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Administrative Items

• HW9 Due next Tue (12/7)

• Final Exam
• “Take Home”
• Will go out next Thurs (12/9)
• Due following Wed (12/15) our official Final day
• It will not take that full time (I know you have other finals)



Motivation

Data often have a lot of redundant information…

Example A dataset consisting of a hand-drawn 3 at random 
locations and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000
Intrinsic Dimension 3 (X-position, Y-position, Rotation)

[ Source: Bishop, C. ]



Motivation

…or data have strongly dependent features…

Fahrenheit Celsius

3.1 -16.1

100.5 38.1

27.3 -2.6

18.1 -7.7

18.9 -7.3

21.7 -5.7

… …

Linear Function



Motivation

…or data are high-dimensional and hard to visualize…

…in all cases finding lower intrinsic dimension is useful



Example : Iris Dataset

Recall that the Iris dataset has 4 features: 
sepal length / width, petal length / width…



Example : Iris Dataset

Data still cluster in a two-
dimensional subspace

We can fit model in 2D to 
reduce complexity, visualize 

results, etc.



Linear Dimensionality Reduction

Project data onto a line or 
plane…

…one of the simplest 
dimensionality reduction 

approaches

First, let’s review some linear 
algebra…

[ Source: Bishop, C. ]



Inner Products

Recall the definition of an inner product:

Equivalently, projection of one vector onto another,

where
Vector Norm

u



Linear Dimensionality Reduction

Projecting data onto a vector is a 
simple inner product,

[ Source: Bishop, C. ]

We call u the linear subspace

Question Why would 
dimensionality reduction be 

better than feature selection (e.g. 
choose 1-D features X1 or X2)?



Linear Dimensionality Reduction

Projecting data onto a vector is a 
simple inner product,

[ Source: Bishop, C. ]

We call u the linear subspace

Answer No features are 
discarded (uses all the data),



Linear Dimensionality Reduction

Which choice of subspace is best?  And why?



Linear Dimensionality Reduction

Which choice of subspace is best?  And why?

Idea Choose the subspace that captures the 
most variation in the original data



Principal Component Analysis (PCA)

Identify directions of maximum variation as subspaces…

…we call each direction a principal component
[ Source: Bishop, C. ]



Principal Component Analysis (PCA)

First, center the data by subtracting the sample mean,

Variance of projected subspace,

Projection of
nth data point

Projection of
mean



Minimum Variance Formulation

A little algebra…

Pull out u

Quadratic form

Define:                                                    

Then:

This is what we will
optimize over u



Minimum Variance Formulation

Don’t want to cheat with large magnitude u, so we add penalty,

Find u so that projected variance is maximal…

Set the derivative (gradient) to zero and solve…
For those that have taken linear
algebra: What equation is this?

u is an eigenvector with
eigenvalue    



Recap of Concepts

• Learning a reduced intrinsic dimension is useful for a bunch 
of reasons

• The easiest approach is to find a linear subspace

• PCA defines the linear subspace as that which maximizes 
variance of the projected data

• The set of subspaces are defined by the eigenvectors,
But what is an eigenvector?



Linear Transformations

Consider the matrix:

Let’s multiply it with some vectors…

• Matrix transforms vectors from one basis to 
another

• Columns are transformation of standard basis



Eigenstuff
Observe that the X-axis vector just gets 
“stretched out”,

Define some variables and we have the equation,

Factoring out the 3 we have,

So (1,0)T is an eigenvector of S with eigenvalue 3



Eigenstuff

Transformation has one other eigenvector,

• Complete eigendecomposition of S

• Eigenvectors of linear transformation S 
are only stretched / shrunk / flipped

• Eigenvalues tell how much they are 
stretched / shrunk / flipped

Eigenvectors Eigenvalues



Eigenstuff

Eigendecomposition highlights what a linear 
transformation does by identifying directions that are not

altered

Eigenvectors Eigenvalues



Eigenstuff

Eigenvectors / values of a matrix solve the equation

• Matrix S may have multiple eigenvectors / values that solve 
the above equation

• For D-dimensional u can find all vectors in O(D3) time
• PCA finds M<D vectors with largest eigenvalues
• Can find M<D sorted eigenvectors in O(MD2) time 
• Note that D can be large!



Eigenvectors and Ellipses

Take all points on a unit circle and apply the 
linear transformation S

If S is a covariance matrix, then points will 
be transformed into an ellipse and…
• Eigenvectors are axes of ellipse
• Eigenvalues are length of each axes
• Sort eigenvalues to get major / minor / etc. 

axes
• In the context of PCA eigenvectors = 

principal components

How does this connect to PCA?



Principal Component Analysis (PCA)

Sort eigenvectors by their eigenvalues…

…amount of variance in each principal component decreases with eigenvalue

[ Source: Bishop, C. ]



Data “Whitening”
Multiplying data by eigenvectors transforms data so they are 

zero-mean and uncorrelated

Data whitening can be an important preprocessing step for many 
data science applications (even if we don’t care about 

dimensionality reduction)

Diagonal matrix
of eigenvalues

Matrix of eigenvectors
on each column

Sample
mean



Principal Component Analysis (PCA)

How much variance is captured by just the first principal 
component (i.e. eigenvector with largest eigenvalue)?

[ Source: Bishop, C. ]

Let     be the first principal component, 
then variance of first PC is,

How much in the second PC?



Explained Variance

How much variance is captured in M < D principal 
components?

We call this the explained variance 
of the first M principal components

Divide by total variance to find 
percentage of the total variance 

explained by the subspace
[ Source: Bishop, C. ]



EM for PCA

For N data points of D-dimensions
• Computing the first M < D principal components takes O(MD2)
• Evaluating the covariance needs O(ND2) time
• Most expensive step in EM is O(NDM) time
• If D large and M << D then O(NDM) << O(ND2)

We can derive an expectation maximization (EM) algorithm for 
PCA…but why would we do this if PCA is closed-form?

Unlike in GMM, EM always finds the exact solution for PCA



Concept Recap

Eigenvectors
• For a general linear transform – identify directions that are only 

stretched / shrunk / flipped
• For a covariance matrix – identify axes of the ellipse that describes 

covariance

PCA
• Learns linear subspace as M < D principal components corresponding 

to M eigenvectors with largest eigenvalue
• Can be used to whiten (standardize, de-correlate) data
• Explained variance of M principal components easily calculated as 

percent of total explained variance in whitened data



Parameters



Attributes



Caution

Careful with the following parameter,

Wrong

Right

Right

X already modified

Why would you
prefer one over

the other?



Example : PCA on Iris Data
Load Iris data without labels,

Find PCA with 2 principal components,

How much variance did we capture?



Example : PCA on Iris Data

View data in 2-D subspace,

Do K-means clustering in 2-D subspace,



Nonlinear Dimensionality Reduction
For general data, linear dimensionality 

reduction is not sufficient…

Many methods exist for nonlinear 
dimensionality reduction



t-SNE

Nonlinear reduction can (potentially) 
amplify clustering properties

t-Distributed Stochastic Neighbor 
Embedding (t-SNE) Models similarity 

between data as a Student’s-t 
distribution in high / low dimensions and 
optimizes reduction to preserve similarity

Visualization shows MNIST digits (recall from lecture on 
Neural Nets) projected to 2D and clustered



Parameters

Attributes



Example : t-SNE on Iris Dataset
t-SNE can work surprisingly well…

…but can be a bit fussy about parameters and unreliable

One advantage of PCA
is that it has no parameters
that need tuning (aside from

number of PCs)

PCA is also much easier
to interpret



Closing Comments

• Nonlinear methods in Scikit-Learn categorized under “manifold 
learning” in the manifold sub-package,

• Isomap, Locally Linear Embedding, Spectral Embedding, 
Multidimensional scaling, and of course TSNE

• Other methods related to PCA (in decomposition sub-pkg):
• Factor Analysis, Kernel PCA, Incremental PCA

• For multiple data sources, consider cross-decomposition
• Canonical Correlation Analysis (CCA)
• Learns same embedding for both spaces
• Under cross_decomposition sub-package
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