?

$$\lim_{N \to \infty} \bar{X}_N \to \mathbf{E}[X]$$

Yes, with high probability



- This is the law of large numbers
  Weak Law: Converges to mean with high probability
  - Strong Law: Stronger notion of convergence (if variance is finite)

But what is the distribution of  $\bar{X}_N$ ?

# Central Limit Theorem (CLT)

Let  $X_1, \ldots, X_N$  be iid with mean  $\mu$  and variance  $\sigma^2$  then  $\bar{X}_N$  approaches a Normal distribution with mean  $\mu$  and variance  $\frac{\sigma^2}{N}$ 

$$\lim_{N \to \infty} \bar{X}_N \to \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right)$$

Alternatively written as,

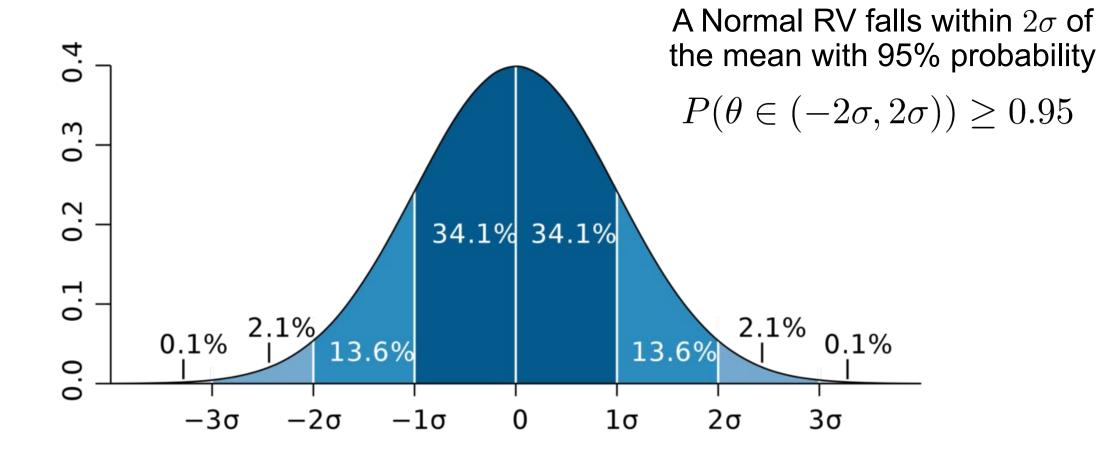
$$\lim_{N \to \infty} \frac{\sqrt{N}}{\sigma} (\bar{X}_N - \mu) \to \mathcal{N}(0, 1)$$

#### Comments

- LLN says estimates  $\bar{X}_N$  "pile up" near true mean, CLT says how they pile up
- Pretty remarkable since we make no assumption about how X<sub>i</sub> are distributed
- Variance of  $X_i$  must be finite, i.e.  $\sigma^2 < \infty$

## Confidence Intervals of the Normal Distribution

CLT is why we often derive confidence intervals from Normal



CLT says sample mean approaches normal in the infinite limit only!

# **Classical Statistics Review**

- Statistical Estimation infers unknown parameters  $\theta$  of a distribution  $p(X; \theta)$  from observed data  $X_1, \ldots, X_n$
- There are **many** estimators  $\hat{\theta}$ , we have seen 3: Method of Moments, Maximum Likelihood, Sample Average (sometimes equivalent)
- An estimator is a function of the data  $\hat{\theta}(X_1, \dots, X_n)$ , it is a **random variable**, so it has a distribution
- Confidence Intervals measure uncertainty of an estimator, e.g.

 $P(\theta \in (a(X), b(X))) \ge 0.95$ 

• **Bootstrap** A simple method for estimating confidence intervals

Caution

- Confidence intervals are often misinterpreted!
- Bootstrap confidence intervals we have seen assume normal distribution

# **Classical Statistics Review**

- Estimator bias describes systematic error of an estimator
- Mean squared error (MSE) measures estimator quality / efficiency,

$$MSE(\hat{\theta}) = \mathbf{E}\left[(\hat{\theta} - \theta)^2\right] = bias^2(\hat{\theta}) + Var(\hat{\theta})$$

- Law of Large Numbers (LLN) guarantees that sample mean approaches (piles up near) true mean in the limit of infinite data
- Central Limit Theorem (CLT) says sample mean approaches a Normal distribution with enough data.
- LLN and CLT are asymptotic statements and do not hold for finite data