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OUTPUT: Y

Linear Regression

Regression Learn a function that
predicts outputs from inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlz+b

| |
0 1

INPUT: X

SR We will add noise later...



Linear Regression

Where is linear regression useful?
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Stock Prediction Climate Models

Trendlines
Massie and Rose (1997)

Used anywhere a linear relationship is assumed
between continuous inputs / outputs



Line Equation

Recall the equation for a line has a
slope and an intercept,

(\{)4% y:w.x_l_b

/]

Slope Intercept

Intercept (b) indicates where line crosses y-axis

/]

Slope controls angle of line

Positive slope (w) = Line goes up left-to-right

Negative slope = Line goes down left-to-right




Moving to higher dimensions...

In higher dimensions Line = Plane

Multiple ways to define a plane, we

will use:
T _
/n (p—p1) =0
Normal Vector In-Plane Vector
(controls orientation) (handles offset)

Regression weights will take place
of normal vector

Source:; http://www.songho.ca/math/plane/plane.html



http://www.songho.ca/math/plane/plane.html

Inner Products

Recall the definition of an inner product:

T
W r=wiT1 +WoTo + ... +WpHIpP

D
= E WA
d=1

Equivalently, projection of one vector onto another,

w!z = |w||z|cos where 2| = />, 22

Vector Norm




Linear Regression

For D-dimensional input vector =z € R” the
plane equation,

y=wlx+b

Often we simplify this by including the intercept
into the weight vector,

(o) [ o)

v ) U

[ Image: Murphy, K. (2012) ]




Linear Regression

Input-output mapping is not exact, so we will add
zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y=w'z+e where ¢~ N(0,0%])

TPUT: Y

ou

This is equivalent to the likelihood function,

p(y | ’U},SC) :N(y ‘ /wT:EaO-QI) - _;NPlOJT:)1( |

Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m, P) z4+c~N(m+c,P)

In the case of linear regressionz — ¢ and ¢ — w!l z



Great, we’re done right?

Data — We have this

We need to fit it to
data by learning the l

regression weights T Random: Can’t do
y —w X _I_ € < anything about it

I

Don’t know these;
need to learn them

low to do this?
What makes good
weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...
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They are all the same thing...



Fitting Linear Regression

@ Actual response, ¥, I =g F' d I' h .
B Prodiied fesponse, )= e Kbrx ¢ % o ntuition Find a line that Is as
01 — Estimated regression line, f(x)=bg + b1x

close as possible to every
training data point

= = Residual, y;—f(x;)

?
|
|

4 ' ' The distance from each point
N to the line is the residual
=« © y Y — wfz:{

Training Output Prediction

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/
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Least Squares Solution

@ Actual response, ¥,
B Predicted response, f(x;) = bg + by

01 — Estimated regression line, f(x)=bg + b1x

= = Residual, y;—f(x;)

?
|
|

-3 - ®
-4 -
-5 -
]

8]
-6 -

o

0 2 4 8 10

Functional Find a line that
minimizes the sum of
squared residuals

Over training all the data,
{(2i,9i)}i

Least squares regression

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Least Squares

mmz —w! x;)’

This is just a quadratic functlon...
« Convex, unigue minimum

* Minimum given by zero-derivative
* Can find a closed-form solution

Let's see for scalar case with no bias,

Y = W




Least Squares : Simple Case

d
T Z(yz —wz;)® =

Derivative (+ chain rule) — E 2

— wx;)(

Ii):0:>

Distributive Property 0 = E yzxz — W E :ZU?
1=1 71=1

Z yzwz

J:UJ

Algebra w —



Least Squares in Higher Dimensions

Things are a bit more complicated in higher [ Image: Murphy, K. (2012) ]
dimensions and involve more linear algebra, | e

/ 1 L11 1D \ 11 17 -
1 o1 . 2D 1654
X — y — 16
\ 1 zn1 ... ZTnD ) YN L e
Design Matrix Vector of
( each training input on a column) Training labels

Can write regression over all training data more compactly...

Y — Xw <+«—— Nx1 Vector



Least Squares in Higher Dimensions

Least squares can also be written more [ Image: Murphy, K. (2012) ]
compacitly, | =

N ST
min Y (s — 0o = |y — X2
1=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~T Derivation a bit advanced for this class, but...
W = (X X) X Yy « We know it has a closed-form and why

 We can evaluate it
» Generally know where it comes from

Ordinary Least Squares (OLS) solution



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Learning Linear Regression Models

There are several ways to think about fitting regression:

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



MLE for Linear Regression

Given training data {(z;,v;)},, likelihood function
IS given by,

N N
log | [ p(yi | zi,w) =) logp(y; | 4, w)
1=1 1=1

TPUT: Y

ou

Recall that the likelihood is Gaussian:
p(y | w,z) =N(y | w'z,o°I)

INPUT: X

So MLE maximizes the log-likelihood over the whole data as,

N
wMHE = arg max Z log N (y; | w! i, o°1)
i=1



Univariate Gaussian (Normal) Distribution

Gaussian (a.k.a. Normal) distribution with

mean (location) i and variance (scale) ¢
parameters, é
2 1 1 2 2 0.
N(z | p,0%) = exp—=(x—pu)°/o
2702 2

The logarithm of the PDF if just a negative Tl
quadratic,
log N (z | p,0°) = —11 21 — log o — i(.51:— )2
gN(z | p,0%) =~ log2m —logo — o— we ) o\
\ J \ J / Log-PDF
Y Y 1073 e 3 2 o1 2 3 AN

Constant in mean Quadratic Function of mean



Notation

Likelihood of linear basic regression model...

p(y | w,z) =Ny | wz,0”)

v

p(y | ) =Ny |p o)

...we will just look at learning mean parameter for now



MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,

|—> Variance is known
y | /vL HN Y | fy O )

Log-likelihood function:

Z]og (\/%70 exp (_%(y@. _ N)202)>

Constant doesn’t N

depend on mean _ I o 1 N2 2
= const. 5 Zl ((y; — p)?o™?)

MLE doesn’t change when we:
1) Drop constant terms (in )

MLE estimate is least squares estimator. 2) Minimize negative log-likelihood

1
MLE _ )2 : _
Lt =538 max ZEI (y: — 1) arg min ;_1 (y



MLE of Linear Regression

® Actual response, y;
B Predicted response, f(x;) = bg + by

01 — Estimated regression line, f(x)=bg + b1x

= = Residual, y;—f(x;)

?
|
|

-3 - ®
-4 -
-5 -
]

8]
-6 -

@

0 2 4 6 8 10

Substitute linear regression
prediction into MLE solution
and we have,

N
min Y (y; — wx;)*
i=1
So for Linear Regression,

MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Multivariate Gaussian Distribution

We have only seen scalar (1-dimensional) X, but MLE is still least
squares for higher-dimensional X...

Let X € R¢ with mean i € R¢ and positive semidefinite covariance
matrix X € R%*¢ then the PDF is,

_ 1 _
N(z| 1, %) = 2787 exp —(z — )" 87 (z — )

Again, the logarithm is a negative quadratic form,

log 25| — 2 (x — )5 (& — )
\ ] \ J
Y Y

Constant (in mean) Quadratic Function of mean




Multivariate Quadratic Form

Quadratic form for vectors is
given by inner product,

+ 40

|
/l 30
' | P
\ |
o % 52— 1) (Y —n)
BT < . For iid data MLE of Gaussian
MR mean is once-again least
te squares,
« Strongly convex N
- Differentiable min > (v — 1)
1=1

* Unique optimizer at zero gradient



Notation

Substitute multi-dimensional linear regression...

p(y | p) =Ny | p o)

v

p(y | w,z) =N(y | wz,0°1)

...brings us back to the least squares solution



MLE of Linear Regression

Using previous results, MLE is equivalent to [ Image: Murphy, K. (2012) ]
minimizing squared residuals, | =5

N ST
minY " (4 — wlai)® = |y — wT X
1=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~T Derivation a bit advanced for this class, but...
W = (X X) X Yy « We know it has a closed-form and why

 We can evaluate it
» Generally know where it comes from

Ordinary Least Squares (OLS) solution



Linear Regression Summary

1. Definition of linear regression model,
y=w'z+¢c where ¢~ N(0,0%])

2. For N iid training data fit using least squares,

N
wO = argmin g (y; — w' x;)*

w
1=1

3. Equivalent to maximum likelihood solution



Linear Regression Summary

Ordinary least squares solution
N

wO = arg min Z:(y2 —w' z;)?

w
1=1

Is solved in closed-form using the Normal equations,

X —

/} in -3;117\ "
. ?1 2.D y( 3 ) wOLS — (XTX)_ley

YN

\ 1 2w ... awp )

Design Matrix Vector of QU ESTIONS?

( each training input on a column ) Training labels



A word on matrix inverses...

,wOLS _ (XTX)—ley
Least squares solution requires inversion of the term,
(X X))~ !
What are some issues with this?

1. Requires O(D?) time for D input features

2. May be numerically unstable (or even non-invertible)

1 . .
(.I’ _|_ E) 1 — — Small numerical errors in input

T _I_ € can lead to large errors in solution




Pseudoinverse
wOLS _ (XTX)_ley
The Moore-Penrose pseudoinverse is denoted,
X =x'x)"'x*

» Generalization of the standard matrix inverse
 Exists even for non-invertible XX

* Directly computable in most libraries

*In Numpy itis: 1inalg.pinv



Linear Regression in Scikit-Learn

_ _ For Evaluation
Load your libraries,

import matplotlib.pyplot as plt .
import numpy as np

from sklearn import datasets, linear model
from sklearn.metrics import mean squared error, r2 score

| oad data,

# load the diabetes dataset

diabetes X, diabetes y = datasets.load diabetes(return_X y=True) Samples total 442

Dimensionality 10

# Use only one feature Features reaL -2 <x< .2
diabetes X = diabetes X[:, np.newaxis, 2] Targets Integer 25 - 346
Tra|n / Test Spllt diabetes X train = diabetes X[:-20] diabetes y train = diabetes y[:-20]

diabetes X test = diabetes X[-20:] diabetes y test = diabetes y[-20:]



Linear Regression in Scikit-Learn

.ﬁewm

Train (fit) and predict,

# Create Llinear regression object
regr = linear model.linearRegression()

# Train the model using the training sets
regr.fit(diabetes X train, diabetes y train)

# Make predictions using the testing set
diabetes y pred = regr.predict(diabetes X test)

Coefficients:
[938.23786125]

Plot regression line with the test set, Mean squared error: 25487 y

Coefficient of determination: @_47

# Plot outputs
plt.scatter(diabetes X test, diabetes y test, color="black")
plt.plot(diabetes X test, diabetes y pred, color="blue"”, linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()
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Outliers

How does an outlier affect the estimator?

Squared Error




Outliers

How does an outlier affect the estimator?

Squared Error




Outliers in Linear Regression

Outlier “pulls”
regression line away
from inlier data

Need a way to ignore or
to down-weight impact
of outlier

https://www.jmp.com/en us/statistics-knowledge-portal/what-is-multiple-regression/mir-residual-analysis-and-outliers.html



https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html

Dealing with Outliers

Too many outliers can indicate many things: non-Gaussian
(heavy-tailed) data, corrupt data, bad data collection, ...

A few ways to handle outliers...

1. Use a heavy-tailed noise distribution (Student's T)
Fitting regression becomes difficult
2. ldentify outliers and discard them

NP-Hard and throwing away data is generally bad

3. Penalize large weights to avoid overfitting (Regularization)



Regularization

Recall, reqularization helps avoid overfitting training data. ..

Model = min Loss(Model, Data) 4+ A - Regularizer(Model)

AN

97 1~ Regularization Regularization Penalty
| Strength

Red model is without regularization

Green model includes regularization




Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

Already know how = arg mln E w 337,
solve this...

L2-regularized Least-Squares (Ridge) Quadratic Penalty
N .
,wL2 — arg min Z(yz — W 3773)2 §||QUH2

w
1=1

L1-regularized Least-Squares (LASSQ) Absolute Value (L1) Penalty

—argmmz —whz)? + Nuw|



A word on vector norms...

The L2-norm (Euclidean norm) of a vector w is,

D

D
lw|| = Vw'w = \ > wi Jwl* = ) w
d=1

d=1

The L1-norm (absolute value) of a vector w is,

They are not the same functions...



Other Regularization Terms

H_ ' ] I
q=05 =1 0=2 =

g<1 is not a norm, L1 is non-

) ) L2 Regularization
and thus not convex differentiable

A more general regularization penalty,
1 & A
A _— 3 . — 2 —
0 = arg min E (ys — 0)° + > 6|1

1=1



Administrative ltems

« HWY7 out Thursday (Due next Thursday)
 HWG6 due tonight

* Also, | saw this ad...

Data Scientist: The Dirtiest Job of the 21st Century
40% vacuum, 40% janitor, 20% fortune-teller.

towardsdatascience.com




Regularized Least Squares

A couple regularizers are so common they have specific names

L2 Regularized Linear Regression
* Ridge Regression
 Tikhonov Regularization

L1 Regularized Linear Regression

* LASSO
» Stands for: Least Absolute Shrinkage and Selection Operator



L2 Regularized Least Squares

Quadratic
N g\J\
wL2 _ arg mru%n Z(y% L wTQCZ)Q _|_ 5 HwH2 ; Sum ofsqL?areserrorcontours forlinear!regression
Y ol _,,//
Quadratic : :
Quadratic + Quadratic = Quadratic ,, |« |
- Differentiable
e Convex R : |
« Unique optimum - I

e Closed form solution Wo



L2 Reqgularized Least Squares : Simple Case

N
d 1 ( 2 Ad o,
—— , — WX, | w =
dw 2 “ Yi ’ 2 dw
1=1
Derivative (+ chain rule) p— Z QUZE'/L xz) —|— )\’LU — 0 —>
Distributive Property 0= Z Yy — W Z CC? — AW
Algebra w =

)\—|—ij?



L2 Regularized Linear Regression — Ridge Regression

N

w™? = arg min Z(y,,, —wh ;) +

w
1=1

After some algebra...
wh? = (A 4+ XTX)"1 X!y

Compare to ordinary least squares:

’LUOLS _ (XTX)_IXTY

Regularized least-squares includes
pseudocount in weighting similar to
Gaussian mean estimator

Source: Kevin Murphy’s Textbook

|w]?

A
2

Sum of squares error contours for linear regression




Notes on L2 Regularization

* Feature weights are “shrunk” towards zero (and each other) —
statisticians often call this a “shrinkage” method

- Typically do not penalize bias (y-intercept, w,) parameter,

mmg —whx; — wp) +)\E w3
d=1

* Penalizing w, would make solution depend on origin for Y — adding a
constant c to Y would not add a constant to solution weights

- Can fit bias in a two-step procedure, by centering features z;; — z
then bias estimate is wy = ¢

« Solutions are not invariant to scaling, so typically we standardize (e.qg.
Z-score) features before fitting model ( Sklearn StandardScaler )



Scikit-Learn : L2 Regularized Regression

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize="deprecated', copy_X=True, max_iter=None, tol=0.001,

solver="auto’, positive=False, random_state=None) 1 [source]

alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and

reduces the variance of the estimates. Larger values specify stronger reqularization. Alpha corresponds to 1 /
(2C) in other linear models such as LogisticRegression or Linearsvc. If an array is passed, penalties are

assumed to be specific to the targets. Hence they must correspond in number.

Alpha is what we have been calling )\



Scikit-Learn : L2 Regularized Regression

Define and fit OLS and L2 regression,

2001 — oq1s

175 { — 12
ols=linear model.LinearRegression/() 150 -
ols.fit (X train, y train)
ridge=linear model.Ridge (alpha=0.1) 125 1
ridge.fit (X train, y train) 100 -

0.75 A
Plot results,

0.25 -

0.00 1

fig, ax = plt.subplots()

ax.scatter (X train, y train, s=50, c="black", marker="o") 000 025 050 0/ 100 12 150 175 200
ax.plot (X test, ols.predictix_test}, color="red", label="QOLS")
ax.plot (X test, ridge.predict(X test), color="blue", label="L2")

plt.legend/()
plt.show ()

L2 (Ridge) reduces impact of any single data point



Prediction Error

Choosing Regularization Strength

We need to tune regularization strength to avoid over/under fitting...

A

_argmmz —wla, 2—|—§||wa2

High Bias
Low Variance

Model Complexity

Recall bias/variance tradeoff
Error = Irreducible error + Bias? + Variance

High regularization reduces model
complexity: increases bias / decreases
variance

How should we properly tune \?



Cross-Validation

| | | I | run 1 N-fold Cross Validation Partition training

data into N “chunks” and for each run
I | | I I run 2 select one chunk to be validation data
I | | I I run 3
For each run, fit to training data (N-1
I | | I I run 4
chunks) and measure accuracy on
validation set. Average model error
across all runs.

Drawback Need to perform training N times.

Source: Bishop, C. PRML



Model Selection for Linear Regression

A couple of common metrics for model selection...

Residual Sum-of-squared Errors The total squared residual
error on the held-out validation set,
N

RSS = Z(yZ — wTa:Z-)Q

1=1

Coefficient of Determination Also called R-squared or R2.
Fraction of variation explained by the model.

Model selection metrics are known as “goodness of fit” measures



Coefficient of Determination R?

Predic‘te/d Variance Residual Sum-of-Squares
N T 2
R2_ 1 R5SS | D im1(Yi —w” ;)
/,SS xi—l(yi — y)
Total variance /
in dataset Variance using avg. prediction

1
Where: ¥ = = Zyz Is the average output



Coefficient of Determination R?

RSS y}f\il(yz — ”LUT%)Q
S5O xff\l1(yz — 3/_)2

Maximum value R?=1.0 means
model explains all variation in the

data =
5
O o
Maximum value R?=0 means modelis &
as good as predicting average S o
response g
S -
o : |
R2<0 means model worse than 10 05 00 05 10 15 20

pred |Ct| ng ave rage Output Quarterly change in the unemployment rate  (A%)



“Shrinkage” Feature Selection

Down-weight features that are not useful for prediction...

Quadratic penalty \||w||* down-weights
(shrinks) features that are not useful for
prediction

Term LS  Ridge
Intercept  2.465 5150 Example Pro_szfate Cancer l_)atasez_‘ measures
leavol  0.680 0.490 prostate-specific cancer antlg_en with featu_res:
lweight 0263  0.238 age, log-prostate V\_/elght (Iweight), log-benign
o ~ prostate hyperplasia (Ibph), Gleason score
135; _gilé _g?ég (gleason), seminal vesical invasion (svi), etc.
—svi, _ 0305  _Q.227_
| lcp —0.288  0.000 ,— L2 regularization learns zero-weight
gleason —0.021 =~ 0.040 for log capsular penetration (Icp)
pggdb  0.267 0.133

[ Source: Hastie et al. (2001) ]



Constrained Optimization Perspective

mm § : —w' ) Intuition Find best model (lowest
_— RSS) given constraint on total
s ..' .
Squared Error o~ feature weights...
//// [/ /
,/////; // // : .
Total Weiaht wat S e S There exists a mathematically
otal Weig T/ 4 val f lation
7 equivalent formulation for some

/ / | /
/ / | - /
/ | Vs
Norm /S
/
/

/7 function §(\
lw|* =6(\) |~ )

\ > Optimal Model
L2 penalized regression rarely
w1y learns feature weight that are

exactly zero...

[ Source: Hastie et al. (2001) ]



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

— arg mm E —w?t LUZ

Quadratic Penalty

R /
A
w? = arg min Z(yf,, — W 3773)2 §||wH2

w
1=1

L1-regularized Least-Squares (LASSQ) Absolute Value (L1) Penalty

L2-regularized Least-Squares (Ridge)

—argmmz —whz)? + Nuw|



Optimal Model

Learns w, = 0

L1 Regularized Least-Squares

min E (1
w
B /,/ ,.'l /
// /_,—-""'_ -—-\I

)/ Squared

—whx)?

. /
| ! |
g Yy s /
/) vl Y,
/ S/ /) s
® /S // [ /) N S S
// e /z/ {(( y w // // //
7 wo | S/ %
,,;’: e // / ,-/ // e /
s | / | \_ /;/ e
/ .,".l | ,d/ ~
II,-"J \ B ____,--’/ P //
w| = 0(A\
| 7
\ 7
\_ )

Able to zero-out weights that are not predictive...



0.6

0.4

0.2

0.0

-0.2

Feature Weight Profiles

0.0 0.2 04 0.6 0.8 1.0

Shrinkage Factor s

Varying regularization
parameter moderates
shrinkage factor

For moderate regularization
strength weights for many
features go to zero

* Induces feature sparsity
* |deal for high-dimensional settings

» Gracefully handles p>N case, for p
features and N training data



Coefficients

Feature Weight Profiles

L1 Penalty

Icavol

Svi
Iweight
pgg4s

Ibph

age

\ \ | |
0.0 0.2 04 0.6

Shrinkage Factor s

Coefficients

0.6

0.4

L2 Penalty

lcavol

.+ SVi
s aea= IWeight
hﬂ»_j‘;i-'r-’“‘ pgg4s




Learning L1 Regularized Least-Squares

—argmmz —wha;)? + Aw

Not differentiable...

v il

...doesn’t exist at x=0

! Can’t set derivatives to zero as
In the L2 case!




Learning L1 Regularized Least-Squares

* Not differentiable, no closed-form solution

« Butitis convex! Can be solved by quadratic programming
(beyond the scope of this class...)

 Efficient optimization algorithms exist

» [Least Angle Regression (LAR) computes full solution path for
a range of values A

« Can be solved as efficiently as L2 regression



sklearn.linear model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, * fit_intercept=True, normalize="deprecated', precompute=False, copy X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection="cyclic’) 1 [source]

Parameters: alpha : float, default=1.0
Constant that multiplies the L1 term. Defaults to 1.0. alpha = @ is equivalent to an ordinary least square,
solved by the LinearRegression Object. For numerical reasons, using alpha = @ with the Lasso object is not
advised. Given this, you should use the LinearRegression object.

fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e.
data is expected to be centered).

precompute : ‘auto’, bool or array-like of shape (n_features, n_features), precompute
Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as
argument. For sparse input this option is always False to preserve sparsity.

copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.



Specialized methods for cross-validation...

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize="deprecated',
precompute="auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False,

random_state=None, selection="cyclic") [source]

Computes solution using coordinate descent

sklearn.linear_model.LassolarsCV

class sklearn.linear_model.LassolarsCV(*, fit_intercept=True, verbose=False, max_iter=500, normalize="deprecated",
precompute="auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False) 1

[source]

Uses least angle regression (LARS) to compute solution path



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

model = LassoCV(cv=20).fit(X, y) or model = LassolarsCV(cv=20, normalize=False).fit(X, y)

Mean square error on each fold: coordinate descent (train time: 0.38s)

3800 r .
" & |
Plot solution path for range of alphas,
1 1
I
1
plt.figure() 3400 E
ymin, ymax = 2300, 3800 5 E
plt.semilogx(model.alphas + EPSILON, model.mse path , ":™) o sl I———— i,
- R '
plt.plot( 2 3000 | —— o
model.alphas_ + EPSILON, All alphas— 5 i
model.mse path .mean(axis=-1), =28001 i E
. ] el ST
k » 2600 4  crererersnnpzzize ’: ______
label="Average across the folds", oo,
-— Average across the folds
linewidth=2, 24001 —-- alpha: CV estimate
) 16—2 16—1 160
plt.axvline( a
model.alpha + EPSILON, linestyle="--", color="k", label="alpha: CV estimate”
) —
({Pg L)

— Learned alpha_ (no “s”... annoying...)



Example: Prostate Cancer Dataset

Best LASSO model learns to

Term .S Ridege Lasso ignore several features (age, Icp,
Intercept 2.465  2.452  2.468 gleason, pgg45).
lcavol 0.680 0.420 0.533
dweight = _0.263 _0.238 = _0.169 Wait...Is age really not a
. _age —0.141 0046 - gjgnificant predictor of prostate
lbph 0.210 ~0.162° 0.002°  cancer? What's going on here?
~.osvi_ 03505 0 0.227  0.094
- lcp —0.288  0.000 . o |
-gleason —0.021  0.040 ' Age is highly correlateq W_”fh Oth_er
' pgeas 0267 0.133 I factors and thus not significant in

the presence of those factors



Administrative ltems

HW7 will be posted tonight
* Ordinary least squares regression
* Ridge regression
e Lasso
» Feature selection

Due next Thursday (11/11)
A bit more is left up to the student compared to HW5 / HW6



Best-Subset Selection

L1/ L2 shrinkage offer approximate feature selection...

The optimal strategy for p features looks at models over all possible
combinations of features,

For k in 1,..,p:
subset = Compute all subset of k-features (p-choose-k)

For kfeat in subset:
model = Train model on kfeat features
score = Evaluate model using cross-validation
Choose the model with best cross-validation score




R-Squared

Best-Subset Selection : Prostate Cancer Dataset

Each marker is the cross-val
Subset Size vs. R-squared R2 SCOl'e Of a tra|ned mOdel

- for a subset of features
T
. g S B Data have 8 features, there
s 3 I | & . are 8-choose-k subsets for
. : i . each k=1,...,8 for a total of
. | ' ; 255 models
Lot e Using 10-fold cross-val

requires 10 x 255 = 2,550
training runs!



Feature Selection: Prostate Cancer Dataset

Best subset has highest test accuracy (lowest
variance) with just 2 features

Term LS Best Subset Ridge Lasso
Intercept 2.465 2477 2.452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lep —0.288 0.000
gleason —0.021 0.040
pEgg4b 0.267 0.133
Test Error 0.521 0.492 0.492  0.479
Std Error 0.179 0.143 0.165 0.164

[ Source: Hastie et al. (2001) ]



Comparing Feature Selection Methods

TABLE 3.4. Estimators of 3; in the case of orthonormal columns of X. M and A
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (£1), and T4 denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45° line in gray shows the unrestricted estimate
for reference.

Estimator Formula
Notation Change Least Best subset (size M) '33 - ITrank( ;’J| < M)
squares weights are 3 _
rather than . Ridge Gi/(L+A)
Lasso 51g11(§J)(\33| — A+
Best Subset Ridge Lasso
1’,\ - < i - g ’
1B | G -
! (0,0) .~ 1(0,0) P (0.0)
| - .




Forward Sequential Selection

An efficient method adds the most predictive feature one-by-one

featSel = empty
featUnsel = All features

For iter in 1,..,p:
For kfeat in featUnsel:

thisFeat = featSel + kfeat
model = Train model on thisFeat features
score = Evaluate model using cross-validation
featSel = featSel + best scoring feature
featUnsel = featUnsel - best scoring feature
Choose the model with best cross-validation score




Backward Sequential Selection

Backwards approach starts with all features and removes one-by-one

featSel = All features

For iter in 1,..,p:
For kfeat 1in featSel:

thisFeat = featSel - kfeat
model = Train model on thisFeat features
score = Evaluate model using cross-validation
featSel = featSel - worst scoring feature

Choose the model with best cross-validation score




MSE (w(k))

065 070 075 080 085 090 095

Comparing Feature Selection Methods

Sequential selection is greedy, but often performs well...

® Best Subset
Forward Stepwise
Backward Stepwise
Forward Stagewise

..... ..
00,0000 8000000000

= -

I I I I I
10 15 20 25 30

Subset Size k

Example Feature selection on synthetic
model with p=30 features with pairwise
correlations (0.85). True feature
weights are all zero except for 10
features, with weights drawn from
N(0,6.25).

Sequential selection with p features
takes O(p?) time, compared to
exponential time for best subset

Sequential feature selection available in Scikit-Learn under:
feature selectilion.SequentialFeatureSelector



» Linear Regression
» Least Squares Estimation
» Regularized Least Squares

» Logistic Regression



Classification as Regression

Suppose our response variables are binary y={0,1}. How can we use
linear regression ideas to solve this classification problem?

1 |:| = ':Iﬁ':ﬂ'ﬁ;'ﬁ'ﬁ'*':ﬂ:'ﬁ'::ﬁ':ﬂ':"":""—:"":"'

Purchased
[}
(=]

[}
.

- i, ., e i L

D. |:| - al S .:. s :. S : e :T: F S RETRE, * N .:. B TR, * SR *.:- B T Lo : P .

10.0 12.5 15.0 17.5 20.0 2.5 25.0 27.5
Age

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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LI 35 SUUOISE SUUUUROUSIS SIUUUOSROE SAUUUROUUON USSR SOOROUTRON: SOOI SO RO

Purchased

I IS SUUSSSUUU SUUUUUUNS SUUUSUSUS SUUURUSNS USROS M-S UOUURE USSR SN
R PSS SUSUUSUUUN SOUSUURURUU: SUSTUUROUUUNS SURSURSUIE “SUNEe VXN SO N5 P SUUOT G i U OIS S NV S

SNV SUUUS SURNUUUOS SUSSRRUUOUS SUSUUUSRUUNE SONURURSTE OSSO SUUOUSSRURURUTE SURTUUOUS S-S

Classification as Regression

L U SRS SUUUROUUIES SNSUONRSORN SNSRI SO Yo SSUURON: USSR SRS OS SO

10.0 125 15.0 175 20.0
Age

225

5.0

215

Idea Fit a regression function to the

data (red). Classify points based on
whether they are above or below the
midpoint (green).

(

0 ifwlz<0.5

Class = ¢
1 ifwlz>=0.5

\

* This is a discriminant function, since it discriminates between classes
* Itis a linear function and so is a linear discriminant
* Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28



https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Multiclass Classification as Regression

Suppose we have K classes. Training outputs
for each class are a set of indicator vectors,

Y =(Y1,...,Yk)
With Y, = 1 ifclass %, e.g. Y=(0,0,...,1,0,0).

For N training inputs create NxK matrix of outputs Y and solve,

T 1 ~T W is NxK matrix of K linear
W = (X X) XY regression models, one for

each class

 Compute fitted output f(z) = [t W]’ a K-vector e
* [dentify largest component and classify as, multi-output linear

regression
C' = argmax fr(x)

k [ Image: Hastie et al. (2001) ]



Linear Probability Models

’

0 ifwlz<0.5

Class =
s 1 ifwlz >=0.5

\

Binary Classification Linear model approximates
probability of class assignment,

T

15=E Dsﬁg?uzzszscz?s y(aj) — T~ p(CIaSS _ 1‘w’ IE)

Multiclass Classification Multiple decision boundaries,
each approximated by the class-specific linear model,

fk(a:) = Whi.x Where Wy.is kth row

Approximates probability of class assignment,

A

fr(x) ~ p(Class = k | x)




What's the rational?

Recall the linear regression model,

p(y | 37) — N(wT"L‘vUQ)

So linear regression models the expected value,

Ely | 2] = wla We can call this
approach least
For discrete values we have that, squares classification

Elyx | 2] = fi(x) = p(Class = k | z)

Can easily verify that they sum to 1,

Zf:l fe(z) =1

But they are not guaranteed to be positive!



Logistic Regression

Idea Distort the response variable in
some way to map to [0,1] so that it is
actually a probabillity.

B A B A ——rr it i ii i

y(z) = o(w' z)

Uses the logistic function,

I ISR RUUUUUUUORON SUUSUSRURURU SAUUUSUUOS: SONRUSUOES JUU. GHSRUUUSS SUOUSRRUUE SUSSUURURURIE RSO

exp(w” x)
1+exp(wTx)

o(wlz) =

10.0 125 15.0 17.5 200 225 250 275
Age

* Logistic function is a type of sigmoid or squashing function, since it maps any
value to the range [0,1]

 Predictor variable now actually maps to a valid probability mass function (PMF),

y(x) = o(w!z) = p(Class = 1|w, x)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Logistic Regression : Decision Boundary

Binary classification decisions are
based on the posterior odds ratio,
p(C=1]|xz)
p(C=0|z)

If this ratio is greater than 1.0 then

classify as C=1, otherwise C=0

20,
Age

In practice, we use the (natural) logarithm of the posterior odds ratio,

log 22— —w' This is a linear decision boundary
— X

Logistic regression is a linear classifier



Logistic vs. Logit Transformations

Logistic Function Logit Function
] i . e =2 ]
4
2
0.5 0
| - | 2 | I I
-6 —4 —2 0 2 4 6
Maps (—o0,o0) to [0,1] Maps [0,1] to (—o0, o)

Logistic also widely used in Neural Networks — for classification last
layer is typically just a logistic regression



Logistic vs. Logit Transformations

Logistic function maps the linear regression to the interval [0,1],

O'(IUTCC) _ eXp(”LUT.CC)
1 + exp(w!x)

Logit function is defined for probability values p in [0,1] as,

logit(p) = log -

Logit is the inverse of the logistic function, Logit is also the log-likelihood

ratio, and thus decision boundary
for our binary classifier

logit(o(w' z)) = wlx



Multiclass Logistic Regression

Classification decision based on log-ratio compared to final class,

p(C=1|x) T
1

log = Wi T
p(C =K |z
_ p(C=2]x) T
K-1 log-odds (or logit) log p(C =K |z) — Wao X

transformations ensures
probabilities sum to 1

P(C:K_l"i’?)_ T

lo
*Tp(C =K |z)

Choice of denominator class is arbitrary, but use K by convention



Least Squares vs. Logistic Regression

4

* Both models learn a linear decision boundary
 Least squares can be solved in closed-form (convex objective)
 Least squares is sensitive to outliers (need to do regularization)

[Source: Bishop “PRML”]



Least Squares vs. Logistic Regression

Similar results in 1-dimension

Purchased

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28



https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Least Squares vs. Logistic Regression

Least Squares Logistic Regression

[l

[Source: Bishop “PRML”]



Fitting Logistic Regression
Fit by maximum likelihood—start with the binary case

Posterior probability of class assignment is Bernoulli,
ply |z, w)=ply=1|z,w)?(1—-ply=1]|=zw))t"¥

Given N iid training data pairs the log-likelihood function is,

Zlogp Yi | i, w

= Z {yslogp(ys = 1| @i, w) + (1 —ys)logp(ys = 0 | 24, w)}

— Z {yinfL’,,; — log (1 —- ewT‘“) }



Fitting Logistic Regression

wMHE = arg max Z {yinxi — log (1 + emei) }

Computing the derivatives with respect to each element w,,

’LUTiEi
Tai | Y = (
3wd Z i\ Y 1 + ew' T

* For D features this gives us D equations and D unknowns

« But equations are nonlinear and can’t be solved

* Need to use gradient-based optimization to solve (Newton’s method)
« Beyond scope of this class; but know that it is an iterative process




Iteratively Reweighted Least Squares

* Given some estimate of the weights w°!d update by solving,

W = (XTWX) !XT Wz

Y Y

Design Matrix NxN Diagonal
(NxD) Weight matrix
Where z is the gradient direction, P(y=1|) for each

training point

z = Xuw'd + Wy — p‘)/

« Essentially solving a reweighted version of least squares,

OLS T —1~T Each iteration changes W
w - (X X) X Yy and p so need to resolve



sklearn.linear_model.LOgisticRegression

class sklearn.linear_model.LogisticRegression(penalty="[2", *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver="lbfgs', max_iter=100, multi_class="auto', verbose=0, warm_start=False,
n_jobs=None, [1_ratio=None) 1 [source]

penalty : {[1°, °[2°, ‘elasticnet’, ‘'none’}, default="12’
Specify the norm of the penalty:

e ‘none':no penalty is added;
e '12':add a L2 penalty term and it is the default choice;
e '11':add a L1 penalty term;
e ‘'elasticnet’: both L1 and L2 penalty terms are added.

tol : float, default=1e-4
Tolerance for stopping criteria.

C: float, default=1.0
Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values
specify stronger reqularization.



Choice of Optimizer

Y — se0 | . - .
— Momentumn E Since Logistic regression
~— NAG - requires an optimizer, there are

ijagrad more parameters to consider
adelta

Rmsprop

The choice of optimizer and
parameters can effect time to
fit model (especially if there are
many features)

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms
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Scikit-Learn Logistic Regression

_ = log regression.fit (pd.DataFrame(x), V)

[
[=]
i

Yy pred = log regression.predict proba(pd.DataFrame (X))
log v pred 1 = [item[l] for item in y pred]

=
o]

=]
=]

fig = plt.figure(figsize=(10,5))
Xlabel = 'Age'

ylabel = 'Purchased’

plt.xlabel (xlabel)

plt.ylabel (ylabel)

Purchased

=2
=

=]
]

plt.grid(color='k', linestyle=':', linewidth=1)
plt.plot(x, vy, '"Xb') 00 : i ; i : i . ;
plt . pl,:.t (Xr ]_Og y_pred 1 , T :|. ltll.[] 12I.5 ISI.E' l?I.S 2‘0I 0 22;.5 25I.[} 2?'I.5

= plt.plot(x, line point 5,'-g"')

Function predict proba (X) returns prediction of class
assignment probabilities (Just a number in binary case)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,

* In Machine Learning we use Logistic Regression for building predictive
classification models

 |In Data Science we use it for understanding how features relate to data
classes / categories

Example South African Heart Disease (Hastie et al. 2001)

Data result from Coronary Risk-Factor Study in 3 rural areas of South
Africa. Data are from white men 15-64yrs and response is
presence/absence of myocardial infraction (Ml). How predictive are
each of the features?
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sbp
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tobacco
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famhist
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alcohol
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Looking at Data
Each scatterplot shows
pair of risk factors. Cases
with Ml (red) and without

(cyan)

Features

Systolic blood pressure

Tobacco use

Low density lipoprotein (Idl)

Family history (discrete)
Obesity
Alcohol use

Age

[Source: Hastie et al. (2001)]



Example: African Heart Disease

Coefthicient Std. Error Z Score

(Intercept) —1.130 0064 _4108;  Fitlogistic regression to the

sbp 0.006 0.006 1.023  data using MLE estimate via

tobacco 0.080 0.026 3.034 iteratively reweighted least
1d1 0.185 0.057 3.219 squares

famhist 0.939 0.225 4.178

obesity -0.035 0.029 —1.187 Standard error is estimated

alcohol 0.001 0.004 0.136 standard deviation of the
age 0.043 0.010 4.184 learned coefficients

Recall, Z-score of weights is a random variable from standard Normal,
Wy ~ SE(’wd) ~ N(O, 1)

Thus anything with Z-score > 2 is significant at 5% confidence level



Example: African Heart Disease

Coefhcient Std. Error Z Score

(Tntercept) —1.130 0.064  —4.085 Finding Systolic blood
m T eep 0006 0.006 ~ 1.023 ! pressure (sbp) is not a
" tobaces ™ T T 0080 ~ -~ 6.026° — - 3.034- - significant predictor
1d1 0.185 0.057 3.219
vttt PRttt 22— Gy Obesity is not significant and
BN AT FE R V) Sk oo — - 1.136 = hegatively correlated with heart
age 0.043 0.010 4.184 disease in the model

Remember All correlations / significance of features are based
on presence of other features. We must always consider that
features are strongly correlated.



Example: African Heart Disease

Doing some feature selection

Coeflicient  Std. Error Z score we find a model with 4 _
(Intercept) —4.204 0498  —8.45 features: tobacco, Idl, family
tobacco 0.081 0.026 3.16 history, and age
1d1 0.168 0.054 3.09
famhist 0.924 0.223 4.14 How to interpret coefficients?
age 0.044 0.010 4.52 (e_g, tobacco = 0_081)

* Tobacco is measured in total lifetime usage (in kg)
* Thus, increase of 1kg of lifetime tobacco yields

exp(0.081) = 1.084

Or 8.4% increase in odds of coronary heart disease
* 95% Clis 3% to 14% since exp(0.081 + 2 x 0.026) = (1.03,1.14)
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