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Administrative Items

• HW9 out (Due: Tue 12/7)
• Released early by request

• Take-home Final Exam
• Out next week (TBD)



Clustering

Data are assigned to clusters
based on features like color

and shape



Hard Cluster Assignments

K-Means Assigns data to the cluster whose center is 
closest (in Euclidean distance)

Assignment nth Data Point

Cluster Center

This is a hard assignment model

Each data is assigned to exactly one cluster
[ Source: Bishop, C. ]



Clustering
Some data don’t

cluster easily

Cluster assignments have
inherent uncertainty



Soft Cluster Assignments

Mixture Model Assignment is a random variable and learns 
a posterior probability over assignment

This is a soft assignment model

Data are assigned to every cluster with 
some probability

Predicted assignment generally,

[ Source: Bishop, C. ]



Mixture Model

• Generative model : Models joint distribution over data and 
unknown assignment

• This is a Bayesian model – we have mostly seen frequentist 
models as of late

• Unknown assignment called a latent variable (“latent” means 
it is not observable, and must be inferred)

• Example of a latent variable model



Mixture Model

Prior encodes our belief about the latent variable (assignment) 
before observing any data,

Prior probability
of assignment

Likelihood

Likelihood captures the probability of the data given a cluster 
assignment



Mixture Model

Recall that the law of total probability allows us to calculate the 
marginal probability of the data,

Component distributions p(x|z) can be any 
distribution on the data that you like



Gaussian Mixture Model

One of the most common mixtures are over Gaussians

Unlike K-Means models 
correlation in clusters

Gaussian
Components

Assignment probabilities aren’t 
just Euclidean distance

[ Source: Bishop, C. ]



Soft GMM Assignments (Responsibilities)

Recall that by Bayes’ rule we have the posterior,

For Gaussian mixtures this is,

[ Source: Bishop, C. ]

In mixture modeling we call this the 
responsibility, since it is how responsible

cluster k is for data point n



Concept Recap

• Mixture model is a weighted combination of component distributions,

• Bayes’ rule gives the posterior probability of assignment (responsibility)

• A GMM uses Gaussian component distributions with responsibilities:

All that is left is how to learn the model…



Learning Gaussian Mixture Models (GMMs)

For D-dimensional X need to learn…

D-dimensional
vector of mean

parameters

DxD Matrix of
covariance
parameters

[ Source: Bishop, C. ]

…for K components this 
requires learning

parameters



Covariance

Captures correlation between random variables…can be 
viewed as set of ellipses…

Positive
Correlation

Uncorrelated Uncorrelated and
same variance

(isotropic / spherical)



Covariance Matrix



Covariance Matrix
Marginal variance of

just the RV X1

i.e. How “spread out” is the distribution
in the X1 dimension…



Covariance Matrix
Correlation between

X1 and X2

Recall, correlation is given by:

Captures linear dependence of RVs



Covariance

Captures correlation between random variables…can be 
viewed as set of ellipses…

Positive Correlation Uncorrelated Isotropic / Spherical

Full matrix



Learning the GMM

Need to learn the mean / variance parameters…

and for all k=1,…,K

Q: What method should we use to learn these?

A: Maximum likelihood estimation! 

• Form log-likelihood over all data
• Find parameters that maximize log-likelihood



MLE for GMM

This is a Gaussian mixture with KN modes!  It is highly non-
convex and difficult to optimize…

Recall that the likelihood of a single data point is given by,

For N i.i.d. data points, the log-likelihood function is,



Likelihood Lower Bound

Idea Form a lower bound of the non-convex log-likelihood with 
something that is easy to maximize,

True log-likelihood
Non-concave

Hard to maximize

Lower bound
Concave

Easy to maximize

We approximate maximum likelihood by 
optimizing the lower bound,



Expectation Maximization (EM)

Given a “guess” of parameters        and        forms the lower 
bound,

Responsibility using our “guess”
of component parameters

Mixture model joint PDF as a
function of parameters

• Lower bound             is a result of Jensen’s inequality (beyond scope)
• EM iteratively updates bound and finds new parameters with 2 steps

• Expectation (E-Step) : Update responsibilities
• Maximization (M-Step) : Maximize bound to find new parameters



Expectation Maximization

Initialize Cluster parameters         and        randomly for all K

Expectation Step Compute responsibilities for all data points,

Maximization Step Update parameter estimates by maximum 
likelihood,



EM for GMM

[ Source: Bishop, C. ]

Initialize Cluster 
parameters



EM for GMM

[ Source: Bishop, C. ]

E-Step Compute 
responsibilities



EM for GMM

[ Source: Bishop, C. ]

M-Step Maximize 
lower bound to 

find new 
component 
parameters



EM for GMM

[ Source: Bishop, C. ]

2 Iterations 5 Iterations 20 Iterations



Comparison to K-Means

Initialize cluster 
centers

Initialize cluster 
mean / covariance

K-Means GMM



Comparison to K-Means

Assign data to 
cluster with closest

center

E-Step: Compute 
responsibilities

K-Means GMM



Comparison to K-Means

Recompute cluster 
centers as average 
of all data in cluster

M-Step: Maximize 
lower bound to 

compute new mean / 
covariances

K-Means GMM



Generating Data

Mixture Models are generative, and define a joint distribution 
over the assignment and data,

Can use this to generate new synthetic data:
Step 1: Sample cluster assignment from prior,

Step 2: Sample data from component distribution,

This is an advantage over K-Means, but is not generative



Input parameters:



Attributes -- most available after calling fit(X):



Scikit-Learn : GMM Example

Load Iris dataset,

Define several 3-component GMMs with
different covariances,

Fit each of them…



Parting notes on GMM

• In some ways, more sensitive to initialization than K-Means
• Needs to learn more “stuff” (DxD covariance matrices)
• K-Means exactly maximizes objective, whereas EM maximizes lower 

bound on non-concave function

• Generally good practice to regularize covariance matrix
• Covariance can shrink to zero in some extreme cases
• Scikit-Learn allows addition of small constant value to diagonal

• Fully Bayesian model adds prior probabilities to mean / covariance 
parameter

• Estimates mean / covariance using maximum a posteriori MAP
• Scikit-Learn supports this in: 
sklearn.mixture.BayesianGaussianMixture
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