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Administrative ltems

 HW9 Due next Tue (12/7)

* Final Exam
* “Take Home”
* Will go out next Thurs (12/9)
* Due following Wed (12/15) our official Final day
* It will not take that full time (I know you have other finals)



Motivation

Data often have a lot of redundant information...

EIENERE

Example A dataset consisting of a hand-drawn 3 at random
locations and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000

Intrinsic Dimension 3 (X-position, Y-position, Rotation)
[ Source: Bishop, C. ]



Motivation

...or data have strongly dependent features...
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Motivation

...0r data are high-dimensional and hard to visualize...
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...In all cases finding lower intrinsic dimension is useful
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Example : lris Dataset

Recall that the Iris dataset has 4 features:
sepal length / width, petal length / width...
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Dim 2
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Example : lris Dataset

Iris - 2D Projection

Data still cluster in a two-
dimensional subspace

We can fit model in 2D to
reduce complexity, visualize
results, etc.
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Linear Dimensionality Reduction
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Project data onto a line or
plane...

...one of the simplest
dimensionality reduction
approaches

First, let’s review some linear
algebra...

[ Source: Bishop, C. ]



Inner Products

Recall the definition of an inner product:

T
U T =UIT1 +U2T2 + ...+ UDTD

D
= E U d
d=1

Equivalently, projection of one vector onto another,

uw!'x = |u||z|cos where 2| = />, 22

Vector Norm
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Linear Dimensionality Reduction

Xn

e
/n

e

//'u

Projecting data onto a vector is a
simple inner product,

T, =u’x,

We call u the linear subspace

Question Why would
dimensionality reduction be
better than feature selection (e.g.
choose 1-D features X1 or X2)?

[ Source: Bishop, C. ]



i)

"/
/

Linear Dimensionality Reduction
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Projecting data onto a vector is a
simple inner product,

T, =u’x,

We call u the linear subspace

Answer No features are
discarded (uses all the data),

I~

Tp = U1Tp1 T U2Tp2

[ Source: Bishop, C. ]
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Linear Dimensionality Reduction

Which choice of subspace is best? And why?
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Linear Dimensionality Reduction

Which choice of subspace is best? And why?
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Idea Choose the subspace that captures the

most variation in the original data




Principal Component Analysis (PCA)

|dentify directions of maximum variation as subspaces...
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...we call each direction a principal component
[ Source: Bishop, C. ]



Principal Component Analysis (PCA)

First, center the data by subtracting the sample mean,

1 N
Variance of projected subspace,
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Minimum Variance Formulation

A little algebra

Nzluggn—ux :—Z{u Pull out u
n—

. 1
Quadratic form — ~ Z UT(In — 7) (2 — SE)Tu

Define: S = ~ ij:l(fﬂn —Z)(zn — )"
N This is what we will

optimize over u

Then: WZ(U Lp — U x)Q:uTSu

n=1



Minimum Variance Formulation

Find u so that projected variance is maximal...

max u' Su
u

Don’t want to cheat with large magnitude u, so we add penalty,

max ul Su — Mt
U

Set the derivative (gradient) to zero and solve...

Su—Au =0 For those that have taken linear

/ algebra: What equation is this?

Su = Au u is an eigenvector with
eigenvalue \



Recap of Concepts

» Learning a reduced intrinsic dimension is useful for a bunch
of reasons

* The easiest approach is to find a linear subspace

 PCA defines the linear subspace as that which maximizes
variance of the projected data

max u! Su — Mt u
U

* The set of subspaces are defined by the eigenvectors,
Su = \u But what is an eigenvector?



Linear Transformations

Consider the matrix: { g ; }

Let’'s multiply it with some vectors...

3 1 0] [3-04+1-11] [1]
0 2| 1] |[0-04+42-1| |2
3 1 |[1] [3-1+1-0] |3
0 20| |0-142-0] |0

 Matrix transforms vectors from one basis to
another

 Columns are transformation of standard basis




Eigenstuff

Observe that the X-axis vector just gets
“stretched out’,

o lol= 1o

Factoring out the 3 we have,

HIREH

Define some variables and we have the equation,
Su = \u

So (1,0)" is an eigenvector of S with eigenvalue 3

i

o W



Eigenstuff
Transformation has one other eigenvector,
3 1 —-0.7 | | —14 _ —0.7 [1144]
0 2 0.7 | | 14 | 0.7 |
« Complete eigendecomposition of S

Eigenvectors{ (1) _0077 ] Eigenvalues { g ] [(1)]

 Eigenvectors of linear transformation S
are only stretched / shrunk / flipped

* Eigenvalues tell how much they are
stretched / shrunk / flipped




Eigenstuff

Eigenvectors L =07 Eigenvalues 3
0 0.7 2

Eigendecomposition highlights what a linear
transformation does by identifying directions that are not

‘ altered \



Eigenstuff

Eigenvectors / values of a matrix solve the equation

Su = A\u
» Matrix S may have multiple eigenvectors / values that solve
the above equation
 For D-dimensional u can find all vectors in O(D?) time
* PCA finds M<D vectors with largest eigenvalues
« Can find M<D sorted eigenvectors in O(MD?) time
* Note that D can be large!



Eigenvectors and Ellipses

How does this connect to PCA?

Take all points on a unit circle and apply the
linear transformation S

If S is a covariance matrix, then points will
be transformed into an ellipse and...

* Eigenvectors are axes of ellipse
» Eigenvalues are length of each axes

» Sort eigenvalues to get major / minor / etc.
axes

* In the context of PCA eigenvectors =
principal components




Principal Component Analysis (PCA)

Sort eigenvectors by their eigenvalues...
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...amount of variance in each principal component decreases with eigenvalue

[ Source: Bishop, C. ]



Data “Whitening”

Multiplying data by eigenvectors transforms data so they are
zero-mean and uncorrelated

Matrix of eigenvectors
on each column

| o | A
| Diagonal matrix Sample _,|

. . of eigenvalues mean
9 0 5 -2 0 2

I
[

I

Data whitening can be an important preprocessing step for many
data science applications (even if we don’t care about
dimensionality reduction)
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Principal Component Analysis (PCA)

How much variance is captured by just the first principal
component (i.e. eigenvector with largest eigenvalue)?

Let v be the first principal component,
| then variance of first PC is,

1 82
A v 2 (e}
How much in the second PC?

1 T 2
N;{UQ (T, —:17)}

2 F

2 F

0

[ Source: Bishop, C. ]



Explained Variance

How much variance is captured in M < D principal
components?

M
1 2
m=1 n
!l / | We call this the explained variance
of the first M principal components

. . Divide by total variance to find
0 2 percentage of the total variance
explained by the subspace

[ Source: Bishop, C. ]
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EM for PCA

We can derive an expectation maximization (EM) algorithm for
PCA...but why would we do this if PCA is closed-form?

For N data points of D-dimensions

« Computing the first M < D principal components takes O(MD?)
 Evaluating the covariance needs O(ND-) time

* Most expensive step in EM is O(NDM) time

 |If Dlarge and M << D then O(NDM) << O(ND?)

Unlike in GMM, EM always finds the exact solution for PCA



Concept Recap

Eigenvectors

* For a general linear transform — identify directions that are only
stretched / shrunk / flipped

* For a covariance matrix — identify axes of the ellipse that describes
covariance

PCA

 Learns linear subspace as M < D principal components corresponding
to M eigenvectors with largest eigenvalue

» Can be used to whiten (standardize, de-correlate) data

« Explained variance of M principal components easily calculated as
percent of total explained variance in whitened data



sklearn.decomposition.PCA

Parameters

n_components : int, float or ‘mle’, default=None
Number of components to keep. if n_components is not set all components are kept

copy : bool, default=True
If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.

whiten : bool, default=False
When True (False by default) the components_ vectors are multiplied by the square root of n_samples and
then divided by the singular values to ensure uncorrelated outputs with unit component-wise variances.



sklearn.decomposition.PCA

Attributes

components_ : ndarray of shape (n_components, n_features)
Principal axes in feature space, representing the directions of maximum variance in the data. Equivalently,
the right singular vectors of the centered input data, parallel to its eigenvectors. The components are
sorted by explained_variance_.

explained_variance_ : ndarray of shape (n_components,)
The amount of variance explained by each of the selected components. The variance estimation uses
explained_variance_ratio_ : ndarray of shape (n_components,)
Percentage of variance explained by each of the selected components.

If n_components Is not set then all components are stored and the sum of the ratios is equal to 1.0.

singular_values_ : ndarray of shape (n_components,)
The singular values corresponding to each of the selected components. The singular values are equal to
the 2-norms of the n_components variables in the lower-dimensional space.



Caution

Careful with the following parameter,

copy : bool, default=True

If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.

Wrong

Right

Right

pca = PCA(n components=2, copy=False) .fit (X)
X pca = pca.transform(X) < X already modified

Why would you
pca = PCA(n components=2) .fit (X) prefer one over

X pca = pca.transform(X) the other?

X pca = PCA(n components=Z, copy=False).fit transform(X)



Example : PCA on Iris Data

Load Iris data without labels,

iris = datasets.load iris(as frame=True)
X = iris.data

Find PCA with 2 principal components,

pca = PCA(n components=Z).fit(X)
X pca = pca.transform(X)

How much variance did we capture?

eXxpvar = pca.exXplained variance ratio

print('% Variance in 1st PC: ', expvar[0])
print('% Variance in Znd PC: ', expvar[l])

print ('Total explained wvariance: ', sum({expvar))

% Variance in 1lst PC: 0.9246187232017271
% Variance in 2nd PC: 0.053066483117067604
Total explained wvariance: 0.977685206318795



Example : PCA on Iris Data
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05 - *,° ..&;~ %
plt.scatter(X pcal[:,0], X pcal:,1]) o PO p"“'o
plt.xlabel ('PC1") 0.0 1 ®e o o®
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Do K-means clustering in 2-D subspace, = = = 8 T 2 3
kmeans = KMeans (n clusters=3).fit (X pca) - . .
labels = kmeans.labels 10 - ‘.
fig, ax = plt.subplots() P . ‘%
ax.scatter (X pcal[:,0] [labels == 0], X pca[:,1][labels == 0], c="r") " :":.."0.3‘*&
ax.scatter (X pcal[:,0] [labels == 1], X pca[:,1][labels == 1], c="g") o] * *%a ..o" ".:.
ax.scatter (X pcal[:,0] [labels == 2], X pca[:,1][labels == 2], c='b'") Y ."’. .""

plt.show()




Nonlinear Dimensionality Reduction

For general data, linear dimensionality
reduction is not sufficient...

Polynomial degree 5

Many methods exist for nonlinear
dimensionality reduction




t-SNE

Nonlinear reduction can (potentially)
amplify clustering properties

. < + ® + .
O WD R WN=O

t-Distributed Stochastic Neighbor
Embedding (t-SNE) Models similarity

: between data as a Student’s-t

%% distribution in high / low dimensions and
~  optimizes reduction to preserve similarity

Visualization shows MNIST digits (recall from lecture on
Neural Nets) projected to 2D and clustered



sklearn.manifold.TSNE

Parameters

n_components : int, default=2
Dimension of the embedded space.

perplexity : float, default=30.0
The perplexity is related to the number of nearest neighbors that is used in other manifold learning
algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50.
Different values can result in significantly different results.

learning_rate : float or ‘auto’, default=200.0
The learning rate for t-SNE is usually in the range [10.0, 1000.0].

Attributes

embedding_: array-like of shape (n_samples, n_components)
Stores the embedding vectors.



Example : t-SNE on lris Dataset
t-SNE can work surprisingly well...

from sklearn.manifold import TSNE One advantage of PCA
perplexity = [20, 50, 100] is that it has no parameters

I JeREE Z EErellERAsT that need tuning (aside from
tsne = TSNE (n components=Z, perplexity=perp)

X tsne = tsne.fit transform(X) number of PCS)
fig, ax = plt.subplots|()

ax.scatter (X tsnel:,0], X tsne[:,1]) PCA is also much easier
ax.set title('Perplexity %i' % perp)

plt.show () ' to interpret

...but can be a bit fussy about parameters and unreliable
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Closing Comments

* Nonlinear methods in Scikit-Learn categorized under “manifold
learning” in the manifold sub-package,

* Isomap, Locally Linear Embedding, Spectral Embedding,
Multidimensional scaling, and of course TSNE

» Other methods related to PCA (in decomposition sub-pkg):
» Factor Analysis, Kernel PCA, Incremental PCA

* For multiple data sources, consider cross-decomposition
« Canonical Correlation Analysis (CCA)
* Learns same embedding for both spaces
* Under cross decomposition sub-package
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